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ABSTRACT

This paper deals with seismic signal processing. We pro-
pose a new algorithm which performs the dispersion filter
estimation using a linear array of geophones. This estima-
tion enables a robust characterization and extraction of the
dispersive propagating waves from a seismic profile. The
novelty of our method is the use of a simultaneous time de-
lay and phase shift correction in order to estimate the dis-
persion filter. The resulting algorithm is semi-automatic and
requires very few input parameters. The main advantage of
our algorithm is that the signals are analysed in the time-
frequency domain using all sensors simultaneously while
classical approches are either multi-sensor in the frequency
domain or single sensor in the time-frequency domain. Val-
idations on synthetic and real data show the reliability of the
algorithm.

1. INTRODUCTION

Analysis of seismic surface waves applied to near surface
structures is an increasingly important tool in civil and seis-
mic engineering as the shear wave velocity variation with
depth can be recovered. The surface waves propagate along
the surface, are highly energetic, and have a depth pene-
tration which depends on the wavelength (i.e. on the fre-
quency). As the shear wave velocities generally vary with
depth, the surface waves are dispersive. This explain that
their duration increases with distance (see figure 1(a)). In
this paper we focus on the estimation of the dispersion of
the surface waves. This has two main interests. Firstly, the
parameters of the dispersive waves make it possible to invert
for the shear velocity as a function of depth. Secondly, once
the dispersion is known, the extraction of the propagating
waves becomes efficient. This is crucial for the petroleum
industry where the energetic surface waves are considered
as noise [1].

In this paper we propose a new approach for estimat-
ing the dispersion of a propagating wave. In the literature,

there are two kinds of methods. The first one is based on 2D
Fourier transform (or FK representation). It gives a global
(or mean) estimation because group and phase parameters
are usually estimated at the maximum of the 2D spectrum
[2]. In 1981 McMechan [3] proposed an efficient Fourier
based technique, slant stack, for estimating the dispersive
parameters at all frequencies. This method does not require
as many traces as the classical FK but the lack of tempo-
ral resolution makes it difficult to apply. The second set of
methods is based on an improved interpretation of Time-
Frequency Representations (TFR) of each trace separately
[4], [5], [6]. Their advantage is the time resolution induced
from the TFR. These 1D methods lead to the estimation
of the group velocity between the source and each sensor.
We propose in our method a trade-off between the two ap-
proaches by designing a multi-sensor analysis (2D) which
include TFR. Our method can also be applied on a small
numbers of sensors. In addition, our algorithm estimates
simultaneously the group and phase velocities between the
sensors. Section 2 is devoted to the design of the method.
In section 3, we show the efficiency of the method on field
data. Finally, in section 4 the noise robustness and stability
are estimated on heavily corrupted synthetic data.

2. ESTIMATION OF THE DISPERSION

2.1. Notations

In multi-sensor analysis, dispersion is characterized by the
transfer functionh between sensors. Notingwn the dis-
persive wave at sensorn, we havewn+1 = (wn ∗ hn).
We noteHn(f) = ‖Hn(f)‖ejφnH(f) the Fourier Trans-
form (FT) ofhn, whereφnH(f) is the phase ofHn(f). We
assume standard assumptions which are that the dispersion
is spatially stationary (i.e. hn = h), and that the module
‖H(f)‖ is equal to one. This simplifiesH(f) to 1.ejφH(f).
Note that in a non dispersive case,h is only a delayτ , and
φH(f) = 2πfτ .
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2.2. Estimation at one frequency

To explain the algorithm we focus on the dispersion esti-
mation on a synthetic dispersive wave (figure 1(a) in time
and 1(b) in frequency) at one frequencyf . To estimate
φH(f), Fourier based methods correspond to filtering the
traces with a sinusoid. This leads to the profile figure 1(c)
in time and 1(d) in frequency. The phase shiftφ which
lines up this profile is−φH(f). FK [2] methods findφ by
computing the 2D Fourier transform along the time and spa-
tial axis, and this technique therefore requires many traces.
Slant stack [3] is based on the Fourier Transform (FT) of the
Radon Transform, soφ is estimated by finding the velocity
correction which maximizes the energy of the summation of
all traces. However the slant stack does not separate waves
which have the same dispersion curve, even if such waves
arrive at the sensor at different times.
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Fig. 1. Filtering with different time-frequency resolutions

Our purpose here is to use a trade-off between time and
frequency resolution to decrease the interference between
the different waves. Instead of convolving our profile with
a sine wave, we convolve with a short time duration sine
wave. This wavelet is a bandpass filter. The output of this
filtering is presented on figure 1(e) in time and 1(f) in fre-
quency. The dispersion correction is done here by applying
successively a delay correction followed by a phase shift
correction (see figure 1(f)). This means thatφH(f) is ap-
proximated at the order 1 by2πfτ + φ0, whereτ andφ0

are respectively a delay and a phase shift. As in the case of
the slant stack [3]φ0 andτ can be estimated as the value
of φ0 andτ for which the energy after stack is maximized.

This leads toφH(f) = −(2πfτ + φ0). The benefit here is
the improved time resolution on the profile 1(e) as compared
to the simple frequency analysis figure 1(c). In presence of
several waves, we can therefore estimate the time location
of each one. This simplifies the interpretation and decreases
the interferences between different waves.

2.3. Estimation at all frequencies

We need to estimateφH(f) at all the frequencies. So a set
of bandpass filters is required. We choose to use the Contin-
uous Wavelet Transform (CWT) because its time-frequency
resolution is adapted to seismic waves [7]. Rather than fil-
tering the profile at one frequencyf , and then look forτ ,
and φ0, the two operations can be inverted to accelerate
the algorithm. This is possible because the CWT is lin-
ear. We consequently filter at each frequency the stack of
all traces issued from the different delay and phase shift cor-
rections. This means that the wavelet transform is applied to
the stacked signal to visualize where in the time-frequency
plane the stacking operation magnifies the energy.

Compared with other representations [7], [8], [9], CWT
has one advantage and two main drawbacks. The advantage
is that there are no cross-terms. The first drawback is that
when filtering our signal with a wavelet the main frequency
fm of the filtered signal is not exactlyf (see figure 2). How-
ever, we can correct this error by estimatingfm with the in-
stantaneous frequency of the filtered signal [10]. After this
correction, we getφH(fm) = −(2πfmτ +φ0). The second
issue is that the CWT leads to a non concentrated represen-
tation of the signal. The representation has to be concen-
trated enough to present the different waves with no overlap
of their associated pattern. To overcome this problem, we
extract only the ridge of the module image for each of the
φ0 andτ corrections. The image of the maxima (figure 5) is
the output of this procedure.
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Fig. 2. Frequency error

After the calculation of the different TFR has been done,
for each time-frequency location(t, f), we store the maxi-
mum modulus value among all the TFR generated for each
correctionτ and φ0 and its corresponding argument :τ ,
φ0 andfm. This enables the estimation of the phase filter
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φ̂H(fm(t, f)) = −(2πfm(t, f)τ(t, f) + φ0(t, f)) at each
coordinate(t, f). The algorithm can be summarized by the
flow chart figure 3.

Initialisation :Amp(t, f ) = 0, τ (t, f ) = 0, φ0(t, f ) = 0, andφ̂(t, f ) = 0

stack

TFR of stack

for all location(t, f ) do
if Ampk(t, f ) > Amp(t, f )

Amp(t, f ) = Ampk(t, f )

φ̂(t, f ) = φ0k + 2πτkfreqik(t, f )

endif
endfor

endfor

φ0(t, f ) = φ0k

for all φ0k andτk do :

delayτk and phase shiftφ0k correction

ridge selection, set amplitude outside to0

and along ridge keep amplitude of TFR :Ampk(t, f )

calculate instantaneous frequency :freqik(t, f )

τ (t, f ) = τk

Fig. 3. Algorithm flow chart

The algorithm is related to 2D Fourier methods, but is
more robust because we take advantage of the good time-
frequency resolution of TFR. This simplifies the algorithm
and improves its performance. An illustration is given on an
example of field data in the next section.

3. DISCUSSION ON RESULTS

3.1. Real data
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Figure 4(a) and (b) present the real data respectively in
the time domain and in the FK domain. The nonlinearity of
the pattern on the FK reveals the dispersiveness.

• figure 5(a) presents, in the time frequency domain
the image of the maximum magnitude of each pixel
in time-frequency plane corresponding to the energy
maxima along the(τ, φ0)axes. It reveals the presence
of an energetic wave around coordinate (110,12).

• figure 5(b) and (c) present the delayτ and phase cor-
responding argumentsφ0 for each location(t, f).

• figure 5(d) presents the image of the estimated filter
φ̂H induced from image (b) and (c).
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Fig. 5. Four inputs for the user

From figure 5(a), we select the ridge of the pattern cor-
responding to the dispersive wave.τ and φ̂H (related re-
spectivaly to group and phase velocity) can be extracted as
the value at this location of figure 5(b), and (d). The correc-
tion of the dispersion leads to figure 6(a) and (b) where the
wave is perfectly lined up.

Once the dispersion is corrected, subspace methods (SVD)
can be applied for wave-field separation [11], [1]. This leads
to the extraction of the first mode of the dispersive wave.
Figure 7(a) and (b) present the extracted profile re-projected
in its original configuration, and (c) and (d) show the differ-
ence (i.e. 7(c)= 6(a) - 7(a)).
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Fig. 6. Correction of the dispersion on real data

This algorithm has been validated on sets of field data.
We show in this example that the representation of the data
in the time-frequency plane enables a simple interpretation
of the data. In presence of several waves, with different ve-
locities or different time-frequency locations, our algorithm
is able to present them separated, and therefore to charac-
terize and extract each individual one.
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Fig. 8. Synthetic data result

3.2. Synthetic data

A synthetic data set is now considered. The initial profile
is presented on figure 8(a). We want to show in this exam-
ple the robustness of the dispersion estimation facing non
coherent colored noise. Adding the colored noise leads to
the profile presented on figure 8(b) where the wave is not
even visible anymore. Figure 8(c) presents the spectral den-
sities of the wave in red and of the noise in blue. Note that
the noise has twice as high amplitude as the signal. Figure
8(d) presents the result of the estimationφ̂H(f) superposed
to the solutionφH(f). In this case, 1D methods [6] cannot
yield to a reasonable result because the amount of noise is
too big.

4. CONCLUSION

We present a new algorithm for estimating the propagating
filter of dispersive waves. This estimation has many appli-
cations in petroleum and engineering industry. We use the
advantage of time-frequency representation to increase the

resolution in time and present the data in an image where
the pattern of different waves are separated and easily rec-
ognized. In addition we keep the advantage of 2D analysis
which is that it is noise robust and that it estimates the dis-
persion between sensors. The validation on real data and
on highly noisy synthetic data show the good performances
of this method. Our algorithm is stable, simple, and semi-
automatic.
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