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ABSTRACT

Multiple description motion compensation (MDMC) is
a multiple description video coding scheme that has shown
good error resilience performance. MDMC enables one to
vary coding parameters according to the desired trade-off
between coding efficiency and error resilience. To fully
utilize this advantage, one needs to establish a set of mod-
els, relating the rate, encoder distortion, and the end-to-end
distortion after transmission, with the encoder parameters
and channel parameters. Using these models, one can find
the optimal coding parameters for given channel parameters
and rate (or distortion) constraints. In this paper, we formu-
late and validate the rate and encoder distortion models.

1. INTRODUCTION

The objective of designing a video codec is to maximize the
quality of the coded video given a bit rate constraint. In a
classic video codec, only quantization distortion, referred to
encoder distortion in this paper, is considered, and the de-
sign is achieved by choosing an appropriate coding mode
and quantization step size. This method, however, is not
sufficient for transmission over an error prone environment.
In such an environment, the distortion caused by transmis-
sion errors, which is referred to as decoder distortion in this
paper, must also be taken into account and the design pro-
cess must consider error resilience issues.

Multiple description coding (MDC) emerged as an at-
tractive coding framework for robust transmission over un-
reliable networks. There have recently been many MDC
schemes proposed (a good review is given in [1]), among
which an MDC video codec dubbed multiple description
motion compensation (MDMC) [2] has shown good error
resilience performance. MDMC can generate two descrip-
tions, each of which includes coded information for alter-
nating frames. For each frame, a linear combination of two
motion compensated signals from two previously encoded
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pictures is used as a prediction signal and the prediction er-
ror is coded. When only one description is received, the
decoder can only use one of the motion compensated sig-
nals for prediction, thus causing a mismatch between the
encoder and decoder. This mismatch signal is also coded
explicitly at the MDMC encoder, which can help to miti-
gate transmission error effects.

The cost of increasing error resilience is higher band-
width consumption. Therefore, there is a trade-off between
robustness and redundancy. For MDMC, there are three pa-
rameters that control its error resilience and redundancy:
Q0, the quantization parameter of prediction error coding,
Q1, the quantization parameter of mismatch signal coding,
anda1, the linear combination coefficient of motion com-
pensation. The problem of designing an optimal MDMC
codec can be formulated as follows. Given the transmis-
sion channels’ characteristics, such as error characteristic
and bandwidth constraint, find the optimalQ0, Q1 anda1,
such that the end-to-end distortion is minimized.

It is clear that before solving the above optimization
problem, the following questions must be answered: given
encoder distortions, what is the effect of transmission error
on end-to-end quality; how do the parametersQ0, Q1 and
a1 influence the effect of transmission error; and how are
the coding parameters chosen to satisfy the bandwidth con-
straint. In [3], we addressed the first question. To answer
the second and third questions, rate-distortion models of the
MDMC codec are needed. Although other papers such as
[4] have studied the R-D modeling problem for classic video
codecs, those R-D models are not sufficient for an MDMC
codec since MDMC is more complex and has its own prop-
erties. In this paper, we provide these models by estab-
lishing the rate-parameter models and distortion-parameter
models. The optimal coding parameters can be found using
these models.

The rest of this paper is organized as follows. MDMC
is briefly reviewed in section 2. In section 3, the proposed
models are developed. We provide simulation results to ver-
ify the accuracy of those models in section 4 and the paper
is concluded in section 5.
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2. REVIEW OF THE MDMC CODING SCHEME

At an MDMC encoder, the central prediction for coding
ψ(n), thenth frame, is obtained by

ψ̂(n) = a1ψ̃e(n− 1) + (1− a1)ψ̃e(n− 2), (1)

whereψ̃e(n − 1) and ψ̃e(n − 2) are motion compensated
prediction signals constructed from two previously encoded
framesψe(n−1) andψe(n−2) respectively. The prediction
error, called central prediction error,

e0(n) = ψ(n)− a1ψ̃e(n− 1)− (1− a1)ψ̃e(n− 2), (2)

is quantized by quantizerQ0(·) to ẽ0(n). The coded mo-
tion vectors and the central prediction error for even frames
are included in description one, and those for odd frames in
description two. To circumvent the mismatch between the
predicted frames used at the encoder and the decoder when
some information is lost in framen−1, the mismatch signal

e1(n) = ψ(n)− ψ̃e(n− 2)− ẽ0(n) (3)

is quantized by another quantizerQ1(·), which is typically
coarser thanQ0(·), and the output̃e1(n) is sent along with
other information of framen. At the decoder, if frame
n − 1 is received, framen is reconstructed using

ψd(n) = a1ψ̃d(n− 1) + (1− a1)ψ̃d(n− 2) + ẽ0(n) (4)

whereψ̃d(n − 1) and ψ̃d(n − 2) are motion compensated
prediction signals constructed from two previously decoded
frames, respectively. Ifn − 1 is damaged but framen − 2
is received, the decoder reconstructs framen using

ψd(n) = ψ̃d(n− 2) + ẽ0(n) + ẽ1(n). (5)

In addition, the lost frameψ(n − 1) is estimated based on
ẽ0(n) and even frames are reconstructed using

ψ̃d(n− 1) =
�
ψd(n)− (1− a1)ψ̃d(n− 2)− ẽ0(n)

�
/a1. (6)

3. RATE AND DISTORTION MODELS OF AN
MDMC CODEC

The end-to-end quality of a video sequence coded by an
MDMC codec is determined by its encoder distortion and
decoder distortion. There are two kinds of encoder distor-
tions in an MDMC encoder: the quantization distortion of
the central prediction errors, named central distortionD0,
and that of the mismatch signals, named side distortionD1.
We showed in [3] that the decoder distortion is controlled
by D1, a1 and the error concealment distortion. Therefore,
the end-to-end distortion,D, is a function ofD0, D1 and
a1 for a given channels’ error characteristics, which can
be expressed asD = g(a1, D0, D1). From equation (2)

and (3),D1 is a function ofa1, Q0 andQ1, whereQ0 and
Q1 are the quantization parameters of quantizersQ0(·) and
Q1(·), respectively, andD0 is a function ofa1 andQ0, i.e.,
D1 = d1(a1, Q0, Q1) andD0 = d0(a1, Q0). Hence, the
optimization problem stated in the last section can be for-
mulated as finding the optimala1, Q0 andQ1, which min-
imizesD = g(a1, d0(a1, Q0), d1(a1, Q0, Q1)), while sat-
isfy the bandwidth constraint. The bandwidth constraint can
be expressed asRh + R0 + R1 < R, whereRh, R0 and
R1 are the bit rates spent on syntax header and motion vec-
tors, central prediction errors, and mismatch signals, respec-
tively. Rh can be treated as constant except for very low bit
rate coding;R0 is a function ofa1 andQ0, andR1 is a func-
tion ofa1, Q0 andQ1. In other words,R0 = r0(a1, Q0) and
R1 = r1(a1, Q0, Q1).

Given all the five models,g(·), d0(·), d1(·), r0(·) and
r1(·), the above optimization problem can be solved numer-
ically. In [3], the functiong(·) has already been determined.
The remaining four functions will be developed in follow-
ing.

3.1. Rate model

Whena1 is fixed, the relationship betweenR0 andQ0 can
be expressed using models developed for classic video en-
coders. So, we use theR − ρ model proposed in [4]. If we
assume the motion compensated framesn − 1 andn − 2
represent a noisy version of framen, i.e., ψ̃e(n − i) =
ψ(n) + ni, i = 1, 2. Assumingn1 and n2 are indepen-
dent, the power spectral density ofe0 is Φee(ωx, ωy) =
a2
1Φn1n1(·)+(1−a1)2Φn2n2(·). UsingR0 = 1

2 log(σ2
e/D)

andσ2
e = 1

4π2

∫ π

−π

∫ π

−π
Φeedωxdωy, and assuming the noise

signals have white spectrum, the relationship betweenR0

anda1 can be expressed as:

R0 =
1
2

log2(b1 + b2a1 + b3a
2
1), (7)

whereb1, b2 andb3 are three constants determined by the
quantization distortion and the noise variance, which in turn
depends on the video signal statistics, the quality of the ref-
erence frames, andQ0. From the physical meaning of these
parameters, we can infer that the absolute value ofb2 is large
thanb3 sinceσ2

n2
is usually larger thanσ2

n1
, which is con-

firmed in our simulations. Furthermore, sincea1 is smaller
than 1, we can conclude that|b2a1| À |b3a

2
1| is true in most

cases. So, the above model can be simplified to

R0 =
1
2

log2(b1 + b2 × a1). (8)

In the above,b1 andb2 are constants for a fixedQ0. Given
a fixed value ofQ0, two values ofR0 can be obtained with
theR− ρ model for two corresponding values ofa1. Based
on the twoR0 values,b1 and b2 can be estimated for the
givenQ0 value.
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As stated in (3),R1 is a function ofa1, Q0 and Q1.
As with theR0 − Q0 model, we also base the relationship
betweenR1 andQ1 on theR−ρ model [4] for fixeda1 and
Q0. From our observation, this relationship is given by

R1 = d1 + d2 ×Q0, (9)

in whichd1 andd2 are two constants for a fixeda1 andQ1.
We have also found that abs(d2) ¿ abs(d1). Given this,R1

only varies slightly with changes inQ0.
To study the relationship betweenR1 and a1, we ex-

presse1 as,e1 = a1(ψ̃e(n − 1) − ψ̃e(n − 2)) − q0, from
equation (3), whereq0 is the the central quantization noise.
As with R0, the relationship betweenR1 anda1 can be ap-
proximated by

R1 =
1
2

log2(c1 + c2 × a2
1), (10)

if we assumeq0 is uncorrelated withn1−n2. Furthermore,
sinceq0 is quite small compared withn1 − n2 and since
R1 varies slowly withQ0, we can assumec1 and c2 are
two constants for a fixedQ1. Given a fixed value ofQ1,
two values ofR1 can be obtained with theR − ρ model
for two corresponding values ofa1 and any fixed value of
Q0. Based on the twoR1 values,c1 andc2 can be estimated
directly.

3.2. Distortion Model

In this section, we define the distortion as mean square error
(MSE). The quantization distortion of central prediction er-
ror, D0, from equation (2), depends on the predictora1 and
its quantizer parameterQ0. First, we will study the influ-
ence ofQ0 on D0 whena1 is fixed. Then, we consider the
influence ofa1.

Due to the orthogonality of DCT transform, calculat-
ing D0 is equivalent to calculating the quantization distor-
tion of the DCT coefficients ofe0. For a given quantization
method, the quantization distortion depends on the probabil-
ity distribution of DCT coefficients. Since AC coefficients
are approximately generalized Gaussian distributed [5] and
this distribution can be approximated as a Laplacian [6], the
distortion of thekth AC coefficient in an inter-coded block,
can be expressed as,

D0(k)=4η2
k − (6Q2 + (6ηk + 1)Q− 2ηk − 1)e−2.5Q/ηk

− (2Q2 + 4(ηk + 1)Q)e−4.5Q/ηk

1− e−2Q/ηk
(11)

if Q is even, and

D0(k)=4η2
k − (6Q2 + (6ηk − 1)Q− 2ηk − 1)e−(2.5Q−0.5)/ηk

− (2Q2 + (4ηk − 2)Q)e−(4.5Q−0.5)/ηk

1− e−2Q/ηk
(12)

if Q is odd.
In the above equations,ηk is equal toE|e0(k)|, the av-

eraged absolute value ofkth DCT coefficient, which was
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Fig. 1. verification ofR0 − a1 models(equation(8 and 7)):
(a) frame 24; (b) frame 12.

determined by the variance and distribution function shape
of that coefficient. Also, it is assumed that the quantization
method of H.263 is used andQ is the corresponding quan-
tizer parameter. Unlike AC coefficients, DC coefficients are
better approximated by a uniform distribution. So, the dis-
tortion of DC coefficients is

D0(0) = 25Q2/12. (13)

The total distortionD0 of one frame can be calculated as

D0 =
1
64

63∑

k=0

D0(k), (14)

For a fixeda1, theηk of e0 can be calculated andD0

can then be estimated using the above models. For different
a1’s, it turns out that the signals’ probability distributions,
and henceηk ’s, remain almost unchanged. Therefore,D0 is
almost unchanged with variation ina1.

From equation (3), the quantization distortion of the mis-
match signal,D1, depends not only on its quantizer param-
eter,Q1, but also ona1 andQ0. We find the distribution of
the mismatch signal’s AC coefficients can still be approxi-
mated as a generalized Gaussian and the DC coefficients as
a uniform distribution. So, given a fixeda1 andQ0, equa-
tions (11,12,13 and 14) can also be used to calculateD1, in
whichηk is equal toE|e1(k)|.

When using differenta1 or Q0, the parameters of the
generalized Gaussian distribution functions are different, and
consequently,D1 is different. However, the relationship be-
tweena1 (or Q0) and those parameters is difficult to model.
Fortunately, it has been found that we can calculateD1 with
arbitrarya1 (or Q0) by interpolation, where we assume two
D1 values corresponding to twoa1 values (orQ0 values)
are known. In other words, givena1 = x (or Q0 = x), the
distortion,D1, can be calculated using

D1(x) = D1(a) +
x− a

b− a
(D1(b)−D1(a)), (15)

wherea andb are the values of twoa1’s (or Q0’s) for two
knownD1’s.
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Fig. 2. verification ofR1 − a1 model (equation(10)): (a)
frame 24; (b) frame 12.

4. SIMULATION RESULTS

To confirm the accuracy of the models discussed in above
section, we conduct simulations using our MDMC codec,
which is implemented on top of the public domain H.263+
codec[7]. To apply the above models, for each frame, after
motion estimation, the encoder collects necessary statistics
by performing motion compensation several times. Based
on this data, the encoder then estimates the necessary pa-
rameters for the model. The additional complexity is only
slightly higher than that in [4].

To verify ourR0−a1 andR1−a1 models, QCIF “Fore-
man” is encoded at 10 fps using the MDMC codec. We fix
Q0 = 8 andQ1 = 14 for all frames anda1 = 0.9 for all
but the two test frames, frame 12 and frame 24. For these
frames, we varya1 and record the bit rates used for coding
the Y component. Then, we fit our models to the actual data
and use those models to estimate the bit rate of the tested
frame. Figure 1 and 2 shows the actual and estimated bit
rates in this experiment. In the figures, the actual number
reflects the total bits spent on coding the Y component in
one frame and the estimated number is calculated using our
models. From the two figures shown, we can see those mod-
els are quite accurate. We do note that the two-parameter
R0 − a1 model (equation (8)) may not fit the actual data as
well as the three-parameter model.

In order to verify theD−Q model, a simulation similar
to the previous experiment is conducted, where instead of
varying a1 in the two tested frames, we varyQ1 from 12
to 30. Figure 3 plots the actual and estimated values ofD1

for the two test frames. From this figure, we can see the
D − Q model can work well enough. Here, onlyD1 − Q1

verification is plotted. However, theD − Q model works
even better for estimatingD0 in our other simulations. The
reason is that the assumption of a generalized Gaussian dis-
tribution is more realistic fore0. In our other simulations,
D1−a1 andD1−Q0 relationship (15) andR1−Q0 model
(9) are also accurate. However, the results are not shown
here due to the limited space.
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Fig. 3. verification ofD − Q model(equations (11, 12, 13
and 14): (a) frame 24; (b) frame 12.

5. CONCLUSION

This paper provides several models to estimate the rates and
distortions of MDMC video coding scheme. Using these
models together with the decoder distortion model intro-
duced in [3], one can find the optimal parameters directly
when coding a video sequence for transmission over error
prone channels. The algorithm for dynamically selecting
the optimal parameters and the corresponding gains that can
be achieved will be reported in a later publication. Prelimi-
nary results show that more than 1 dB gains can be achieved
compared to a fixed suboptimal parameters selection.
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