REAL-TIME ADAPTIVE BACKGROUND SEGMENTATION

Darren Butler, Sridha Sridharan

Queensland University of Technology
GPO Box 2434
Brisbane QLD 4001, Australia
{de.butler, s.sridharan} @qut.edu.au

ABSTRACT

Automatic analysis of digital video scenes often requires the
segmentation of moving objects from the background. Histori-
cally, algorithms developed for this purpose have been restricted
to small frame sizes, low frame rates or offline processing. The
simplest approach involves subtracting the current frame from the
known background. However, as the background is unknown, the
key is how to learn and model it. This paper proposes a new algo-
rithm that represents each pixel in the frame by a group of clusters.
The clusters are ordered according the likelihood that they model
the background and are adapted to deal with background and light-
ing variations. Incoming pixels are matched against the corre-
sponding cluster group and are classified according to whether the
matching cluster is considered part of the background. The al-
gorithm has been subjectively evaluated against three other tech-
niques. It demonstrated equal or better segmentation than the other
techniques and proved capable of processing 320 x 240 video at
28 fps, excluding post-processing.

1. INTRODUCTION

Video cameras are ubiquitous. They are essential for industries
such as surveillance, communications and entertainment resulting
in an incalculable amount of video being captured, processed and
stored every day. Technological advances have enabled the devel-
opment of systems that analyse digital video scenes automatically.
Fundamental to many of these systems is the need to segment mov-
ing objects from the background. Historically, computational com-
plexity has restricted automatic background segmentation to small
frame sizes, low frame rates or offline processing.

As apriori knowledge of a scene’s background does not often
exist, the key for any background segmentation algorithm is how
to learn and model it. The simplest approach is to calculate an
average background frame whilst no moving objects are present.
Subsequently, when an object enters the scene, it will cause the
current frame to diverge from the average background frame and
its presence can be easily detected by thresholding the difference
between the frames. However, any physical change or illumina-
tion change of the scene’s background will severely degrade the
algorithm’s performance indefinitely. To counteract this problem,
the average background image must be continuously adapted to
incorporate the background variations.

The assumption that the background is strictly stationary is
also problematic. Consider a tree branch waving in the wind. It
moves and yet should still be incorporated into the background
model. We define a pseudo-stationary background as one in which

0-7803-7663-3/03/$17.00 ©2003 IEEE

11 -349

V. Michael Bove, Jr.

MIT Media Laboratory
20 Ames St
Cambridge MA 02139, USA
vmb@media.mit.edu

all constituent objects are motionless or undergo small repetitive
motions. Clearly, even small motions can cause large scale varia-
tions in the observed pixel values. Therefore, the adaptive back-
ground difference algorithm, as outlined, is insufficient for pseudo-
stationary backgrounds.

As early as 1988, the usefulness of segmenting moving objects
from a static background was recognised. Even given the limited
hardware of the time, Seed and Houghton presented an analysis
of a number of algorithms for the maintenance of a background
frame in real-time under varying ambient conditions [1]. How-
ever, the problem domain was constrained to segmenting vehicles
from a roadway. Of the techniques, the two most promising were
Random updating and Sope limited updating. Random updating
replaces background pixels by the corresponding pixels in the cur-
rent frame according to a pseudo-random sequence. As no refer-
ence is made to what data the pixels actually contain, errors in the
background frame will occur. However, the errors are isolated and
can be reduced by subsequent processing. Conversely, Slope lim-
ited updated places restrictions on the amount background frame
pixels must differ from their counterparts in the current frame be-
fore they will be updated and by how much they can be changed.

Chien et al improve the basic background differencing algo-
rithm by progressively learning the background frame [2]. They
surmise that the longer a pixel remains roughly the same, the more
probable that it belongs to the background. Pixels are classified
as stationary by thresholding the difference between consecutive
frames. A count of the number of frames that a pixel has remained
stationary is maintained and when the count is sufficiently high,
the pixel is copied to the background frame. Whilst this technique
succeeds in learning and adapting the background frame, it fails to
handle pseudo-stationary backgrounds.

Stauffer and Grimson recognised that pseudo-stationary back-
grounds are inherently multi-modal and hence modelled each pixel
in the frame with a mixture of gaussians [3]. Incoming pixels
are compared against the corresponding gaussian mixture model
(GMM) and a match is sought. A match is defined as a pixel value
within 2.5 standard deviations of a gaussian. If a match is found,
the parameters of the matching gaussian are adjusted accordingly.
However, if no match can be found, the least probable distribu-
tion is replaced with a distribution that models the incoming pixel.
Gaussians that are more frequently matched are more likely to
model background pixels and so incoming pixels are classified ac-
cordingly. This algorithm has since been enhanced to improve its
learning rate and to account for object shadows [4].

A less obvious advantage of Stauffer and Grimson’s algorithm
is its ability to adapt rapidly to transient background changes. For

ICASSP 2003

instance, if an object enters the scene and then stops moving it
will eventually be incorporated into the background model. If it
then moves again, the system should rapidly recognise the origi-
nal background as corresponding gaussians may yet remain in the
mixture model. However, maintaining a GMM for every pixel
is an enormous computational burden and results in low frames
rates when compared to the algorithm of Chien et al. This paper
proposes a segmentation algorithm with a similar premise to that
of Stauffer and Grimson but having the capability of processing
320 x 240 video in real-time on modest hardware.

2. ALGORITHM

The premise of our algorithm is the more often a pixel takes a par-
ticular colour, the more likely that it belongs to the background.
Therefore, we require a technique for maintaining information re-
garding the history of pixel values. We model each pixel by a
group of K clusters where each cluster consists of a weight wy,
and an average pixel value or centroid c. Additionally, the algo-
rithm assumes that the background region is stationary. That is,
the camera geometry must be fixed or there must be compensation
for background changes due to camera motion.

Incoming pixels are compared against the corresponding clus-
ter group. The matching cluster with the highest weight is sought
and so the clusters are compared in order of decreasing weight.
A matching cluster is defined to have a Manhattan distance (i.e.
sum of absolute differences) between its centroid and the incom-
ing pixel below a user prescribed threshold 7". If no matching
cluster is found, the cluster with the minimum weight is replaced
by a new cluster having the incoming pixel as its centroid and a
low initial weight.

If a matching cluster was found then the weights of all clusters
in the group are adjusted according to:

wE = Wk + % (]\J)C — wk) (1)
where M; is 1 for the matching cluster and is 0 for the remaining
clusters. The parameter L is simply the inverse of the traditional
learning rate, «. It controls how quickly scene changes are incor-
porated into the background model. Smaller values for L result in
faster adaptation and larger values result in slower adaptation.

The centroid of the matching cluster must also be adjusted
according to the incoming pixel. Previous approaches adjust the
centroid based on a fraction of the difference between the cen-
troid and the incoming pixel. However doing so results in frac-
tional centroids and inefficient implementations. We chose instead
to accumulate the error between the incoming pixel and the cen-
troid. When the error term exceeds L — 1 the centroid is incre-
mented and when it is below —L it is decremented. This is ap-
proximately equivalent to adjusting the centroid on every frame
using ck = cx + + (z¢ — cx) but avoids the need for fractional
centroids and can be implemented very efficiently as is detailed in
Section 3.

After adaptation, the weights of all clusters in the group are
normalised so that they sum up to one using:

Wk

'LU]C:?

;Vk where S =" wy (2)
k

The weights necessarily total to one and are treated somewhat like
probabilities because they represent the proportion of the back-
ground accounted for by the cluster.

31 17 9 0
1 1 1

DORKAKKKN] Centroid l Error

Fig. 1. Centroid bit assignment: [B =9 < L = 512].

The normalised clusters are next sorted in order of decreasing
weight. However, note must be taken of the new location of the
matching cluster. Maintaining the clusters in order of weight aids
both the initial cluster comparisons and the final classification step.
Pixels are classified by summing the weights of all clusters that are
weighted higher than the matched cluster. That is:

K
P=)" u (3)

k> My,

The result, P is the total proportion of the background accounted
for by the higher weighted clusters and is an estimate of the prob-
ability of the incoming pixel belonging to the foreground. Larger
values of P are evidence the pixel belongs to the foreground and
smaller values are evidence that it belongs to the background. This
value can be thresholded to obtain a binary decision or can be
scaled to produce a grayscale alpha map.

3. IMPLEMENTATION

In implementing the algorithm of Section 2 we specifically tar-
geted Y’CbCr 4:2:2 video. Hence, it was necessary to make minor
modifications to the basic algorithm. Clusters are formed with both
a luma centroid and a chroma centroid. The luma centroid con-
sists of two adjacent luma components (Y7, Y5) and the chroma
centroid holds the corresponding chroma components (Cb, Cr).
The use of two centroids is beneficial as it allows the specification
of separate thresholds for luma and chroma. Given only a single
threshold it is likely that luma would dominate the matching pro-
cess. With this modification, a match is defined to occur only when
the Manhattan distance for both the luma and chroma components
are below their respective thresholds.

The update equations for the cluster weights are unchanged
but we employ a clever trick to efficiently accumulate the error
terms and update the centroids. As aforementioned, the error term
lies in the range [— L, L — 1]. We can equivalently shift this range
to [0,2L — 1] by the addition of L. That is, we simply shift the
origin of the error term from 0 to L. If we now restrict L to be
of the form L = 27 then the entire range of the error term can
be specified in B + 1 bits. Furthermore, adaptation of the cen-
troid now occurs when accumulation of the error term results in
overflow or underflow of the B + 1 bits.

Only 8 bits are required to specify any of the components
of Y’CbCr video. Therefore, if we represent the components of
the centroids (Y7, Ys, Cb, Cr) by 32 bit integers then the re-
maining 24 bits can be used to accumulate the error term. This
gives a maximum range for B of [0,23] or equivalently, L €
{1,2,4,8,...,8388608}. The user specifies the number of bits
B used to hold L and we shift upwards the components of the
centroids by B + 1 bits accordingly. The lower bits are used to
accumulate the error term which is initialised to the origin L (see
Figure 1). By virtue of this formulation, when overflow or un-
derflow of the error term occurs, the centroid is neatly adjusted
automatically.

11 - 350

Careful consideration of the cluster weight update equation
(Eq.1) reveals another suboptimality of the basic algorithm. It is
not difficult to show that if the weights of a cluster group sum up
to one, after application of the update equation they will still sum
up to one. Therefore, it is sufficient to only normalise the weights
(Eq.2) when a matching cluster could not be found forcing the
creation of a new cluster.

Another property of Equation 1 is that the weights of the un-
matched clusters are downscaled by the same factor (i.e. wy =
% x wy). Consequently, only matching clusters and newly cre-
ated clusters have the potential to be unsorted. Furthermore, as the
weight of a matched cluster increases, it is only necessary to sort
in the direction of the higher weighted clusters.

4. POST PROCESSING

There are two kinds of misclassifications that may occur in seg-
mentation results. False positives occur when background regions
are incorrectly labeled as foreground. Conversely, false negatives
occur when foreground regions are classified as background. Post
processing aims to reduce the number of such misclassifications
without an appreciable degradation in classfication speed.

False positives resemble pepper noise and are typically at-
tributed to camera noise. That is, they are small (1-2 pixel), incor-
rectly classified regions surrounded by correctly classified back-
ground pixels. The conventional morphological open operation
can be used to reduce false positives whilst preserving the con-
tours of correctly classified regions.

False negatives arise because of the existance of similarities
between the colours of foreground objects and the background.
They form holes in correctly classified foreground regions and can
be quite large. Consequently, they are more difficult to remove
than false positives. Typically, a connected components algorithm
is used to find connected foreground classifications. Next, small
regions, which are presumed to be false positives, are eliminated.
Finally, the holes in the remaining regions are filled.

To reduce the misclassification rate of our implementation, we
began by joining pixels separated by a single pixel gap. Next we
extracted the contours of all regions that were classified as fore-
ground using features of the Open CV library. If the area en-
closed by the contour was below a threshold it was eliminated.
Any remaining contours were presumed to correspond to real fore-
ground objects and were retained. This technique proved sufficient
to eliminate most of the false positives and false negatives culmi-
nating in results like those of Section 5.

5. RESULTS

We have qualitatively compared our algorithm against three other
background segmentation methods. The first method, VAR, calcu-
lates an average frame and a variance frame from a buffer of past
frames. Frames are segmented based upon the variance normalised
difference between them and the average frame. The algorithm,
GMML1, is according to the original work of Stauffer and Grimson
[3], whereas, GMM2 includes the modifications made by Kaew-
TraKulPong and Bowden et al [4]. Finally, NHD corresponds to

1The Open Source Computer Vision Library is used courtesy of the In-
tel Corporation and is available for public download from the World Wide
Web at "http://www.intel.com/research/mrl/research/opencv/”.

Table 1. Algorithm features & performance.

. Frame Mem. CPU
Algorithm FV'deo PUser Rate | Usage | Usage
ormat | Params. | oo Mb) | (%)
VAR Y’ChCr 8 29 11.9 25
GMM1 [3 RGB 2 9 23.9 97
GMM2 [4 RGB 2 13,67 25.4 97
NHD Y’ChCr 4 28 13.0 92

1 The initial transient frame rate of the GMM2 algorithm and its steady-
state frame rate respectively.

the algorithm that is described in this paper. The results were ob-
tained under Linux using a dual 1000-Mhz Pentium 111 computer
with 512 Mb of RAM. However, no attempts were made to paral-
lelise the code and only a single processor was utilised. Table 1
summarises the run-time performance of the four algorithms with-
out post-processing and Figure 2 compares their final segmenta-
tions after post-processing.

A key issue for segmentation algorithms is their computational
complexity. Table 1 clearly demonstrates that our algorithm is
about four times more computationally complex than the simple
variance based segmenter. However, it is still capable of process-
ing 28 frames per second and as shown in Figure 2 achieves signif-
icantly better segmentation. Furthermore, our algorithm adapts the
background model on every frame whereas the variance based seg-
menter only adapts once every three hundred frames. Increasing
the adaptation rate results in an increased CPU utilisation.

The post-processing stage used to generate the results was
identical for all four algorithms. Although the technique performs
well in general, it is certainly not optimal for each segmenter.
Therefore, the results should not be construed as the best seg-
mentation obtainable from each algorithm. However, the results
do demonstrate that our algorithm performs as well or better than
other recently published techniques whilst achieving significantly
higher frame rates.

6. CONCLUSIONS

The need for fast and accurate algorithms for segmenting mov-
ing objects from the background is undeniable. In this paper, we
have presented a new background segmentation algorithm target-
ing real-time applications. The algorithm models each pixel in the
frame with a group of K clusters and adapts the clusters to deal
with variations in both the background and the ambient lighting.
Incoming pixels are compared against the corresponding cluster
group using the Manhattan distance and are classified accordingly.

Currently, our algorithm does not differentiate between mov-
ing objects and their shadows. Consequently, shadows often cause
the segmentation to blur or they are detected as separate moving
objects. In either case, the effect is undesirable and future work
aims to reduce the impact of shadows without significantly de-
grading the achieved frame rate.

Finally, we qualitatively evaluated our algorithm against three
other techniques. Our algorithm demonstrated equal or better seg-
mentation than the other techniques and has proven capable of
processing 320 x 240 video at 28 frames per second, excluding
post-processing. Therefore, as desired, the algorithm is suitable
for deployment in real-time applications.

I -351

(b)

©

(d)

)

Fig. 2. Segmentation results: (a) Original, (b) VAR, (¢) GMML1, (d) GMMZ2, (e) NHD.

7. REFERENCES

[1] N.L. Seed and A.D. Houghton, “Background updating for
real-time image processing at TV rates,” in SPIE Vol. 901,
Image Processing, Analysis, Measurement and Quality, 1988,
pp. 73-81.

[2] Shao-Yi Chien, Shyh-Yih Ma, and Liang-Gee Chen, “Effi-
cient moving object segmentation algorithm using background
registration technique,” |1EEE Transactions on Circuits and
Systems for Video Technology, vol. 12, no. 7, pp. 577-586, Jul
2002.

[3] Chris Stauffer and W.E.L Grimson, “Adaptive background
mixture models for real-time tracking,” in Proceedings of
CVPR'99, Jun 1999, pp. 246-252.

[4] P. KaewTraKulPong and R. Bowden, “An improved adaptive
background mixture model for real-time tracking with shadow
detection,” in Proceedings of AVBS01, Sep 2001.

11 - 352

