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ABSTRACT

It is well-known that the Hilbert transform (HLT) is useful for
generating the analytic signal, and saving the bandwidth required
in communication. However, it is known by less people that the
HLT is also a useful tool for edge detection. In this paper, we
introduce the generalized radiant Hilbert transform (GRHLT),
and illustrate how to use it for edge detection. The GRHLT isthe
general form of the two-dimensional HLT. Together with some
techniques (such as section dividing and shorter impulse re-
sponse modification), we can use the GRHLT to detect the edges
of images exactly. Using the GRHLT for edge detection has
higher ability of noise immunity than other edge detection algo-
rithms. Besides, we can also use the GRHLT for directional edge
detection, i.e., detect the edges with certain directions.

1. INTRODUCTION

The Hilbert transform (HLT) isdefined as[1]:
Oni(9(x)) = IFT(H(0)- FT(9(x))) (2)
where H(w) = - sgn(w). (2
There are some ways to generaize the HLT into the two-
dimensional (2-D) form. The simplest way is combining two 1-D
HLT’ s together:

Onit2p) (a(xy))= Otie(y) lOHIt(x) (9(x, Y))J (3

Recently, in [2], Davis, McNamara, and Cottrell introduced the
radial Hilbert transform (RHLT):

h (% )= IFTyp [expliPO)F T, (9(x, )] )
where 6 =cos (w/R)=sin Y(gR), R=(c*+s)"?, w, s are the inde-
pendent variablesin the frequency domain, and P is any integer.

It is well-known that we can use the HLT to generate the
analytic signal, and save the bandwidth required for areal signal.
In fact, the HLT can also be applied to edge detection [2][3].
Fewer people know this application, but it is very important. The
most serious problem for most of the edge detection algorithms
isthat their performance is affected by noise. However, using the
HLT for edge detection can much reduce the effects of noise.

In this paper, we introduce the generaized radial Hilbert
transform (GRHLT), which is the generalization of the separable
2-D HLT (see (3)) and the RHLT (see (4)). We introduce it in
Sec. 2. Then, we illustrate how to use the GRHLT for 2-D edge
detection and its advantage in Sec. 3. The most important two
advantages are noise immunity and that the ramp edges can be
detected successfully. Using the GRHLT together with the tech-
niques introduced in Sec. 4, we can detect the edges of an image
exactly. Besides, in Sec. 5, we will show that we can aso use the
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GRHLT for directional edge detection, i.e., detect the edges with
certain directions.

2. GENERALIZED RADIAL HILBERT TRANS
FORMS

We define the generalized radial Hilbert transform (GRHLT)
asfollows:

9h (% )= IFT,p (H(@, s)FT5 (9(x, Y))) (%)
where the transfer function H(w,s) is rotational symmetric:

H(w,s)=®(@) when(w,9%0, H(0,0)=0, (6)
where @ =cos H(w/r)=sin"}(s/r),

r=vo?+s?, ®(6) isany function. (7

The separable 2-D HLT defined asin (3) is a special case of the
GRHLT where ®(0) = 1when0< 0 < zl20or #< 6 < 372, ®(6)
=-1lwhenn/2< @ <z or 372< 6< 2z, and ®(¢) = 0when 0
= Nz2. The RHLT introduced in [2] is a special case of the
GRHLT where
() =exp(jPO). ©)

Besides, many other operations (such as the analytic signals
generating operations, the 1-D HLT, and identity operation) are
also the specia cases of the GRHLT.

The GRHLT is very general and flexible. Because of its
flexibility, it can solve many problems that can’t be solved well
by its special cases. In Secs. 3~5, we show that the GRHLT isa
very powerful tool for edge detection.

When doing the edge detection, we usually use the discrete
counterpart of the GRHLT, i.e., the discrete generalized radial
Hilbert transform:

gy [ n]= IDFT,5 (H[ p, d]DF T, (glm, nl)) ©)

where p, g, are the discrete independent variables in the fre-
quency domain, and H[p, q] is rotational symmetric:

Hlp.a]=®(@)  when [p,dl=[0,0],
H[0,0]=0, H[M /20]=0 if Miseven,
H[O,N/Z]:O if Niseven, (MxN: thesizeof g[m, n]),

6=cos(p/r)=sin(q/r), r=4p%+q?

®(6) isany function. (10)
Due to the DFT and IDFT, the discrete generalized radial Hil-
bert transform has fast algorithm. Its complexity is MN-log,MN.

3. USING THE GRHLT FOR EDGE DETECTION

The simplest way for 2-D edge detection is doing the difference
operation. That is, if
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(horizontal) |g[my, ny]— g[mg, Ny +1]| > threshold

(vertical) |g[my, ng] - glmg +1 ng]| > threshold (11)

we can conclude that the pixel (my, ng) is on the edge. Besides,
there are also some edge detection methods based on the convo-
lution with 3x3 matrix, e. g., the compass gradient mask, Lapla-
cian mask, and statistical mask methods [4]. Their ideas are simi-
lar to the difference operation.

However, most of the above edge detection methods are
highly influenced by noise. We do an experiment in Fig. 1. Fig.
1(a) is the input image, and Fig. 1(b) is the image interfered by
the noise. In Fig. 1(c), 1(d), we use the Laplacian mask method
to detect the edges of Fig. 1(a), 1(b), respectively. It is appear-
ance that the effect of the Laplacian mask method is much influ-
enced by noise. Thisisthe most important problem for Laplacian

mask method and most of the existed edge detection algorithms.
(a) image (b) image + noise

-100 0 100 -100 0 100
Fig. 1 The experiment for noise immunity. (a): Image. (b): Im-
age + noise. (c)(d): Using the Laplacian mask to detect the
edges of (a) and (b). (e)(f): Using the GRHLT to detect the
edges of (@) and (b).

However, if we use the GRHLT for edge detection, we can
much reduce the effect of noise.

In (10), if the transfer function we choose satisfies

®(0)=-D(@+7) for all 6, (12)

we can use the GRHLT for 2-D edge detection. This is so be-
cause in this case the impulse response (denoted by h[m, n] =
IDFT(H[w, 9]) of the GRHLT has the following two properties:
(2) odd symmetric: him, n] = —h[-m, —n],
(2) |h[m, n]| has the trend of becoming smaller when |m|, |n| grow

larger.

In fact, except for the GRHLT, all the 2-D LTI operations
whose impulse responses satisfy the above two constraints can
aso be used for edge detection.

The GRHLT can much reduce the effect of noise because it
has longer impulse response. The impulse response of the differ-
ence method (see (11)) are [-1, 1] or [-1, 1]". Their lengths are
1x2 and 2x1. The impulse responses of the methods based on
3x3 matrix convolution (such as the Laplacian mask method) are
3x3. However, the GRHLT has much longer impulse response,
so it can reduce the effect of noise. In Fig. 1(e) and 1(f), we do
the GRHLT for Fig. 1(a) and 1(b), respectively. Fig. 1(e) shows
that we can use the GRHLT to detect an image successfully. In
Fig. 1(f), we show that even if the origina image is interfered by
noise, the performance of edge detection doesn’'t become worse.
So using the GRHLT for edge detection is noise immunity.

Besides, if ®(0) satisfies

o(0)=0(0+7), (13)

then the GRHLT has the property of real-input-real-output. That
is, if the input g[m, n] is real, then the output g4[m, n] of the
GRHLT isaso area function. If we usethe RHLT (see (4)), i.e.,
(6) = exp(j 6), dthough it has good performance in edge detec-
tion, for rea input, the output may not be rea since ®(6) =
exp(j d) doesn't satisfy (13). We can try to choose ®(6) to satisfy
(12) and (13). For example, we can choose ®(6) as:
®(0)= j sgn(cos(d — 7/ 6))cos®? (90— 16). (14)
In this case, () satisfy (12) and (13), and the corresponding
GRHLT has the property of real-input-real-output.
The advantages of using the GRHLT for edge detection are:
(1) Noise immunity.
(2) Ramp edges, which are hard to detect by other edge detection
algorithms, can be detected by the GRHLT.
(3) In the sense of sight, the output has better quality if we use
the GRHLT for edge detection.
The 2" and 3 advantages can be seen from the comparison of
Fig. 1(e) with Fig. 1(c).

4. SOME TECHNIQGESTO IMPROVE THE PER-
FORMANCE OF EDGE DETECTION

4.1. Dividingtheinput into several sections

We like to divide the input image into several sections, and use
each of them as the input of the GRHLT for edge detection. It
has two advantages: (1) The complexity can be reduced. (2) The
performance can be improved.

Since the GRHLT isimplemented by the 2-D DFT / IDFT, so
its complexity is MN-log,MN where MxN is the size of image. If
we divide the image into S sections, then the size of each sec-
tion is near to (M/S)x(N/S). So the complexity becomes

2> MN MN MN
S -?Iogz?_MNIOQZ? (15)

This is smaller than MN-log,MN, so the complexity is reduced.
We can also write (15) as a function of MgxNy = (M/S)x(N/S)
where MgxNy is the size of each section:

MN log, MgNg. (16)
That is, if the size of sections MgxNp is fixed, the complexity
grows linearly with MxN. Thus, athough the edge detection
algorithm using GRHLT seems more complicated than other
edge detection algorithms, if we use the section-division method,
the complexity is in fact O(MN). This is the same as the com-
plexities of other edge detection algorithms.
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Besides, the performance can also be improved if we divide
the input into several sections. This is so because, to conclude
whether a pixel is on the edge, we just require the information
surrounding the pixel. It is unnecessary to use the whole image
as the input of the GRHLT for edge detection. In Fig. 2, we do
some experiments. In Fig. 2(b), we don't divide the image, and
in Fig. 2(c)(d), we divide the image into 3% and 9% sections before
using the GRHLT for edge detection. We can see that, in Fig
2(c)(d), the brightness differences between edge regions and

non-edge regions are more obvious than that in Fig. 2(b).
(a) Image (b) No section

-100 0 100 -100 0 100
Fig. 2 Improving the performance of the GRHLT for edge de-
tection by section-division method. (a) Image. (b) The re-
sultsif we do not separate the input. (c)(d) The results if we
separate the input into 3% sections and 9° sections.

4.2. Appending tapered borders

When doing edge detection, the borders of an image are usualy
misunderstood as the edges. This problem can be overcome by
appending tapered borders to the original image before doing the
edges detection. That is, if the origina image is glm, n] where
1-N; < m, n < N-Ny, N; = [N/2]+1, then we can append the up-
per and lower tapered borders to g[m, n] by:
glm,n] = (M+B-1+N;)g[1-Ng, n]/B  when 2—-N;—B <m <1-Ng,
glm,n] = (N+N;+B-m)g[N—-Ny,n]/B when N-N;<m< N+N;+B-1.
17
We can use the similar way to append the left and right tapered
borders to g[m, n]. After appending tapered borders, the borders
of an image are no longer detected as edges.

4.3. Choosing the adaptive threshold

In Figs. 1, 2, we directly show the output of the GRHLT. In fact,
we can also choose a threshold. If

lgn [mg.np]| > threshold (18)

where gy[m, n] is the output of the GRHLT, then we can con-
clude (my, ng) is on an edge. Then, one may ask how to choose
the threshold. The simplest way is choosing the threshold as
some constant. However, it has worse performance for a compli-
cated image. Here, we propose an localized and adaptive method
to choose the threshold function T[m, n]:

Tlmn]= Z [m,n]+aT, a9)

(a+Db

where Zc[mn]=|gy[mn]® A,

Ac is acxc matrix where A((m, n) = 1 for al m's, n’s,

To isthe average value of [gy[m, n]|. (20
In the above, there' re 3 parameters a, b, c. We can adjust them to
achieve better performance. In principle, for a simple image
(such as the fruit image in Fig. 3(a)), we choose larger values of
a and c and smaller value of b. For a complicated image (such as
the Lenaimage in Fig. 3(b)), we choose smaller value of aand ¢
and larger value of b. In Fig. 3(c), we choose (a, b, c) as (0.65,
0.8, 15), and in Fig. 3(d), we choose (a, b, ¢) as (0.5, 0.85, 9).

-100 0 100 -100 0 100
Fig. 3 Edge detection using the GRHLT together with the adap-
tive threshold function defined asin (19), (20).

4.4. Shorter impulse response modification

We have stated that the advantage of the GRHLT is that it can
reduce the effects of noise. It is mainly due to the GRHLT has
longer impulse response. However, it has some side effect. That
is, the result is not sharp enough, and sometimes the brightness
of the edges region may not be obviously higher than the bright-
ness of the non-edge regions. This problem can be overcome if
we modify the transfer function of the GRHLT a little. We can
modify the transfer function of the GRHLT in (10) as:

Ha[p,a]=@(0)® A4, (21)
where ® is circular convolution, Ay is a dxd matrix, Ag(m, n) =1
for al m's, n's, and ®(6) is defined the same as previous sec-
tions. If cislarger, the impulse response hy[m, n] = IDFT(Hg4[p,
gl) will become shorter. Shorter impulse response makes the
brightness difference between the edge regions and the non-edge
regions become more obvious.

In Fig. 4, we do some experiments. In Fig. 4(a)(c), we show
the dicing (along x-axis) of the impulse response of the origina
GRHLT and the modified GRHLT (d = 9). It can be seen that the
impulse response of the modified GRHLT becomes shorter.
Then, in Fig. 4(b)(d), we show the transform results of the origi-
nal GRHLT and modified GRHLT, respectively. The brightness
difference between the edge and the non-edge regions of the
result of the modified GRHLT is more obvious.

Thus, using the shorter impulse response GRHLT for edge
detection can obtain better performance. However, the ability of
noise immunity is reduced. There is a tradeoff between the two
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goals: (1) better performance of edge detection, (2) higher ability
for noise immunity.
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Fig. 4 Experiments for using the shorter impul se response modi-
fied GRHLT for edge detection. (a)(b) The impulse response
(x-axis dlicing) and the transform results of the origina
GRHLT. (c)(d) The impulse response and he transform re-
sults of the shorter impul se response modified GRHLT.

5. DIRECTIONAL EDGE DETECTION

In Secs. 3, 4, we detect the edges whatever the direction it has. In
fact, if the transfer function of the GRHLT is chosen properly,
we can detect the edges with certain directions. For example, If
we want to detect the edges with the direction in the region of [ ¢,
@] where ¢—¢, < 7, then, in (10), we can choose

OO =— wheng <8 < ¢, D(O) =] when ¢p—7<68 <¢—,

O(6) =0 otherwise. (22
Then we do the GRHLT. If the output [f;(m,n)| > threshold, then
we can conclude that (m, n) is on an edge, and the direction of
the edge is in the range of [¢, ¢]. In Fig. 5, we give some ex-
ample. We use acircle (Fig. 5(a)) and the Lenaimage (Fig. 5(b))
astheinput. In Fig. 5(c), we plot the imaginary part of the trans-
fer function H[p, q] = ®(8), where ®(6) is defined as (22). Here,
we choose ¢, = 713 and ¢, = 24/3. Then we do the GRHLT for
the two inputs, and use the method described in subsection 4.3 to
choose the adaptive threshold. We plot the transform results in
Fig. 5(e) and 5(g). The edges found in Fig. 5(e) are just two arcs,
and the angle ranges of the two arcs are [#/3, 24/3] and [-7/3,
73], respectively. In Fig. 5(g), we also find the edges with direc-
tion in the range of [7/3, 24/3] successfully.

Besides, if we want to detect the edges in the region of [¢y, ¢,]

and [ ¢s, ¢4] @ the same time, we can choose ®(6) as:

() =-] wheng <0 <dp ¢3<0 <y
() =j when ¢—7< 0 < g7, ¢s—7< 0 < Gy,
®(0)=0  otherwise. (23)

For example, in Fig. 5(d), we choose [¢1, @] = [#/6, #/3], and
choose [¢s, ¢4] = [2713, 5416]. In Fig. 5(f) and 5(h), we plot the
transfer results of the GRHLT (with threshold) with this transfer
function for the circle image and Lena image. We detect the
edges with the direction in the ranges of [#/6, /3] and [27/3,
5716] successfully.

Thus, using the GRHLT for directional edge detection is very
flexible and convenient.

(@) (b)

-40 -20

0]

-100

-100 0 100 -100 0 100

Fig. 5 Experiments for directional edge detection. (a)(b): The

inputs. (c)(d): Transfer functions ®(6). (€)(g): The trans-

form results if we use (c) as the transfer function. (f)(h) The
transform results if we use (d) as the transfer function.

6. CONCLUSION

We have introduced the generalized radiant Hilbert transform
(GRHLT), and illustrated how to use it for 2-D edge detection.
Using the GRHLT for edge detection is very flexible, and can
much reduce the effect of noise. We can even use the GRHLT
for directional edge detection. Thus, except for communication,
the GRHLT is also an important tool for image processing.
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