
STRUCTURED “TRUNCATED GOLOMB CODE” FOR CONTEXT-BASED 
ADAPTIVE VLC 

 
Sadaatsu KATO, Kazuo SUGIMOTO, Satoru ADACHI, and Minoru ETOH 

 
Multimedia Laboratories, NTT DoCoMo, Inc. 
3-5, Hikarinooka, Yokosuka, Kanagawa, Japan 

 
 

ABSTRACT 
 
In this paper, we describe a structured variable length coding 
(VLC) based on Golomb code that generalize the current 
context-based adaptive variable length coding (CAVLC) in 
the emerging video coding standard H.264/AVC. The current 
CAVLC is characterized as unstructured VLC and uses 
extensive dedicated code tables. Lack of generality due to 
these code tables causes a problem of over-fitting or over-
learning when we estimate a set of coding parameters. We 
propose a “compact” structured code based on Golomb code 
providing generality, extensibility, and low implementation 
complexity with only three parameters. Introduction of a 
simple truncation method enables to avoid reversed order 
code length and remove unused code space for finite set of 
symbols. Experimental results show its similar coding 
efficiency to current CAVLC while reducing the size of 
memories to store code tables and providing adaptability for 
various probability functions. 
 

1. INTRODUCTION 
 
Context-based adaptive variable length coding (CAVLC) [1] 
has been adapted in the emerging video coding standard 
H.264/AVC [2], and it provides considerable improvement of 
coding efficiency over the conventional DCT coefficient 
coding by UVLC [3]. The current CAVLC is characterized as 
unstructured VLC and uses extensive dedicated code tables. 
Therefore, lack of generality and large size of memory 
requirement for these tables are still remained to be solved. 

In this paper, we propose a method to generalize the 
dedicated unstructured VLC in the current CAVLC with 
structured VLC based on Golomb code [4]. We introduce a 
simple “truncation” rule to provide compactness, which has 
no reversed order in code length and no redundant code 
space for finite set of symbols. We call the structured VLC 
“Truncated Golomb code.” Keeping the current CAVLC 
framework intact, the introduction of this code has following 
advantages. 
 
1. Generality of code table design  
If we design a VLC table specifically tuned for several test 
sequences, the dedicated VLC table always outperforms over 
a generic VLC for the test sequences. When encoding other 

sequences, however, optimality of the dedicated code table is 
not guaranteed. In general, we have been suffering from 
over-fitting or over-learning problem in parameter estimation. 
By increasing the number of model parameters, the expected 
parameter estimation error is increased in such design as 
discussed in an extensive literature.  If we can model the 
probability density function (PDF) with fewer parameters and 
the performance is similar to the dedicated VLC tables, the 
parametric VLC table has performance stability in general 
sequences.  

 
2. Extensibility toward future improvement 
Truncated Golomb code provides structured VLC tables 
parameterized by three variables: one for the number of 
symbols and two for PDF representation.  Parametric 
description is very important for future evolution of 
H.264/AVC codec, since we will be able to avoid introducing 
dedicated VLC tables. Conditional PDF is also easily 
modeled by associating PDF parameters with the context.  

 
3. Low implementation complexity 
By the definition of Golomb code, VLC decoders can be 
realized by straightforward table matching. No state-
transition decoders (automata) are required. Moreover, if we 
need more code tables for future improvement, truncated 
Golomb code provides implementation commonality for each 
VLC decoder, while an additional dedicated VLC requires us 
to implement another VLC decoder. 
 

According to the abovementioned advantages, adaptation 
of truncated Golomb code to the current CAVLC is 
promising if its performance is considerably similar to that of 
the current dedicated VLC. In the following sections, we will 
describe coding design and experimental results. 
 

2. A “COMPACT” STRUCTURED CODE: 
TRUNCATED GOLOMB CODE 

 
2.1  Problem to be solved 
Structured VLC such as Golomb code does not need to store 
its table since its correspondence between symbols and codes 
can be mathematically defined. Change of its parameter can 
provide various PDF without increase of memory for the 
table. 

III - 4050-7803-7663-3/03/$17.00 ©2003 IEEE ICASSP 2003

➠ ➡



However, structured VLC is not appropriate to code small 
number of symbols such as the Run tables of CAVLC. Table 
1 shows an example. (a) shows a Golomb code table of p=2 
and q=0. Here, p denotes that the binary part provides p 
variations to a unary code, and q denotes that the binary part 
is appended to a code after code number q (q=0 means all of 
the codes have the binary part). If an element to be coded has 
limited number of symbols, the Golomb code table is 
truncated. But simple truncation results in unused code space, 
thus it decreases coding efficiency (Table 1 (b)). To remove 
unused code space, codes which have unused code space can 
be changed. But it results in reversed order of code length 
(Table 1 (c)) and it decreases coding efficiency anyway. 
 
Table 1. A Golomb code table and its truncation into a 7 symbol 

table. (p=2, q=0) 
Code 

number (a) (b) (c) 

0 1 0 1 0 1 0 
1 1 1 1 1 1 1 
2 01 0 01 0 01 0 
3 01 1 01 1 01 1 
4 001 0 001 0 001 0 
5 001 1 001 1 001 1 
6 0001 0 0001 0 000 
7 0001 1   
8 00001 0   
... ...   

 
To cope with this problem that prevents introduction of 
structured VLC into CAVLC, we introduce a simple 
truncation mehod. 
 
2.2  Truncation method 
Figure 1 illustrates a Golomb code tree explaining the basic 
truncation rule. Figure 1 (a) shows a code tree of a Golomb 
code table. Sub tree B corresponds to the binary part of 
Golomb code. Figure 1 (b) shows truncated one. Here, the 
tree is truncated at a node i=3 or at a node within sub tree B 
to limit the number of symbols. In this case, the tree may 
have reversed order of code length. We truncate the tree at 
the upper node, and attach a new sub tree C that has 
appropriate number of nodes to limit the number of total 
symbols. 

 
(a) A code tree                 (b) A truncated tree  

of a Golomb code           with a new sub tree 
Figure 1. Illustration of the truncation rule on a code tree. 

 
Table 2 shows Golomb code tables. These tables serve as a 

base table to be truncated and provide various PDF with their 
 

Table 2. Golomb tables as base tables. 
Code 
No. P=2, q=0 p=2, q=1 p=2, q=0 p=3, q=0 P=4, q=0

0 1 1 1 0 1 0 1 00 
1 01 01 0 1 1 1 10 1 01 
2 001 0 01 1 01 0 1 11 1 10 
3 001 1 001 0 01 1 01 0 1 11 
4 0001 0 001 1 001 0 01 10 01 00 
5 0001 1 0001 0 001 1 01 11 01 01 
6 00001 0 0001 1 0001 0 001 0 01 10 
7 00001 1 00001 0 0001 1 001 10 01 11 
8 000001 0 00001 1 00001 0 001 11 001 00 
9 000001 1 000001 0 00001 1 0001 0 001 01 

10 0000001 0 000001 1 000001 0 0001 10 001 10 
11 0000001 1 0000001 0 000001 1 0001 11 001 11 
12 00000001 0 0000001 1 0000001 0 00001 0 0001 00 
13 00000001 1 00000001 0 0000001 1 00001 10 0001 01 
14 000000001 0 00000001 1 00000001 0 00001 11 0001 10 
... ... ... ... ... ... 

 
Table 3. Small tables as sub tables. 

Code 
No. Table 2 Table 3 Table 

4-1 
Table 
4-2 Table 5 Table 

6-1 
Table 
6-2 Table 7 Table 8

0 1 1 1 11 11 11 11 11 111 
1 0 01 01 10 10 10 10 101 110 
2  00 001 01 01 01 011 100 101 
3   000 00 001 001 010 011 100 
4     000 0001 001 010 011 
5      0000 000 001 010 
6        000 001 
7         000 

 
parameter (p, q). Table 3 shows small tables to be required as 
a sub table that corresponds to the sub tree C attached to a 
node of a Golomb code tree in Figure 1. Here, we have tables 
of 2, 3, 4, 5, 6, 7, and 8 symbols, and their variation of PDF 
properties. Those tables do not have reversed order of code 
length nor redundant code space. Therefore, if the length of a 
shortest code from a sub table C is equal or longer than that 
of a longest code from a sub tree B, we can obtain a table of 
limited number of symbols, which do not have reversed order 
of code length nor redundant code space. 
Each table is assigned to Golomb code parameters p and q as 
shown in Table 4. L in Table 4 denotes “residual number” 
which means the number of nodes to be attached as a sub tree 
C in Figure 1 (b). The total number of symbols n and Golomb 
code parameters p and q gives L, as described below. To 
provide a table with flat PDF, we use simple binary code 
table in addition to the Golomb code based VLC. 
 
Table 4. Combination of the tables relative to parameters of  pdf. 

Sub table Golomb 
code table L=2 L=3 L=4 L=5 L=6 L=7 L=8
p=2, q=2 Table 2 Table 3 Table 4-1     
p=2, q=1 Table 2 Table 3 Table 4-1     
p=2, q=0 Table 2 Table 3 Table 4-1     
p=3, q=0 Table 2 Table 3 Table 4-2 Table 5 Table 6-1   
p=4, q=0 Table 2 Table 3 Table 4-2 Table 5 Table 6-2 Table 7 Table 8
(binary)  
 
Combination of the tables is uniformly given from Golomb 
code parameters p, q, and a total number of symbols n. Thus 
encoding and decoding of a certain symbol/code can be 
mathematically defined. 

i = 1 
i = 2 

B B 
B B 

B B 
B B 

1 
1 

1 
1 

0 
0 

0 
0 

i = 0 

i = 3 BB

B B 
B B 

1 
1 

1 

0 
0 

0 

i = 0 
i = 1 

i = 2 

C C 

III - 406

➡ ➡



Encoding process of an m-th index in a table (p, q, n); 
1. Get h=(n-q)%p. in case of h==0, h=p. 
2. Get “residual number” L=h+p. in case of L>n, L=n. 
3. if L==n, a code is a code from the assigned sub table of 

L symbols. Output m-th code of the sub table. 
4. if m<=n-L, a code is a Golomb code. Output m-th code 

of the assigned Golomb code table. 
5. if m>n-L, a code is a truncated Golomb code. First, 

output “0”s (n-L+q)/p times as a preceding part of a 
code. Second, output a (m+L-n)-th code of the sub table 
of L symbols as a suffix of a code. 

 
Decoding process of a code in a table (p, q, n); 
1. Get h=(n-q)%p. in case of h==0, h=p. 
2. Get “residual number” L=h+p. if L>n, L=n. 
3. if L==n, a code is a code from the assigned sub table of 

L symbols. Output a corresponding index from the sub 
table. 

4. Check the number of “0”s at the top of a code, t. 
5. if t<(n-L+q)/p, a code is a Golomb code. Output a 

corresponding index from the assigned Golomb code 
table. 

6. if t>=(n-L+q)/p, a code is a truncated Golomb code. 
From the bits after (n-L+q)/p “0”s, get a corresponding 
intermediate index x from the sub table of L symbols. 
Output an index x+n-L. 

 
Using the above encoding/decoding rules, various tables with 
various PDF properties can be provided without additional 
memory to store tables.  
 

3. ADAPTATION OF TRUNCATED GOLOMB 
CODE INTO CURRENT CAVLC ELEMENTS 

 
Adaptation to the current NumCoef/Trailing1s, TotalZeros, 
and Run tables is described below. We do not replace Level 
tables of the current CAVLC since they are already Golomb 
based structured VLC. 

3.1  NumCoef/Trailing1s  
Since the original NumCoef/Trailing1s tables are 2D style 
VLC tables, we define a simple rule to assign a code number 
of the structured table to NumCoef/Trailing1s, such as the 
one used for the former UVLC coding of Level/Run 
combination.  

Table 5 shows an example mapping of code numbers on 
NumCoef/Trailing1s table. For the NumCoef/Trailing1s 
combination there is a simple rule.  The NumCoef/Trailing1s 
combinations are assigned a code number according to the 
priority: 1) Trailing1s 2) NumCoef (ascending). 

FLC representation of NumCoef/Trailing1s, which can be 
chosen in addition to the VLC tables, is not modified. Table 
6 shows the parameter of those tables.  

3.2  TotalZeros 
Some of the original TotalZeros in current CAVLC tables 
have its shortest code in the middle of the table. Therefore we  

Table 5. Mapping of a code number on NumCoef/Trailing1s 
tables. 

Trailing1s 
NumCoef 0 1 2 3 

0 0    
1 4 1  
2 8 5 2 
3 12 9 6 3
4 16 13 10 7
5 20 17 14 11
6 24 21 18 15
7 28 25 22 19
8 32 29 26 23
9 36 33 30 27

10 40 37 34 31
11 44 41 38 35
12 48 45 42 39
13 52 49 46 43
14 56 53 50 47
15 59 57 54 51
16 61 60 58 55

 
Table 6. Parameters for NumCoef/Trailing1s tables. 

NumCoef/Trailing1s p q n 
Num-VLC0 2 2 62 
Num-VLC1 4 0 62 
Num-VLC2 binary 62 
Chroma_DC 2 2 14 

 
define a “center” value for each table of TotalZeros as shown 
in Table 7, and assign a code number starting from the 
“center” as shown in Table 8. Table 9 and Table 10 show the 
parameter of those tables. 
 
Table 7. “center” values for TotalZeros tables for all 4x4 blocks. 
NumCoef 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Center 0 0 7 5 9 5 6 7 6 5 4 3 3 2 0
 

Table 8.Mapping of a code number on TotalZeros  
(TotalZeros table for Numcoef = 7). 

Totalzeros 0 1 2 3 4 5 6 7 8 9
Mapping order 9 8 7 5 3 1 0 2 4 6

 
Table 9. Parameters for TotalZeros tables for all 4x4 blocks. 

NumCoef p q n  NumCoef p q n 
1 3 0 16  9 2 0 8 
2 4 0 15  10 2 0 7 
3 4 0 14  11 3 0 6 
4 4 0 13  12 2 1 5 
5 4 0 12  13 2 0 4 
6 3 0 11  14 2 0 3 
7 2 0 10  15 2 0 2 
8 2 0 9      

 
Table 10. Parameters for TotalZeros tables for all 4x4 blocks for 

chroma DC 2x2 blocks. 
NumCoef p q n 

1 2 0 4 
2 2 0 3 
3 2 0 2 

3.3  Run  
The proposed tables can immediately replace the original  

III - 407

➡ ➡



Run tables. We simply define p, q, and n to each table. Table 
11 shows those parameters and actual codes. 
 

Table11. Parameters for Run tables. 
Run left p q n 

1 2 0 2 
2 2 0 3 
3 2 0 4 
4 2 0 5 
5 2 0 6 
6 3 0 7 

> 6 2 0 15 

 
4. EXPERIMENTS 

4.1  Simulation Conditions 
We adapt the new truncated Golomb code into current H.26L 
and compare its coding efficiency with the original 
unstructured CAVLC. Our coder is based on the H.26L test 
model JM1.1 [5] and each CAVLC table is replaced to the 
proposed truncated Golomb code created by three parameters. 
Test sequences are Container, Foreman, News (QCIF, 10fps), 
Silent (QCIF, 15fps), Mobile (CIF 15fps), Paris, and Tempete 
(CIF, 30fps). Motion search resolution is 1/4 pel and the 
number of multiple reference frames is set to 5. BDbitrate 
values [6] of low QP range (0, 4, 8, and 12, in JM1.1) and 
high QP (16, 20, 24, and 28 in JM1.1) are calculated. 
 
4.2  Parameter setting for whole conditions 
Table 12 shows BDbitrates of truncated Golomb code 
relative to the unstructured VLC of the current CAVLC. 
Positive value of BDbitrate denotes increase of bitrates and 
negative values denotes decrease of bitrates from the 
unstructured VLC. Truncated Golomb code provides similar 
coding efficiency (on average 1% in BD bitrate) in both Low 
QP range and High QP range. 
 

Table 12. BDbitrates of truncated Golomb code relative to the 
unstructured CAVLC for whole conditions. 

Sequence BD bitrate [%] 
 Intra Inter 
 Low QP High QP Low QP High QP

Container 0.28 1.50 1.52 0.71 
Foreman 0.24 1.30 1.23 1.58 

News -0.60 0.80 0.80 0.88 
Silent -0.75 0.12 1.52 1.83 

Mobile -0.49 0.73 0.89 1.26 
Paris -0.58 0.66 0.76 1.66 

Tempete -0.67 0.27 1.00 1.07 
Average -0.34 0.76 1.10 1.28 

 
4.3  Parameter setting for Intra/Inter pictures and QPs 
Since the truncated Golomb code provides various tables 
without increase of VLC tables, additional table selection can 
be introduced to achieve more accurate modeling of the PDF.  
Table 13 shows BDbitrates of truncated Golomb code with 
distinct parameters (p, q) for each picture mode (Intra/Inter) 
and QP. The results show that additional table and its 
selection can increase coding efficiency of CAVLC, and the 

parametric description of the truncated Golomb code can 
easily achieve it. 
 

Table 13. BDbitrates of truncated Golomb code relative to the 
  unstructured CAVLC with parameter setting for each condition. 

Sequence BD bitrate [%] 
 Intra Inter 
 Low QP High QP Low QP High QP

Container 0.28 1.17 0.94 0.46 
Foreman 0.26 0.82 1.12 0.55 

News -0.60 0.69 1.40 0.46 
Silent -0.72 -0.07 1.86 1.35 

Mobile -0.58 0.32 0.45 0.47 
Paris -0.63 0.63 0.64 0.54 

Tempete -0.64 -0.20 0.63 0.08 
Average -0.38 0.48 1.00 0.56 

 
4.4  Comparison of memory requirement 
The original NumCoef/Trailing1s, TotalZeros, and Run 
tables of unstructured CAVLC have 29 distinct tables (4 
NumCoeff/ Trailing1s tables, 18 TotalZeros tables, and 7 
Run tables) and more than 400 entries of codes. 

On the other hand, using the above-mentioned truncated 
Golomb code, each table can be specified with parameters p, 
q, and n (and “center” for NumCoef/Trailing1s tables). The 
sub tables must be stored, but they have only 45 entries of 
codes. Therefore, truncated Golomb code tables require 
significantly less memory to store them. 

Moreover, it should be noted that parametric representation 
of the tables provides adaptability for future evolution  by 
simply assigning new value of three parameters. No 
additional code tables are required for this purpose. 

 
5. CONCLUSIONS 

 
We proposed Truncated Golomb code to replace the 
unstructured VLC in the current CAVLC. The compact 
structured VLC offers generality, extensibility, and low 
complexity into CAVLC and simulation results shows its 
similar coding efficiency in comparison with the dedicated 
unstructured VLC while reducing the size of memories and 
providing adaptability for future evolution. 

Further studies include automatic parameter choice 
according to the context with learning process and 
introduction of other structured code, such as Exp-Golomb 
code, to provide more variety of pdf. 
 

REFERENCES 
[1] G. Bjøntegaard and Karl Lillevold, "Context-adaptive VLC (CVLC) coding of 

coefficients", document JVT-C028, JVT of ISO/IEC MPEG & ITU-T VCEG, 
3rd Meeting, Fairfax, Virginia, USA, 6-10 May, 2002 

[2] T. Wiegand, "Joint Final Committee Draft (JFCD) of Joint Video Specification 
(ITU-T Rec. H.264 | ISO/IEC 14496-10 AVC)", document JVT-D157, JVT of 
ISO/IEC MPEG & ITU-T VCEG, 4th Meeting, Klargenfurt, Austria, 22-26 July, 
2002 

[3] Y.Itoh, and N.-M. Cheung, "Universal variable length code for DCT coding", 
Proc. IEEE int. Conf. Image Processing (ICIP), Vancouver, Canada, Sept. 10-13, 
2000 

[4] S.W.Golomb, "Run-length encoding", IEEE trans.IT-12, pp399-401, 1966 
[5] ftp://standard.pictel.com/video-site/h26L/jm11.zip 
[6] G.Bjontegaard, "Calculation of average PSNR differences between RD-curves", 

VCEG-M33, Apr, 2001 

III - 408

➡ ➠


