
FAST ESTIMATION OF THE NUMBER OF TEXTURE SEGMENTS
USING CO-OCCURRENCE STATISTICS

Gou-Chol Pok1, Jyh-Charn Liu2, and Keun Ho Ryu3

1Computer Science Department, Yanbian University of Science and Technology,

Yanji City, Jilin Province, China 133000
2 Department of Computer Science, Texas A&M University, College Station, Texas

3Database Laboratory, School of Electrical and Computer Engineering, Chungbuk National University,
Chongju, Chungbuk 361-763, Korea

ABSTRACT

Estimation of the number of clusters is an essential
processing step for various applications. Existing
approaches search for an optimal solution by computing
and comparing a validity measure for all feasible
configurations, and tend to under-estimate the number of
clusters incorrectly. In this paper, we propose a fast and
robust method to estimate the number of clusters without
adopting the exhaustive search. Our scheme first extracts
the relationship of neighboring features, and then uses
this information to partition the clusters. The superb
performance of the method is verified by the simulation
results in determining the number of texture segments in
the textured images.

1. INTRODUCTION

The objective of texture segmentation is to partition an
image into homogeneous regions based on textural
properties. Two most common approaches to
segmentation are boundary detection of disjoint regions
and clustering of regional features. Clustering is an
unsupervised process without a priori information about
class-specific references, where the number of clusters is
explicitly specified as a user-defined parameter. For most
clustering-based applications such as the unsupervised
image segmentation, the number of clusters that fits the
internal structure of a feature set needs to be
automatically and accurately determined without user
intervention. This cluster validity problem is a
challenging issue with no known general solution [1].

Most of the currently existing techniques
approach to the problem by computing and comparing a
validity measure for all feasible configurations of clusters.
Davies and Bouldin [2] developed a measure that
searches for a configuration that minimizes the ratio of
the average intra-cluster distance to the average inter-

cluster distance. Havelicek and Tay [3] proposed a similar
measure to compute the number of texture segments
using wavelet transform-based texture features. Ray and
Turi [4] also used the same measure to determine the
number of clusters in color images. All these approaches
adopt an exhaustive search for the optimal solution, and
are not appropriate for real time applications such as
texture segmentation or content-based image retrieval.

Instead of using the exhaustive search, our
approach directly estimates the number of clusters using
co-occurrence statistics of the features, which are
captured via a 2-D histogram called a co-occurrence
matrix. Usually texture features are represented as multi-
dimensional vectors, and it is difficult to directly apply
some useful scalar-oriented tools to analyze vectorial
features. In order to address this issue, we apply the
Kohonen’s Self-Organizing Map (SOM) algorithm [5] to
the multi-dimensional texture features, and obtain the
transformed features that are encoded as scalars. This
vector-to-scalar transform enables us to compute a 2-D
histogram that provides useful information about the
feature co-occurrences. Then, using the 2-D histogram,
the grouping algorithm partitions the clusters and
estimates the number of clusters. The main operations of
our approach consist of five steps: 1) extraction of texture
features using the Gabor filters, 2) quantization and
encoding of the features by the SOM algorithm, 3)
computation of co-occurrence matrix of the encoded
features, 4) estimation of the optimal configuration of the
clusters, and 5) verification of the final result with a
validity measure. The proposed scheme is very fast and
accurate, as evidenced by the experimental results.

The organization of the rest of this paper is as
follows: in section 2, we briefly review the extraction of
texture features; in section 3, we present a method to
estimate the number of texture segments; in section 4, we
report experimental results; finally, in section 5, we
summarize the works presented in this paper.

III - 3410-7803-7663-3/03/$17.00 ©2003 IEEE ICASSP 2003

➠ ➡

2. TEXTURE FEATURES

2.1. Extraction of Texture Features

The multi-channel Gabor filters have been known to be
closely related to the receptive field profiles within the
human visual system, and efficient for extracting texture
features [6]. Gabor features are obtained by convolving
an image with a set of Gabor elementary functions,

)],(2exp[),(),('' VyUxjyxgyxh +⋅= π

where (x′, y′) = (xcosθ+ ysinθ, -xsinθ+ ycosθ) denote
coordinates oriented at the angle θ from the x-axis in the
spatial domain, and (U,V) the filter location in the
frequency-domain. A 2-D Gaussian g(x,y) is specified by
center frequency F = sqrt(U2 + V2) and orientation θ =
tan-1 (U/V) with the following form,

,
2

1
exp

2

1
),(

2

2

2

2
























+−⋅=

yxyx

yx
yxg

σσσπσ

where σx and σy are scale factors characterizing the
spatial extent of the Gaussian. By convolving an image
I(x,y) with a set of Gabor filters and then by taking the
energy, one can obtain the Gabor features, f = (f1, f2, …
fd), where d is the number of Gabor filters with different
frequency F and orientation θ.

2.2. Clustering and Encoding of Texture Features

Gabor features, as described in the previous section, are
represented as d-dimensional vectors. Therefore, it is
difficult to directly apply certain useful scalar-oriented
tools, e.g., histogram-based techniques, for analyzing the
features. To address this issue, we employed the SOM
algorithm which projects high-dimensional vectors onto a
lower-dimensional space, v: Rd → Λ, where v (f1, f2, …
fd) = λ and λ is an index in a feature map Λ. This
mapping quantizes features and encodes the similarity of
features as the spatial proximity in a feature map. An
encoded-feature image J(x,y) is generated by assigning
each feature (f1, f2, … fd) in the input image I(x,y) to the
corresponding index λ = v (f1, f2, … fd) of the feature
map for all (x,y). The value of pixels in J is in the range
of 0 to K-1, where K is the dimension of Λ. We note that,
at this preprocessing step, K determines only the
quantization resolution for the purpose of encoding, and
has little to do with the optimal number of clusters.
Considering the textural properties of natural images,
K=32 appears to be adequate. As needed, a conservative
estimation of K=64 should be sufficient for most images.

 r

 s
(a) (b)

Figure 1. (a) Example of a 3×3 window, and (b) graphical
representation of a 2-D histogram hXY(r,s) of size 64×64.

3. ESTIMATING THE NUMBER OF CLUSTERS

The essence of our approach is to capture the relationship
of neighboring features, and then use this information to
identify pixels of the same class. For the goal, a 2-D
histogram called a co-occurrence matrix is first
constructed with the encoded features, and then the
grouping algorithm is applied to estimate the number of
clusters.

3.1. Construction of Co-Occurrence Matrix

General co-occurrence matrix is a 2-D joint histogram of
co-occurring pairs (r,s), where r and s are pixel values
related by a displacement vector. We extend the basic
notion of the co-occurrence matrix by replacing a
replacement vector with a neighboring relation and by
augmenting pair-wise relation to one-to-many relation.
More specifically, given a 2-D histogram hXY(r,s), the row
index r ∈ X denotes any pixel values in J, and the
column index s ∈ Y denotes the pixel values within the
neighborhood of pixels of value r. Here, both r and s
denote the pixel values in J, and their notational
difference reflects only the difference in the way of
sampling. With fixed r0 and s0, the value of a histogram
bin hXY(r0,s0) is computed as follows: for each pixel p
with a value of r0 in J, a neighborhood Np of p consists of
the pixels in an n × n window centered at p, excluding p.
The number of pixels q with a value of s0 within Np is
accumulated in the bin hXY(r0,s0). For example, if a
configuration of Np=5 in a 3×3 window is given as shown
in Figure 1 (a), the values of hXY(5,5), hXY(5,6), and
hXY(5,7) are incremented by 3, 2, and 3, respectively. The
counting operation is performed for all pixels in J, and
we obtain a 2-D histogram of size K×K. Figure 1 (b)
shows an example of a 2-D histogram whose magnitudes
are converted to 8-bit gray levels.

3.2. Estimation of the Number of Clusters

As aforementioned, if texture features are encoded using
a feature map of dimension K, the 2-D histogram hXY(r,s)

7 7 7
6 5 5
6 5 5

III - 342

➡ ➡

is constructed with the size of K×K. Because the pixels in
J takes a value from the index set K = {0, 1, …, K-1},
the number of texture segments can be determined by the
number of clusters in a partition on K . Constructing a
partition of clusters on K is done by utilizing the co-
occurring statistics of features, which is represented as
the row and column index, i.e. r and s in hXY(r,s). The
grouping algorithm takes K as the input, performs the
following operations, and produces the output in a
texture-class label C.

1. Initially, all indices in K are unlabeled, i.e. belong to
the set U = {k: ∀ k ∈ K }, and C is set to 1.

2. Among the unlabeled indices in U, select the one, say
k0, which occurs the greatest number of times in the
encoded-feature image J, and set the class label of k0 to C.
Among the row indices r of hXY(r,s), find the one that
corresponds to k0 and denote it as rC. Remove k0 = rC
from U to the set of the labeled indices, L.

3. From the column indices s of hXY(r,s), which are
unlabeled, s ∈ U, find the ones that satisfy the criteria,

 hXY(rC, s) ≥ hXY(r,s), ∀ r ∈ U, rC ≠ r,
and assign C to all these s’s. Thus, the selected indices
are set to the same label as rC that was processed at step 2.
Remove the just selected indices from U and place them
in L.

4. If there are unlabeled indices in U, then increase C by
1, and go to step 2 above. Otherwise, stop.

When the algorithm terminates, C attains the
number of texture segments in the input image. The
objective of step 2 is to select the index that plays the role
of a seed for a new texture class. Generally this operation
might not work for gray level-based approaches, because
a gray level can be scattered over the entire image and
hence the maximal occurrence of a gray level does not
guarantee for those pixels to form a cluster. In our
approach, however, the indices represent textural
characteristics spanned over a region, and it does not
matter whether or not the regions are scattered since
scattered regions can form a cluster.

Once a seed index rC for a new class is found at
step 2, the indices that belong to the class are identified at
step 3. The identification is carried out based on the idea
that, by regional property, the indices that maximally co-
occur with rC will belong to the same class as rC. The
maximal co-occurrence can be checked by row-wise

comparison for all unlabeled column indices s ∈ U using
the criteria hXY(rC, s) ≥ hXY(r,s), ∀ r ∈ U, rC ≠ r.

 (a) (b) (c)

Figure 2. Visualization of the dynamics of the algorithm;
(a) A 2-D histogram of the image I6 in Figure 4; (b) after
the 1st iteration; (b) after the algorithm terminates.

This process can be graphically illustrated for
visual understanding. At the first iteration, the identified
indices, say Km = {k0, k1, …, km-1}, constitute an
increasing, but not necessarily consecutive, sub-sequence
of the entire sequence S = <0, 1, … , K-1>. By the
permutation, P : ki ↔ i for 0 ≤ i≤ m-1, those k’s exchange
their positions with the indices in the first m places in S,
and become a consecutive sub-sequence. As a result, for
all ki and kj ∈ Km, the corresponding histogram bins
permute their positions, hXY(ki, kj) ↔ hXY(i,j), and form a
squared region as shown at the left upper corner in
Figure 2 (b) that is converted from Figure 2 (a). In this
figure, the histogram bins representing texture boundaries,
i.e. hXY(r,s) with r ∉ Km or s ∉ Km, are removed for the
clarity of illustration. The final result is illustrated in
Figure 2 (c) where the number of texture segments, 5 in
this case, is clearly shown by the five squares on the
diagonal.

4. EXPERIMENTAL RESULTS

We evaluated the performance of the proposed algorithm
with six synthetic texture images of size 256×256, I1 to I6,
as shown in Figure 3. Texture features were computed by
applying 24 Gabor filters with four different frequencies
and six orientations, and encoded with the feature map of
dimension K=32. For each image, evaluation was carried
out for six 2-D histograms obtained by running n×n
windows with odd n varying from 3 to 13. The
intermediate results are summarized in Table 1. From
these, we could correctly obtain the final result, i.e. the
five texture segments, either by the majority rule or by
applying a cluster validity measure (defined below) only
for three cases, i.e., 4-, 5-, and 6-cluster partitions.

We also conducted experiments on exhaustive
search-based approaches by applying the cluster validity
measure defined in [3,4]. The measure produces an
optimal solution at the minimum of the ratio R=V/W of
the intra-cluster scatter V to the inter–cluster separation
W defined as,

III - 343

➡ ➡

2

1

1
∑ ∑

= ∈

−=
K

i Cif

izf
N

V ,

jiKjizzW ji ≠−≤≤−= ,1,0),min(
2

,

where N is the number of features, K the number of
clusters, and zi the center of cluster Ci. The experimental
results are shown in Table 2 where the minimum is
denoted in boldface and the second minimum in italic. As
shown in the first column, the number of clusters is
under-estimated as 3 for all the images, while 5 is correct.
As noted by Ray and Turi [4], the measure’s tendency for
under-estimation suggests that the estimation of the
number of clusters is not a trivial problem. As such, our
simple but robust approach can be employed as an
effective step for the sophisticated image analysis.
Furthermore, computation in our approach can be done in
a nearly constant time in the order of K, independent of
the size N of the input image. Considering that K<<N,
our approach saves a lot of computing time, compared
with other exhaustive search-based approaches. More
specifically, the average computing time on the 1.6GHz
Pentium-IV PC shows the clear difference in two
approaches. In our approach, the average processing for
an image took 19 seconds (secs) with 18 secs for
quantizing and encoding and less than 1 sec for
estimating the number of clusters. In the exhaustive
search-based approach, the search for the number of
clusters was carried out for the 6 configurations, i.e. 3 to
8 clusters. The average processing time was 63 secs with
34 secs for clustering of the six configurations and 29
secs for determining the number of clusters. Even crude
comparison of these results shows that our approach
achieved 3 times of gain for the overall time and nearly
30 times of gain for the computation of the number of
clusters.

 I1 I2 I3

I4 I5 I6

Figure 3. Five-texture images of size 256×256.

Table 1: Estimated number of texture segments in the

five-texture images with varying window sizes
Window size (n×n)

Image
3×3 5×5 7×7 9×9 11×11 13×13

I1 5 5 5 4 4 3
I2 4 5 5 5 5 5
I3 5 6 6 5 5 5
I4 5 4 4 5 5 5
I5 6 5 5 5 5 4
I6 5 5 5 5 4 5

Table 2: Values of cluster validity measure R (×10-3)

Number of clusters (K)
Image 3 4 5 6 7 8

I1 0.171 0.645 0.601 1.435 3.226 11.868

I2 0.098 10.101 1.006 2.054 27.038 9.878

I3 0.329 1.726 0.568 6.853 6.853 5.126

I4 0.074 1.166 0.232 1.303 1.845 13.250

I5 0.102 1.535 0.217 2.512 1.770 2.913

I6 0.188 1.584 0.408 1.190 10.566 7.360

5. CONCLUSIONS

In this paper, we presented a simple yet highly effective
technique in determining the number of clusters, and
verified its performance in estimating the number of
texture segments. Unlike the traditional approaches,
which perform an exhaustive search over all possible
configurations, the proposed method directly estimates
the number of clusters by using the co-occurrence
statistics of the features. Experiments with texture images
showed that considerable gains were achieved both for
accuracy and for computing time.

6. REFERENCES

[1] D. A. Langan, J. W. Modestino, and J. Zhang, “Cluster
validation for unsupervised stochastic model-based image
segmentation,” IEEE Trans. Image Proc., Vol. 7, pp. 180-195,
1998.
[2] D. L. Davies and D. W. Bouldin, “A cluster separation
measure,” IEEE Trans. Pattern Anal. Machine Intell., Vol. 1, pp.
224-227, 1979.
[3] J. P. Havelicek and P. C. Tay, “Determination of the number
of texture segments using wavelets,” Proc. 16th Conf. on Applied
Math., Univ. of Central Oklahoma, pp. 61-70, July 20, 2001.
 [4] S. Ray and R. H. Turi, “Determination of number of clusters
in k-means clustering and application in color image
segmentation,” Proc. 4th Conf. on Pattern Recognition and
Digital Tech., Calcutta, India, pp. 137-143, Dec 27-29, 1999.
[5] T. Kohonen, Self-Organizing Maps, Berlin: Springer, 1995.
[6] D. F. Dunn, W. E. Higgins, and J. Wakeley, “Texture
segmentation using 2-D Gabor elementary functions,” IEEE
Trans. Pattern Anal. Machine Intell. ,Vol.16, pp.130-149, 1994.

III - 344

➡ ➠

