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ABSTRACT

Wavelet transform is a powerful instrument in catching
zero-dimensional singularities. Ridgelets are a powerful
instrument in catching and representing mono-
dimensional singularities in bidimensional space.

In this paper we propose a hybrid video coder scheme
using ridgelet transform for the first approximation of
line-edge singularities in displaced frame difference
images. We demonstrate the potential of ridgelets and
results show substantial improvements when compared to
wavelet only based coder.

1. INTRODUCTION

Images are generally described via orthogonal, non-
redundant transforms like wavelet or discrete cosine
transform. The good performance of wavelets in mono-
dimensional domain is lost when they are applied to
images using 2D separable basis since they are not able to
efficiently code mono-dimensional singularities.

The ridgelet transform achieves very compact
representation of linear singularities in images [1,2,3].
Instrumental in the implementation of the ridgelet is the
Radon transform, which is a powerful tool to extract lines
in edge dominated images. Therefore, they can offer an
important contribution in order to detect and represent
edges, which are fundamental structures in natural images
and particularly relevant from a visual point of view.

Concerning video coding, the motion compensation
procedure, commonly employed in traditional hybrid
coding schemes, produces a displaced frame difference
(dfd) that appears as an edge dominated image. Intuition
suggests that ridgelet transform can be a good tool for the
first approximations of dfd images.

2. RIDGELET THEORY

2.1. Continuous Ridgelet Transform

We start by briefly reviewing the continuous ridgelet
transform, defined by Candés and Donoho in [1],
stemming from the Radon transform, instrumental in its

0-7803-7663-3/03/$17.00 ©2003 IEEE

I -381

implementation. Given an integrable bivariate function
fxp,x5), its Radon transform (RDN) is defined by:

RDN,(6,1) = j f(x,,x,)5(x, cos@ + x, sin@ —t)dx,dx, - (1)
RZ

Basically the Radon operator maps the spatial domain into
the projection domain (6 f), in which each point
corresponds to a straight line in the spatial domain;
conversely, each point in the spatial domain becomes a
sine curve in the projection domain.

The Continuous Ridgelet Transform (CRT) is simply
the application of a mono-dimensional wavelet

(lﬂa,b(t)=a_” ‘w((t—b)/a)) to the slices of the Radon

transform:
CRT(a,b,0) = [y, () RDN (0, )dt =
R

= J.l//a,b,a (xlaxz)f(xlaxz)dx]dxz ’ (2)
RZ

where the ridgelets ¥/, , 4 (;) in 2-D are defined from a
wavelet-type function /() as:

Wapo(X,X,) = a "*y((x, cos@ +x, sinf—b)/a) . (3)
This shows that the ridgelet function is constant along the

lines where x, cos@+x, sind = const.

Comparing ridgelets with wavelets we observe that the
parameters of the former are scale factor and line position
(respectively a and (5,0 ) in (2)), while the latter uses

scale factor and point position. As a consequence,
wavelets are very effective in representing objects with
isolated point singularities, while ridgelets are very
effective in representing objects with singularities along
straight lines.

It is interesting to notice that in the Radon domain if
we apply a 1D Fourier transform along ¢ instead of a
wavelet we will obtain the 2D Fourier transform of f. This
result is known as projection-slice theorem [4].

2.2. Finite Ridgelet Transform

In order to apply ridgelets to digital images a discrete
transform is needed, and this leads to the research of a
discrete Radon transform. In [5,6], Do and Vetterli
propose a new procedure that results to be invertible,
orthogonal and achieves perfect reconstruction: the Finite
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Rldgelet Transform (FRIT). FRIT is based on the Finite
RAdon Transform (FRAT) [7], which is defined as
summations of image pixels over a certain set of “lines”.
Those lines are defined in a finite geometry in a similar
way as the lines for the continuous Radon transform in the
Euclidean geometry. Denote Z » = {0,1,.., p — 1}, where p

is a prime number. Note that Z, is a finite field with
modulo p operations. The FRAT of a real discrete

function fon the finite grid Z % is defined as:

1%MwaJ)_—— > ) @
JFOJEL

Here L, ; denotes the set of points that make up a line on
the lattice 22 ,i.e.

{{(1 »J):j=(ki+l)(modp),i€ Z,}if 0Sk<p

&N:jeZ,ifk=p
The inverse transform is obtained through the Finite
Back-Projection operator (FBP) defined as a sum of
Radon coefficients of all the lines that go through a given
point. Here f'is supposed to be a zero-mean image:

FBP.(i, j) = L D FRAT,(k,l). (6)
\/; (k.DeF;

From (5) it can be found that F; j is:

B ={(k,]):1=(j—ki)mod p),ke Z ,} U{(p,D)}
Substituting (6) into (4) we obtain that

FBPr(i,j)—i DD
(k DeP, (i'jIEL,

(3

=—| 2SN+ pfg)|=rGg) O

(1 .J )eZ2

and so the perfect reconstruction is achieved.

It is easy to compute that the number of operations
required by FRAT is p* addictions and p* multiplications,
so almost comparable with other transforms like 2D-FFT.
A drawback of this discrete implementation is the “wrap-
around” effect, already observed by Do.

3. FRIT ON TEST IMAGES

FRIT needs an input image of size pxp, where p is a prime
number, and this is an important limitation of this
algorithm. Moreover wavelets usually require a dyadic
length signal and this is absolutely incompatible with the

Fig.1: Artificial image: original (left), reconstructed
with 20 wavelet coefficients (center) and with 20
ridgelet coefficients (right).

FRAT output (that is a matrix px(p+1)). In the test we
made, we extended the length of the signal from p to m,
where m is defined as:

m=min{ne N:(n> p)and(n=29),d € N}.

Typically we took p=31 or p=127 and so m=32 or 128
respectively.

Figure 1 represents an image 31x31 reconstructed with
wavelets (Daubechies 9,7) and ridgelets. In this case,
favorable to the second transform, the FRIT is able to
detect the line structures even using a very small number
of coefficients.

4. FRIT APPLIED TO MOTION COMPENSATED
IMAGES

In natural video coding, displaced frame differences are
characterized by a different range of luminance values
when compared to natural images and by higher
frequency components. Usually, as already observed, they
present many edges.

We aim to catch these features exploiting the
directional information given by the Radon transform and
consequently by the FRIT.

Applying the ridgelet transform to a dfd and
comparing with wavelets, we notice an interesting result:
when we consider the very first coefficients the error
obtained with the FRIT is lower (see figure 2). Afterwards
wavelets have a better behavior and this is due to the fact
that Ridgelets represent efficiently straight lines but not
curves. Moreover a noise-like effect appears in the FRIT
reconstructed images as can be seen in figures 1 and 3b.
This is related to the wrap-around effect that occurs when
choosing the lattice as in (5). In [5] Do and Vetterli
propose a new ordering for the FRAT coefficients; we
tested the old and the new one on motion compensated
images observing that results do not significantly differ.
In fact this new optimal ordering is designed for natural
images and not for dfd.

Now studying the graph in figure 2 we notice that it
can be split into two parts. This suggests that there is a
potential for a base layer.
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Fig.2: Mse decay using an increasing number
of coefficients to reconstruct the image.
Comparison between wavelets and ridgelets.

These results still hold for smaller blocks as can be
seen in Table 1 where a block 31x31 of the same
sequence is studied.

Coefficients Frit Wavelet
5 304 334
10 270 291
50 191 130
100 139 81

Tab.1: Mse for a block 31x31 taken from the
sequence “Stefan”.

5. HYBRID CODING

From what observed in the previous section a possibility
to exploit the advantages of FRIT is to apply it to a block
of a dfd and check if it is able to detect lines with the first
coefficients. We propose a method composed of two
stages. First the FRIT is used to catch line patterns with its
biggest coefficients, afterwards the reconstructed image is
subtracted from the original one and the residual is passed
to the second stage. Here a classical wavelet
decomposition is performed (2D-DWT). Figure 4
illustrates the scheme of this hybrid algorithm. The input
dfd image has been obtained using a motion estimation
algorithm similar to MPEG-4. The inverse algorithm is
very simple: wavelet and FRIT coefficients are decoded
separately and then the two images are added in order to
obtain the reconstructed dfd.

This technique, that exploits the potential base layer
shown in figure 2, offers a double advantage: first, lines
are represented in the optimal way (i.e. using ridgelets),
second the residual is easier to code for wavelets since
some edges were eliminated in the previous stage.

This hybrid coding method does not require to split the
image in small blocks and it can be applied to the whole
image too. Only the features that are really efficiently
represented by ridgelets are considered, all the rest is
transferred to the second step.

= ] ¥ - =

Fig.3: Motion compensated block extracted from the
sequence “Stefan”. Original (a) and reconstructed with
FRIT(b), wavelets (c) and hybrid method (d). 400
coefficients.
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Fig.4: Scheme of the hybrid algorithm.

6. RESULTS

We consider now the case of a block of 127x127 pixels,
extracted from the sequence “Stefan”. Figure 3 shows the
original block and the ones reconstructed with FRIT, 2D-
DWT and the hybrid method. It should be noted that the
pixels values are shifted and scaled, being the original
range of the frame [-255, 255].

Table 2 illustrates the mse obtained with different
number of coefficients: at high compression rates the
advantage is evident. The number of coefficients for the
hybrid encoder is the sum of the FRIT (fixed to five) and
the wavelet ones.
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coefficients wavelet  FRIT+ wavelet
100 58.7 50.4
200 51 44
400 40.1 34.9

Tab.2: Mse obtained applying wavelets and the hybrid
method on a block 127x127 from the sequence “Stefan”.

Another interesting comparison can be done
computing how many coefficients are necessary to reach a
certain mse. Tables 3 and 4 examine this situation for two
different frames taken from sport sequences The last
column gives the percentage of coefficients that the new
method saves compared with wavelets.

In all the examples reported the 2D wavelet transform
is performed using Dbiorthogonal Daubechies 9,7

functions.
Target MSE |FRIT+wavelet  wavelet var (%)
10 100 110 10%
8 200 225 12.5%
6 400 450 12.5%

Tab.3: Number of coefficients needed to reach a given
mse. Data refers to a block 127x127 taken from the
soccer sequence “J-league” in format QCIF.

Target MSE |FRIT+wavelet  wavelet var (%)
50 100 210 110%
44 200 315 57%
35 400 530 32%

Tab.4: Number of coefficients needed to reach a given
mse. Data refers to a block 127x127 taken from the
sequence “Stefan” in format CIF.

7. CONCLUSIONS

Ridgelet transform turns out to be optimal for representing
discontinuities along straight lines [2]. In order to employ
it with complex images a more elaborated structure is
needed. For example one can first utilize a quad-tree
division [8,9] of an image in small blocks and then apply
ridgelets or use the curvelet transform [10] based on a
localized application of ridgelets.

Here we propose a different approach, suitable for
motion compensated images, that exploit ridgelets ability
to find and represent edges, employing them for a base-
layer coding. This method is based on the idea that an
image is built of several components: one technique can
be adopted to represent straight lines while the rest can be
represented employing other transforms.

Moreover, from a visual point of view, the fact that
lines are well reconstructed (even though the image is
highly compressed) turns out to be very important.

There are video sequences that have many lines that
can be well treated with ridgelets (a lot of sport sequences
for example) and others in which this technique is useless.
It could be interesting to develop an adaptive version of
the proposed algorithm that finds out how many ridgelets
coefficients are necessary to efficiently code edges on a
certain dfd before passing the residual to the second step.

In the hybrid scheme that we presented the final stage
is entrusted to wavelets but other techniques could also be
used. It should be noticed that if the coder utilized in the
second stage is block-based the capacity of detecting lines
on the whole frame is especially useful.

Finally, it could be particularly interesting to use a
matching pursuit algorithm [11,12] instead of wavelets as
it seems to be better compatible with this hybrid coding
implementation.
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