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ABSTRACT there are two kinds of methods. The first one is based on 2D
Fourier transform (or FK representation). It gives a global
(or mean) estimation because group and phase parameters
L . . . . are usually estimated at the maximum of the 2D spectrum
estimation using a linear array of geophones. This estlma-[Z] In 1981 McMechan [3] proposed an efficient Fourier
tion enables a robust characterization and extraction of the ™ . prop L . .
dispersive propagating waves from a seismic profile. The based technique, slant stgck, for. estimating the d|sper5|ye
novelty of our method is the use of a simultaneous time de- parameters at all frequencies. This method does not require

lay and phase shift correction in order to estimate the dis- as many traces as the classical FK but the lack of tempo-

S . : . . . ral resolution makes it difficult to apply. The second set of
persion filter. The resulting algorithm is semi-automatic and . . X . :
methods is based on an improved interpretation of Time-

requires very few input parameters. The main advantage of .
: . . . -~ Frequency Representations (TFR) of each trace separately
our algorithm is that the signals are analysed in the time [4]. [5]. [6]. Their advantage is the time resolution induced

frequency domain using all sensors simultaneously while o
classical approches are either multi-sensor in the frequencyfrom the TFR. These 1D methods lead to the estimation

domain or single sensor in the time-frequency domain. Val- of the group velocity between the source and each sensor.

idations on synthetic and real data show the reliability of the We propose in our ”.‘ethOd a t.rade-off betwee.n the two ap-
algorithm. proaches by designing a multi-sensor analysis (2D) which

include TFR. Our method can also be applied on a small

numbers of sensors. In addition, our algorithm estimates
1. INTRODUCTION simultaneously the group and phase velocities between the

sensors. Section 2 is devoted to the design of the method.
Analysis of seismic surface waves applied to near surface|n section 3, we show the efficiency of the method on field

structures is an increasingly important tool in civil and seis- gata. Finally, in section 4 the noise robustness and stability
mic engineering as the shear wave velocity variation with 516 estimated on heavily corrupted synthetic data.
depth can be recovered. The surface waves propagate along

the surface, are highly energetic, and have a depth pene-
tration which depends on the wavelengtle.( on the fre- 2. ESTIMATION OF THE DISPERSION
guency). As the shear wave velocities generally vary with
depth, the surface waves are dispersive. This explain thaty 1 Notations
their duration increases with distance (see figure 1(a)). In
this paper we focus on the estimation of the dispersion of In multi-sensor analysis, dispersion is characterized by the
the surface waves. This has two main interests. Firstly, thetransfer function between sensors. Noting, the dis-
parameters of the dispersive waves make it possible to inverfpersive wave at senser, we havew,1 = (w, * hy,).
for the shear velocity as a function of depth. Secondly, onceWe note H,,(f) = || H,(f)||e?¢~#(/) the Fourier Trans-
the dispersion is known, the extraction of the propagating form (FT) of h,,, whereg,, i (f) is the phase off,,(f). We
waves becomes efficient. This is crucial for the petroleum assume standard assumptions which are that the dispersion
industry where the energetic surface waves are considereds spatially stationaryife. h, = h), and that the module
as noise [1]. |H(f)|l is equal to one. This simplified () to 1.e7%# /),

In this paper we propose a new approach for estimat- Note that in a non dispersive cageis only a delayr, and
ing the dispersion of a propagating wave. In the literature, ¢ (f) = 2nf7.

This paper deals with seismic signal processing. We pro-
pose a new algorithm which performs the dispersion filter
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2.2. Estimation at one frequency This leads tapy (f) = — (27 f7 + ¢o). The benefit here is
the improved time resolution on the profile 1(e) as compared
to the simple frequency analysis figure 1(c). In presence of
several waves, we can therefore estimate the time location
of each one. This simplifies the interpretation and decreases
the interferences between different waves.

To explain the algorithm we focus on the dispersion esti-
mation on a synthetic dispersive wave (figure 1(a) in time
and 1(b) in frequency) at one frequengy To estimate
ou(f), Fourier based methods correspond to filtering the
traces with a sinusoid. This leads to the profile figure 1(c)
in time and 1(d) in frequency. The phase shiftwhich
lines up this profile is-¢ 5 (f). FK [2] methods findp by 2.3. Estimation at all frequencies

computing the 2D Fourier transform along the time and spa- ) _

tial axis, and this technique therefore requires many traces.We need to estimatgy (f) at all the frequencies. So a set
Slant stack [3] is based on the Fourier Transform (FT) of the of bandpass filters is required. We choosg to use the Contin-
Radon Transform, s¢ is estimated by finding the velocity ~Uous Wavelet Transform (CWT) because its time-frequency
correction which maximizes the energy of the summation of résolution is adapted to seismic waves [7]. Rather than fil-
all traces. However the slant stack does not separate wavelering the profile at one frequengy, and then look forr,

which have the same dispersion curve, even if such waves®nd ¢o, the two operations can be inverted to accelerate
arrive at the sensor at different times. the algorithm. This is possible because the CWT is lin-

ear. We consequently filter at each frequency the stack of

; ] all traces issued from the different delay and phase shift cor-
] rections. This means that the wavelet transform is applied to
) . the stacked signal to visualize where in the time-frequency

plane the stacking operation magnifies the energy.

sensors

temporal frequency

Compared with other representations [7], [8], [9], CWT

e ] I . has one advantage and two main drawbacks. The advantage
time (a) and (b) Initiale profile spatia frequency is that there are no cross-terms. The first drawback is that
] | when filtering our signal with a wavelet the main frequency
2 ) g” fm of the filtered signal is not exactlfy(see figure 2). How-
g 8" 3 ever, we can correct this error by estimatifyg with the in-
. %O; & Tphin stantaneous frequency of the filtered signal [10]. After this
""""""" § | correction, we gebyg (fin) = — (27 fn 7T+ ¢o). The second
e T (oand (@ Fitered by s : oy — iss_ue is that th_e CWT leads to a non (_:oncentrated represen-
tation of the signal. The representation has to be concen-
0 | trated enough to present the different waves with no overlap
g K g | delay of their associated pattern. To overcome this problem, we
B 2 g phase | correctionr extract only the ridge of the module image for each of the
E St = 1"// ¢o andr corrections. The image of the maxima (figure 5) is
g the output of this procedure.
‘tme 7 (¢)and (f) Filtered by awavelet  spaial frequency )
g | Signal spectrum  Filtered signal spectrum
Fig. 1. Filtering with different time-frequency resolutions E ;
Boo / \Wavelet spectrum .|
T /
Our purpose here is to use a trade-off between time and B oot
frequency resolution to decrease the interference between /
the different waves. Instead of convolving our profile with //
a sine wave, we convolve with a short time duration sine
wave. This wavelet is a bandpass filter. The output of this el T T Mheglieny
filtering is presented on figure 1(e) in time and 1(f) in fre-
guency. The dispersion correction is done here by applying Fig. 2. Frequency error
successively a delay correction followed by a phase shift
correction (see figure 1(f)). This means tlagf(f) is ap- After the calculation of the different TFR has been done,
proximated at the order 1 B fr + ¢o, wherer and g for each time-frequency locatio, f), we store the maxi-

are respectively a delay and a phase shift. As in the case oimum modulus value among all the TFR generated for each
the slant stack [3}, and T can be estimated as the value correctionT and ¢y and its corresponding argumentr;
of ¢9 andr for which the energy after stack is maximized. ¢y and f,,,. This enables the estimation of the phase filter

11 -430



S (fm(t, ) = —(2mfin(t, /)7 (¢, f) + ¢o(t, f)) at each

coordinate(t, f). The algorithm can be summarized by the

flow chart figure 3.

Initialisation : Amp(t, f) = 0, 7(t, f) = 0, o(t, f) = 0, andé(t, f) =0
for all ¢y, and7y, do :
e delay7;, and phase shifp,;. correction
e stack
e TFR of stack
e ridge selection, set amplitude outside)to
and along ridge keep amplitude of TFRnpy(t, f)
calculate instantaneous frequencgreq;,(t, f)
o for all location(¢, f) do
it Ampi(¢, f) > Amp(t, f)
Amp(t, ) = Ampi(t, )
T(t, f) =T
o(t, ) = dox
B(t, f) = o + 2m7freqin(t, f)
endif
endfor
endfor

Fig. 3. Algorithm flow chart

The algorithm is related to 2D Fourier methods, but is

more robust because we take advantage of the good time-

frequency resolution of TFR. This simplifies the algorithm
and improves its performance. Anillustration is given on an
example of field data in the next section.

3. DISCUSSION ON RESULTS

3.1. Real data
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Figure 4(a) and (b) present the real data respectively in ,,

the time domain and in the FK domain. The nonlinearity of
the pattern on the FK reveals the dispersiveness.

e figure 5(a) presents, in the time frequency domain
the image of the maximum magnitude of each pixel

in time-frequency plane corresponding to the energy

maxima along thér, ¢,)axes. It reveals the presence
of an energetic wave around coordinate (110,12).

e figure 5(b) and (c) present the delayand phase cor-
responding arguments, for each locatior{, f).
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From figure 5(a), we select the ridge of the pattern cor-
responding to the dispersive wave.and ¢;; (related re-
spectivaly to group and phase velocity) can be extracted as
the value at this location of figure 5(b), and (d). The correc-
tion of the dispersion leads to figure 6(a) and (b) where the
wave is perfectly lined up.

Once the dispersion is corrected, subspace methods (SVD)
can be applied for wave-field separation [11], [1]. This leads
to the extraction of the first mode of the dispersive wave.
Figure 7(a) and (b) present the extracted profile re-projected
in its original configuration, and (c) and (d) show the differ-
ence (.e. 7(c)=6(a) - 7(a)).
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Fig. 6. Correction of the dispersion on real data

This algorithm has been validated on sets of field data.
We show in this example that the representation of the data
in the time-frequency plane enables a simple interpretation
of the data. In presence of several waves, with different ve-
locities or different time-frequency locations, our algorithm

» figure 5(d) presents the image of the estimated filter is able to present them separated, and therefore to charac-

¢ g induced from image (b) and (c).

terize and extract each individual one.
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resolution in time and present the data in an image where
the pattern of different waves are separated and easily rec-
ognized. In addition we keep the advantage of 2D analysis
' . which is that it is noise robust and that it estimates the dis-
persion between sensors. The validation on real data and
on highly noisy synthetic data show the good performances
of this method. Our algorithm is stable, simple, and semi-
automatic.
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