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ABSTRACT 

 
Estimation of the number of clusters is an essential 
processing step for various applications. Existing 
approaches search for an optimal solution by computing 
and comparing a validity measure for all feasible 
configurations, and tend to under-estimate the number of 
clusters incorrectly. In this paper, we propose a fast and 
robust method to estimate the number of clusters without 
adopting the exhaustive search. Our scheme first extracts 
the relationship of neighboring features, and then uses 
this information to partition the clusters. The superb 
performance of the method is verified by the simulation 
results in determining the number of texture segments in 
the textured images.  
 

1. INTRODUCTION 
 
The objective of texture segmentation is to partition an 
image into homogeneous regions based on textural 
properties. Two most common approaches to 
segmentation are boundary detection of disjoint regions 
and clustering of regional features. Clustering is an 
unsupervised process without a priori information about 
class-specific references, where the number of clusters is 
explicitly specified as a user-defined parameter. For most 
clustering-based applications such as the unsupervised 
image segmentation, the number of clusters that fits the 
internal structure of a feature set needs to be 
automatically and accurately determined without user 
intervention. This cluster validity problem is a 
challenging issue with no known general solution [1].  

Most of the currently existing techniques 
approach to the problem by computing and comparing a 
validity measure for all feasible configurations of clusters. 
Davies and Bouldin [2] developed a measure that 
searches for a configuration that minimizes the ratio of 
the average intra-cluster distance to the average inter-

cluster distance. Havelicek and Tay [3] proposed a similar 
measure to compute the number of texture segments 
using wavelet transform-based texture features. Ray and 
Turi [4] also used the same measure to determine the 
number of clusters in color images. All these approaches 
adopt an exhaustive search for the optimal solution, and 
are not appropriate for real time applications such as 
texture segmentation or content-based image retrieval.  

Instead of using the exhaustive search, our 
approach directly estimates the number of clusters using 
co-occurrence statistics of the features, which are 
captured via a 2-D histogram called a co-occurrence 
matrix. Usually texture features are represented as multi-
dimensional vectors, and it is difficult to directly apply 
some useful scalar-oriented tools to analyze vectorial 
features. In order to address this issue, we apply the 
Kohonen’s Self-Organizing Map (SOM) algorithm [5] to 
the multi-dimensional texture features, and obtain the 
transformed features that are encoded as scalars. This 
vector-to-scalar transform enables us to compute a 2-D 
histogram that provides useful information about the 
feature co-occurrences. Then, using the 2-D histogram, 
the grouping algorithm partitions the clusters and 
estimates the number of clusters. The main operations of 
our approach consist of five steps: 1) extraction of texture 
features using the Gabor filters, 2) quantization and 
encoding of the features by the SOM algorithm, 3) 
computation of co-occurrence matrix of the encoded 
features, 4) estimation of the optimal configuration of the 
clusters, and 5) verification of the final result with a 
validity measure. The proposed scheme is very fast and 
accurate, as evidenced by the experimental results. 

The organization of the rest of this paper is as 
follows: in section 2, we briefly review the extraction of 
texture features; in section 3, we present a method to 
estimate the number of texture segments; in section 4, we 
report experimental results; finally, in section 5, we 
summarize the works presented in this paper. 

III - 3410-7803-7663-3/03/$17.00 ©2003 IEEE ICASSP 2003

➠ ➡



2. TEXTURE  FEATURES 
 
2.1. Extraction of Texture Features 
 
The multi-channel Gabor filters have been known to be 
closely related to the receptive field profiles within the 
human visual system, and efficient for extracting texture 
features [6].  Gabor features are obtained by convolving 
an image with a set of Gabor elementary functions, 
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where (x′, y′) = (xcosθ+ ysinθ, -xsinθ+ ycosθ) denote 
coordinates oriented at the angle θ from the x-axis  in the 
spatial domain, and (U,V)  the filter location in the 
frequency-domain. A 2-D Gaussian g(x,y) is specified by 
center frequency F = sqrt(U2 + V2) and orientation θ = 
tan-1 (U/V) with the following form,  
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where σx and σy are scale factors characterizing the 
spatial extent of the Gaussian. By convolving an image 
I(x,y) with a set of Gabor filters and then by taking the 
energy, one can obtain the Gabor features,  f = (f1, f2, … 
fd), where  d is the number of Gabor filters with different 
frequency F and orientation θ. 
 
2.2. Clustering and Encoding of Texture Features 
 
Gabor features, as described in the previous section, are 
represented as d-dimensional vectors. Therefore, it is 
difficult to directly apply certain useful scalar-oriented 
tools, e.g., histogram-based techniques, for analyzing the 
features. To address this issue, we employed the SOM 
algorithm which projects high-dimensional vectors onto a 
lower-dimensional space, v: Rd → Λ, where v (f1, f2, … 
fd ) = λ and λ is an index in a feature map Λ. This 
mapping quantizes features and encodes the similarity of 
features as the spatial proximity in a feature map. An 
encoded-feature image J(x,y) is generated by assigning 
each feature (f1, f2, … fd ) in the input image I(x,y) to the 
corresponding index λ = v (f1, f2, … fd ) of the feature 
map for all (x,y). The value of pixels in J is in the range 
of 0 to K-1, where K is the dimension of Λ. We note that, 
at this preprocessing step, K determines only the 
quantization resolution for the purpose of encoding, and 
has little to do with the optimal number of clusters. 
Considering the textural properties of natural images, 
K=32 appears to be adequate. As needed, a conservative 
estimation of K=64 should be sufficient for most images. 

                                                            r 

         s   
(a)                               (b)           

 
Figure 1. (a) Example of a 3×3 window, and (b) graphical 
representation of a 2-D histogram hXY(r,s) of size 64×64. 
 

3. ESTIMATING THE NUMBER OF CLUSTERS 
 
The essence of our approach is to capture the relationship 
of neighboring features, and then use this information to 
identify pixels of the same class. For the goal, a 2-D 
histogram called a co-occurrence matrix is first 
constructed with the encoded features, and then the 
grouping algorithm is applied to estimate the number of 
clusters. 
 
3.1. Construction of Co-Occurrence Matrix 
 
General co-occurrence matrix is a 2-D joint histogram of 
co-occurring pairs (r,s), where r and s are pixel values 
related by a displacement vector. We extend the basic 
notion of the co-occurrence matrix by replacing a 
replacement vector with a neighboring relation and by 
augmenting pair-wise relation to one-to-many relation. 
More specifically, given a 2-D histogram hXY(r,s), the row 
index r ∈  X denotes  any pixel values in J, and the 
column index s ∈  Y denotes the pixel values within the 
neighborhood of pixels of value r. Here, both r and s 
denote the pixel values in J, and their notational 
difference reflects only the difference in the way of 
sampling. With fixed r0 and s0, the value of a histogram 
bin hXY(r0,s0) is computed as follows: for each pixel p 
with a value of r0 in J, a neighborhood Np of p consists of 
the pixels in an n × n window centered at p, excluding p. 
The number of pixels q with a value of s0 within Np is 
accumulated in the bin hXY(r0,s0). For example, if a 
configuration of Np=5 in a 3×3 window is given as shown 
in Figure 1 (a), the values of hXY(5,5), hXY(5,6), and 
hXY(5,7) are incremented by 3, 2, and 3, respectively. The 
counting operation is performed for all pixels in J, and 
we obtain a 2-D histogram of size K×K. Figure 1 (b) 
shows an example of a 2-D histogram whose magnitudes 
are converted to 8-bit gray levels. 
  
3.2. Estimation of the Number of Clusters  
 
As aforementioned, if texture features are encoded using 
a feature map of dimension K, the 2-D histogram hXY(r,s)  
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is constructed with the size of K×K. Because the pixels in 
J takes a value from the index set K  =  {0, 1, …, K-1}, 
the number of texture segments can be determined by the 
number of clusters in a partition on K . Constructing a 
partition of clusters on K is done by utilizing the co-
occurring statistics of features, which is represented as 
the row and column index, i.e. r and s in hXY(r,s). The 
grouping algorithm takes K as the input, performs the 
following operations, and produces the output in a 
texture-class label C. 
 
1. Initially, all indices in K are unlabeled, i.e. belong to 
the set U = {k: ∀ k ∈  K }, and C is set to 1.  
 
2. Among the unlabeled indices in U, select the one, say 
k0, which occurs the greatest number of times in the 
encoded-feature image J, and set the class label of k0 to C. 
Among the row indices r of hXY(r,s), find the one that 
corresponds to k0 and denote it as rC. Remove k0 = rC 
from U to the set of the labeled indices, L. 
 
3. From the column indices s of hXY(r,s), which are 
unlabeled, s ∈  U, find the ones that satisfy the criteria, 

 hXY(rC, s) ≥  hXY(r,s), ∀ r ∈  U, rC ≠ r, 
and assign C to all these s’s. Thus,  the selected indices 
are set to the same label as rC that was processed at step 2. 
Remove the just selected indices from U and place them 
in L. 
 
4. If there are unlabeled indices in U, then increase C by 
1, and go to step 2 above. Otherwise, stop. 
 

When the algorithm terminates, C attains the 
number of texture segments in the input image. The 
objective of step 2 is to select the index that plays the role 
of a seed for a new texture class. Generally this operation 
might not work for gray level-based approaches, because 
a gray level can be scattered over the entire image and 
hence the maximal occurrence of a gray level does not 
guarantee for those pixels to form a cluster. In our 
approach, however, the indices represent textural 
characteristics spanned over a region, and it does not 
matter whether or not the regions are scattered since 
scattered regions can form a cluster.  

Once a seed index rC for a new class is found at 
step 2, the indices that belong to the class are identified at 
step 3. The identification is carried out based on the idea 
that, by regional property, the indices that maximally co-
occur with rC will belong to the same class as rC. The 
maximal co-occurrence can be checked by row-wise 

comparison for all unlabeled column indices s ∈ U using 
the criteria hXY(rC, s) ≥  hXY(r,s), ∀ r ∈  U, rC ≠ r. 

             
          (a)                           (b)                          (c) 
 
Figure 2. Visualization of the dynamics of the algorithm; 
(a) A 2-D histogram of the image I6 in Figure 4; (b) after 
the 1st iteration; (b) after the algorithm terminates. 
 

This process can be graphically illustrated for 
visual understanding. At the first iteration, the identified 
indices, say Km  =  {k0, k1, …, km-1}, constitute an 
increasing, but not necessarily consecutive, sub-sequence 
of the entire sequence S = <0, 1, … , K-1>. By the 
permutation, P : ki ↔ i for 0 ≤ i≤ m-1, those k’s exchange 
their positions with the indices in the first m places in S, 
and become a consecutive sub-sequence. As a result, for 
all ki and kj ∈  Km, the corresponding histogram bins 
permute their positions, hXY(ki, kj) ↔ hXY(i,j), and form a 
squared region as shown at the left upper corner in  
Figure 2 (b) that is converted from Figure 2 (a). In this 
figure, the histogram bins representing texture boundaries, 
i.e. hXY(r,s) with r ∉  Km or s ∉  Km, are removed for the 
clarity of illustration. The final result is illustrated in 
Figure 2 (c) where the number of texture segments, 5 in 
this case, is clearly shown by the five squares on the 
diagonal.  

 
4. EXPERIMENTAL RESULTS 
 
We evaluated the performance of the proposed algorithm 
with six synthetic texture images of size 256×256, I1 to I6, 
as shown in Figure 3. Texture features were computed by 
applying 24 Gabor filters with four different frequencies 
and six orientations, and encoded with the feature map of 
dimension K=32. For each image, evaluation was carried 
out for six 2-D histograms obtained by running n×n 
windows with odd n varying from 3 to 13. The 
intermediate results are summarized in Table 1. From 
these, we could correctly obtain the final result, i.e. the 
five texture segments, either by the majority rule or by 
applying a cluster validity measure (defined below) only 
for three cases, i.e., 4-, 5-, and 6-cluster partitions. 

We also conducted experiments on exhaustive 
search-based approaches by applying the cluster validity 
measure defined in [3,4]. The measure produces an 
optimal solution at the minimum of the ratio R=V/W of 
the intra-cluster scatter V to the inter–cluster separation 
W defined as,  
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where N is the number of features, K the number of 
clusters, and zi the center of cluster Ci. The experimental 
results are shown in Table 2 where the minimum is 
denoted in boldface and the second minimum in italic. As 
shown in the first column, the number of clusters is 
under-estimated as 3 for all the images, while 5 is correct. 
As noted by Ray and Turi [4], the measure’s tendency for 
under-estimation suggests that the estimation of the 
number of clusters is not a trivial problem. As such, our 
simple but robust approach can be employed as an 
effective step for the sophisticated image analysis. 
Furthermore, computation in our approach can be done in 
a nearly constant time in the order of K, independent of 
the size N of the input image. Considering that K<<N, 
our approach saves a lot of computing time, compared 
with other exhaustive search-based approaches. More 
specifically, the average computing time on the 1.6GHz 
Pentium-IV PC shows the clear difference in two 
approaches. In our approach, the average processing for 
an image took 19 seconds (secs) with 18 secs for 
quantizing and encoding and less than 1 sec for 
estimating the number of clusters. In the exhaustive 
search-based approach, the search for the number of 
clusters was carried out for the 6 configurations, i.e. 3 to 
8 clusters. The average processing time was 63 secs with 
34 secs for clustering of the six configurations and 29 
secs for determining the number of clusters. Even crude 
comparison of these results shows that our approach 
achieved 3 times of gain for the overall time and nearly 
30 times of gain for the computation of the number of 
clusters. 
 

       
              I1                               I2                               I3 
 

       
I4                               I5                               I6 

Figure 3. Five-texture images of size 256×256. 
 

 
Table 1: Estimated number of texture segments in the 

five-texture images with varying window sizes  
Window size (n×n)  

Image 
3×3 5×5 7×7 9×9 11×11 13×13 

I1 5 5 5 4 4 3 
I2 4 5 5 5 5 5 
I3 5 6 6 5 5 5 
I4 5 4 4 5 5 5 
I5 6 5 5 5 5 4 
I6 5 5 5 5 4 5 

 
Table 2: Values of cluster validity measure R (×10-3) 

Number of clusters (K)  
Image 3 4 5 6 7 8 

I1 0.171 0.645 0.601 1.435 3.226 11.868 

I2 0.098 10.101 1.006 2.054 27.038 9.878 

I3 0.329 1.726 0.568 6.853 6.853 5.126 

I4 0.074 1.166 0.232 1.303 1.845 13.250 

I5 0.102 1.535 0.217 2.512 1.770 2.913 

I6 0.188 1.584 0.408 1.190 10.566 7.360 

 
5. CONCLUSIONS 

 
In this paper, we presented a simple yet highly effective 
technique in determining the number of clusters, and 
verified its performance in estimating the number of 
texture segments. Unlike the traditional approaches, 
which perform an exhaustive search over all possible 
configurations, the proposed method directly estimates 
the number of clusters by using the co-occurrence 
statistics of the features. Experiments with texture images 
showed that considerable gains were achieved both for 
accuracy and for computing time.  
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