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ABSTRACT 

 
It is well-known that the Hilbert transform (HLT) is useful for 
generating the analytic signal, and saving the bandwidth required 
in communication. However, it is known by less people that the 
HLT is also a useful tool for edge detection. In this paper, we 
introduce the generalized radiant Hilbert transform (GRHLT), 
and illustrate how to use it for edge detection. The GRHLT is the 
general form of the two-dimensional HLT. Together with some 
techniques (such as section dividing and shorter impulse re-
sponse modification), we can use the GRHLT to detect the edges 
of images exactly. Using the GRHLT for edge detection has 
higher ability of noise immunity than other edge detection algo-
rithms. Besides, we can also use the GRHLT for directional edge 
detection, i.e., detect the edges with certain directions.            
 

 
1. INTRODUCTION 

 
The Hilbert transform (HLT) is defined as [1]:     
  O                    (1) 
           where   H(ω) = −j sgn(ω).    (2) 
There are some ways to generalize the HLT into the two-
dimensional (2-D) form. The simplest way is combining two 1-D 
HLT’s together:     

( ) ( ) (( ))()( xgFTHIFTxgHlt ⋅= ω )

    ( ) ( )[ ]),(),( )()()2( yxgOOyxgO xHltyHltDHlt =       (3)  

Recently, in [2], Davis, McNamara, and Cottrell introduced the 
radial Hilbert transform (RHLT):      
        (4) 
where θ =cos−1(ω/R)=sin−1(s/R), R=(ω2+s2)1/2, ω, s are the inde-
pendent variables in the frequency domain, and P is any integer.    

( ) ( ) ([ ),(exp, 22 yxgFTiPIFTyxg DDH θ= )]

)
)

It is well-known that we can use the HLT to generate the 
analytic signal, and save the bandwidth required for a real signal. 
In fact, the HLT can also be applied to edge detection [2][3]. 
Fewer people know this application, but it is very important. The 
most serious problem for most of the edge detection algorithms 
is that their performance is affected by noise. However, using the 
HLT for edge detection can much reduce the effects of noise.         

In this paper, we introduce the generalized radial Hilbert 
transform (GRHLT), which is the generalization of the separable 
2-D HLT (see (3)) and the RHLT (see (4)). We introduce it in 
Sec. 2. Then, we illustrate how to use the GRHLT for 2-D edge 
detection and its advantage in Sec. 3. The most important two 
advantages are noise immunity and that the ramp edges can be 
detected successfully. Using the GRHLT together with the tech-
niques introduced in Sec. 4, we can detect the edges of an image 
exactly. Besides, in Sec. 5, we will show that we can also use the 

GRHLT for directional edge detection, i.e., detect the edges with 
certain directions.                    
 

2. GENERALIZED RADIAL HILBERT TRANS-
FORMS 

 
We define the generalized radial Hilbert transform (GRHLT) 
as follows:            
    (5) 
where the transfer function H(ω,s) is rotational symmetric:            

( ) ( ) ( )( )),(,, 22 yxgFTsHIFTyxg DDH ω=

   when (ω, s) ≠ 0,        ,   (6) ( ) (θω Φ=sH , ( ) 00,0 =H

where    ,     ( ) ( rsr /sin/cos 11 −− == ωθ

               22 sr += ω ,   Φ(θ) is any function.   (7) 
The separable 2-D HLT defined as in (3) is a special case of the 
GRHLT where Φ(θ) = 1 when 0 < θ  < π/2 or π < θ  < 3π/2, Φ(θ) 
= −1 when π/2 < θ  < π  or  3π/2 < θ < 2π, and Φ(θ) = 0 when θ 
= Nπ/2. The RHLT introduced in [2] is a special case of the 
GRHLT where  
  Φ(θ) =exp(jPθ ).       (8) 
Besides, many other operations (such as the analytic signals 
generating operations, the 1-D HLT, and identity operation) are 
also the special cases of the GRHLT.                                   

The GRHLT is very general and flexible. Because of its 
flexibility, it can solve many problems that can’t be solved well 
by its special cases. In Secs. 3∼5, we show that the GRHLT is a 
very powerful tool for edge detection.  

When doing the edge detection, we usually use the discrete 
counterpart of the GRHLT, i.e., the discrete generalized radia1 
Hilbert transform:                     
   (9) 
where p, q, are the discrete independent variables in the fre-
quency domain, and H[p, q] is rotational symmetric:             

[ ] (( )],[],[, 22 nmgDFTqpHIDFTnmg DDH = )

)

            when  [p, q] ≠ [0, 0],        [ ] ( )θΦ=qpH ,
  ,                 if M is even,     [ ] 00,0 =H [ ] 00,2/ =MH
      if N is even,    (M×N:  the size of g[m, n]), [ ] 02/,0 =NH

   ,    ( ) ( rqrp /sin/cos 11 −− ==θ 22 qpr +=  

    Φ(θ) is any function.            (10) 
Due to the DFT and IDFT, the discrete generalized radia1 Hil-
bert transform has fast algorithm. Its complexity is MN⋅log2MN.         
 

3. USING THE GRHLT FOR EDGE DETECTION 
 
The simplest way for 2-D edge detection is doing the difference 
operation. That is, if          
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  (horizontal) ]1,[],[ 0000 +− nmgnmg  > threshold         

  (vertical) ],1[],[ 0000 nmgnmg +−  > threshold         (11) 
we can conclude that the pixel (m0, n0) is on the edge. Besides, 
there are also some edge detection methods based on the convo-
lution with 3×3 matrix, e. g., the compass gradient mask, Lapla-
cian mask, and statistical mask methods [4]. Their ideas are simi-
lar to the difference operation.               
    However, most of the above edge detection methods are 
highly influenced by noise. We do an experiment in Fig. 1. Fig. 
1(a) is the input image, and Fig. 1(b) is the image interfered by 
the noise. In Fig. 1(c), 1(d), we use the Laplacian mask method 
to detect the edges of Fig. 1(a), 1(b), respectively. It is appear-
ance that the effect of the Laplacian mask method is much influ-
enced by noise. This is the most important problem for Laplacian 
mask method and most of the existed edge detection algorithms.  
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              In this case, Φ(θ) satisfy (12) and (13), and the corresponding 
GRHLT has the property of real-input-real-output.       
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Fig. 1  The experiment for noise immunity. (a): Image. (b): Im-

age + noise. (c)(d): Using the Laplacian mask to detect the 
edges of (a) and (b). (e)(f): Using the GRHLT to detect the 
edges of (a) and (b).            

However, if we use the GRHLT for edge detection, we can 
much reduce the effect of noise.      

In (10), if the transfer function we choose satisfies  
                          for all θ,          (12) ( ) ( )πθθ +Φ−=Φ
we can use the GRHLT for 2-D edge detection. This is so be-
cause in this case the impulse response (denoted by h[m, n] = 
IDFT(H[ω, s]) of the GRHLT has the following two properties:      
(1) odd symmetric: h[m, n] = −h[−m, −n],        
(2) |h[m, n]| has the trend of becoming smaller when |m|, |n| grow 

larger.  
In fact, except for the GRHLT, all the 2-D LTI operations 

whose impulse responses satisfy the above two constraints can 
also be used for edge detection.       

    The GRHLT can much reduce the effect of noise because it 
has longer impulse response. The impulse response of the differ-
ence method (see (11)) are [−1, 1] or [−1, 1]T. Their lengths are 
1×2 and 2×1. The impulse responses of the methods based on 
3×3 matrix convolution (such as the Laplacian mask method) are 
3×3. However, the GRHLT has much longer impulse response, 
so it can reduce the effect of noise. In Fig. 1(e) and 1(f), we do 
the GRHLT for Fig. 1(a) and 1(b), respectively. Fig. 1(e) shows 
that we can use the GRHLT to detect an image successfully. In 
Fig. 1(f), we show that even if the original image is interfered by 
noise, the performance of edge detection doesn’t become worse. 
So using the GRHLT for edge detection is noise immunity.        
    Besides, if Φ(θ) satisfies      
  ( ) ( )πθθ +Φ=Φ , (13)                
then the GRHLT has the property of real-input-real-output. That 
is, if the input g[m, n] is real, then the output gH[m, n] of the 
GRHLT is also a real function. If we use the RHLT (see (4)), i.e., 
Φ(θ) = exp(jθ), although it has good performance in edge detec-
tion, for real input, the output may not be real since Φ(θ) = 
exp(jθ) doesn’t satisfy (13). We can try to choose Φ(θ) to satisfy 
(12) and (13). For example, we can choose Φ(θ) as:       
  .       (14) ( ) ( )( ) ( 6/cos6/cossgn 2.0 πθπθθ −−=Φ j )

4. SOME TECHNIQGES TO IMPROVE THE PER-

    The advantages of using the GRHLT for edge detection are:  
(1) Noise immunity.         
(2) Ramp edges, which are hard to detect by other edge detection 

algorithms, can be detected by the GRHLT.                   
(3) In the sense of sight, the output has better quality if we use 

the GRHLT for edge detection.          
The 2nd and 3rd advantages can be seen from the comparison of 
Fig. 1(e) with Fig. 1(c).           
       

FORMANCE OF EDGE DETECTION 

4.1.  Dividing the input into several sections 
We like to divide the input image into several sections, and use 
each of them as the input of the GRHLT for edge detection. It 
has two advantages: (1) The complexity can be reduced. (2) The 
performance can be improved.              
    Since the GRHLT is implemented by the 2-D DFT / IDFT, so 
its complexity is MN⋅log2MN where M×N is the size of image. If 
we divide the image into S2 sections, then the size of each sec-
tion is near to (M/S)×(N/S). So the complexity becomes      

   
22222

2 loglog
S
MNMN

S
MN

S
MNS =⋅          (15) 

This is smaller than MN⋅log2MN, so the complexity is reduced. 
We can also write (15) as a function of M0×N0 = (M/S)×(N/S) 
where M0×N0 is the size of each section:                                           
   .         (16) 002log NMMN
That is, if the size of sections M0×N0 is fixed, the complexity 
grows linearly with M×N. Thus, although the edge detection 
algorithm using GRHLT seems more complicated than other 
edge detection algorithms, if we use the section-division method, 
the complexity is in fact O(MN). This is the same as the com-
plexities of other edge detection algorithms.      
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    Besides, the performance can also be improved if we divide 
the input into several sections. This is so because, to conclude 
whether a pixel is on the edge, we just require the information 
surrounding the pixel. It is unnecessary to use the whole image 
as the input of the GRHLT for edge detection. In Fig. 2, we do 
some experiments. In Fig. 2(b), we don’t divide the image, and 
in Fig. 2(c)(d), we divide the image into 32 and 92 sections before 
using the GRHLT for edge detection. We can see that, in Fig 
2(c)(d), the brightness differences between edge regions and 
non-edge regions are more obvious than that in Fig. 2(b).          
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Fig. 2  Improving the performance of the GRHLT for edge de-

tection by section-division method. (a) Image. (b) The re-
sults if we do not separate the input. (c)(d) The results if we 
separate the input into 32 sections and 92 sections.          

4.2.  Appending tapered borders          
When doing edge detection, the borders of an image are usually 
misunderstood as the edges. This problem can be overcome by 
appending tapered borders to the original image before doing the 
edges detection. That is, if the original image is g[m, n] where 
1−N1 ≤ m, n ≤ N−N1, N1 = [N/2]+1, then we can append the up-
per and lower tapered borders to g[m, n] by:             
  g[m,n] = (m+B−1+N1)g[1−N1, n]/B   when 2−N1−B ≤m <1−N1,   
  g[m,n] = (N+N1+B−m)g[N−N1,n]/B when N−N1≤m< N+N1+B−1.   
                                     (17) 
We can use the similar way to append the left and right tapered 
borders to g[m, n]. After appending tapered borders, the borders 
of an image are no longer detected as edges.              
4.3.  Choosing the adaptive threshold  
In Figs. 1, 2, we directly show the output of the GRHLT. In fact, 
we can also choose a threshold. If              
  [ ] threshold, 00 >nmg H           (18)  
where gH[m, n] is the output of the GRHLT, then we can con-
clude (m0, n0) is on an edge. Then, one may ask how to choose 
the threshold. The simplest way is choosing the threshold as 
some constant. However, it has worse performance for a compli-
cated image. Here, we propose an localized and adaptive method 
to choose the threshold function T[m, n]:                

      [ ] [ ]
ba
aTnmZ

nm c

)1(
,

, 0

+
+

=T          (19) 

   where  [ ] [ ] cHc AnmgnmZ ⊗= ,, ,     

                Ac is a c×c matrix where Ac(m, n) = 1 for all m’s, n’s,     
                T0 is the average value of |gH[m, n]|.        (20) 
In the above, there’re 3 parameters a, b, c. We can adjust them to 
achieve better performance. In principle, for a simple image 
(such as the fruit image in Fig. 3(a)), we choose larger values of 
a and c and smaller value of b. For a complicated image (such as 
the Lena image in Fig. 3(b)), we choose smaller value of a and c 
and larger value of b. In Fig. 3(c), we choose (a, b, c) as (0.65, 
0.8, 15), and in Fig. 3(d), we choose (a, b, c) as (0.5, 0.85, 9).       
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Fig. 3  Edge detection using the GRHLT together with the adap-

tive threshold function defined as in (19), (20).       

4.4. Shorter impulse response modification          

We have stated that the advantage of the GRHLT is that it can 
reduce the effects of noise. It is mainly due to the GRHLT has 
longer impulse response. However, it has some side effect. That 
is, the result is not sharp enough, and sometimes the brightness 
of the edges region may not be obviously higher than the bright-
ness of the non-edge regions. This problem can be overcome if 
we modify the transfer function of the GRHLT a little. We can 
modify the transfer function of the GRHLT in (10) as:       
   ,                  (21) [ ] ( ) dd AqpH ⊗Φ= θ,
where ⊗ is circular convolution, Ad is a d×d matrix, Ad(m, n) = 1 
for all m’s, n’s, and Φ(θ) is defined the same as previous sec-
tions. If c is larger, the impulse response hd[m, n] = IDFT(Hd[p, 
q]) will become shorter. Shorter impulse response makes the 
brightness difference between the edge regions and the non-edge 
regions become more obvious.         
    In Fig. 4, we do some experiments. In Fig. 4(a)(c), we show 
the slicing (along x-axis) of the impulse response of the original 
GRHLT and the modified GRHLT (d = 9). It can be seen that the 
impulse response of the modified GRHLT becomes shorter. 
Then, in Fig. 4(b)(d), we show the transform results of the origi-
nal GRHLT and modified GRHLT, respectively. The brightness 
difference between the edge and the non-edge regions of the 
result of the modified GRHLT is more obvious.         
    Thus, using the shorter impulse response GRHLT for edge 
detection can obtain better performance. However, the ability of 
noise immunity is reduced. There is a tradeoff between the two 
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goals: (1) better performance of edge detection, (2) higher ability 
for noise immunity.           
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Fig. 4  Experiments for using the shorter impulse response modi-

fied GRHLT for edge detection. (a)(b) The impulse response 
(x-axis slicing) and the transform results of the original 
GRHLT. (c)(d) The impulse response and he transform re-
sults of the shorter impulse response modified GRHLT.       

 
5. DIRECTIONAL EDGE DETECTION 

 
In Secs. 3, 4, we detect the edges whatever the direction it has. In 
fact, if the transfer function of the GRHLT is chosen properly, 
we can detect the edges with certain directions. For example, If 
we want to detect the edges with the direction in the region of [φ1, 
φ2] where φ2−φ1 < π, then, in (10), we can choose             
  Φ(θ) = −j  when φ1 ≤ θ  ≤ φ2,      Φ(θ) = j  when φ1−π≤θ  ≤φ2−π,   
  Φ(θ) = 0     otherwise.                  (22) 
Then we do the GRHLT. If the output |fH(m,n)| > threshold, then 
we can conclude that (m, n) is on an edge, and the direction of 
the edge is in the range of [φ1, φ2]. In Fig. 5, we give some ex-
ample. We use a circle (Fig. 5(a)) and the Lena image (Fig. 5(b)) 
as the input. In Fig. 5(c), we plot the imaginary part of the trans-
fer function H[p, q] = Φ(θ), where Φ(θ) is defined as (22). Here, 
we choose φ1 = π/3 and φ2 = 2π/3. Then we do the GRHLT for 
the two inputs, and use the method described in subsection 4.3 to 
choose the adaptive threshold. We plot the transform results in 
Fig. 5(e) and 5(g). The edges found in Fig. 5(e) are just two arcs, 
and the angle ranges of the two arcs are [π/3, 2π/3] and [−π/3, 
π/3], respectively. In Fig. 5(g), we also find the edges with direc-
tion in the range of [π/3, 2π/3] successfully.        
    Besides, if we want to detect the edges in the region of [φ1, φ2] 
and [φ3, φ4] at the same time, we can choose Φ(θ) as:                 
  Φ(θ) = −j      when φ1 ≤ θ  ≤ φ2,  φ3 ≤ θ  ≤ φ4,    
  Φ(θ) = j        when φ1−π ≤ θ  ≤ φ2−π,   φ3−π ≤ θ  ≤ φ4−π,    
  Φ(θ) = 0       otherwise.                  (23) 
For example, in Fig. 5(d), we choose [φ1, φ2] = [π/6, π/3], and 
choose [φ3, φ4] = [2π/3, 5π/6]. In Fig. 5(f) and 5(h), we plot the 
transfer results of the GRHLT (with threshold) with this transfer 
function for the circle image and Lena image. We detect the 
edges with the direction in the ranges of [π/6, π/3] and [2π/3, 
5π/6] successfully.           
    Thus, using the GRHLT for directional edge detection is very 
flexible and convenient.                
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Fig. 5  Experiments for directional edge detection. (a)(b): The 

inputs. (c)(d): Transfer functions Φ(θ). (e)(g): The trans-
form results if we use (c) as the transfer function. (f)(h) The 
transform results if we use (d) as the transfer function.             

 
6. CONCLUSION 

 
We have introduced the generalized radiant Hilbert transform 
(GRHLT), and illustrated how to use it for 2-D edge detection. 
Using the GRHLT for edge detection is very flexible, and can 
much reduce the effect of noise. We can even use the GRHLT 
for directional edge detection. Thus, except for communication, 
the GRHLT is also an important tool for image processing.                 
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