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ABSTRACT

To extract buildings from Digital Elevation Models, we define a
point process whose points represent buildings. We then define a
density for this point process which is split into two parts, consist-
ing in an "internal field” that allows us to model the prior knowl-
edge we have on patterns of buildings in urban areas and an “’ex-
ternal field” that makes the point process fit the data.

We then use a Metropolis Hastings Green sampler coupled with a
simulated annealing that gives the configuration of buildings min-
imizing the energy we have defined.

We present results on real data provided by the French Mapping
Institute (IGN).

1. INTRODUCTION

1.1. Building detection

Detecting buildings from aerial images and automatic reconstruc-
tion of urban scenes have become of deep interest in many appli-
cations : cartography, flight simulations, etc...

However, high density of urban areas and complexity of hu-
man made objects make it difficult to achieve, and automatic 3D
urban area cartography is still an open problem. Some work has
been done on this kind of task (see [2, 8, 9] for general overviews).
Part of it focus on buildings and especially on roof modeling (see [2]
to get a good overview of models and methods). Usually, these
works are restrained to sparse areas, with just a few buildings, and
the main goal is to describe complex buildings. The other part of
the works focus on building detection.

Herein, we are interested by this second objective. Several
methods and ideas have been proposed since a couple of years. A
lot of them are based on primitive detection on two or more views.
They rely mostly on line or corner detections and hypothesis test-
ing.

Other works rely on DEM ! construction using two or more
views given by aerial images (see [3], for instance). The main
idea is to detect buildings and to construct a DEM of the scene
simultaneously. This is mixed with steps that use geometric and
radiometric information to distinguish ground from buildings and
buildings from vegetation. Some tentatives have been made by
using only DEM (see [7] to have an example).
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1.2. Digital Elevation Models and Object representation

Our first goal is to refine DEMs. To achieve this, we have to use
geometrical constraints. We want to obtain a vector representation
of a dense urban area, for compression reasons, and because an
object representation is close from a semantic one. We also want
to be able to deal with low quality data. So we need to use a
prior knowledge on urban areas in order to complete the missing
information.

In [4], Garcin et al. use a point process approach to construct
an object representation of an urban area. Point processes give
an object-oriented approach allowing to deal with geometrical ob-
jects. Moreover it is possible to add interactions between points.
Thus, it is possible to model the prior knowledge we have on the
behavior of buildings in urban areas by viewing buildings as inter-
acting particles within the point process framework. This has led
us to use point processes to refine DEMs.

The data we use contains less information than radiometric
images which are used in some other works on the same topic.
However, DEMs differ only with respect to resolution and noise.
By using DEM, we avoid problems seen while using radiometric
information from images, since we do not need a lightening model
of the scene.

Finally, it is worth to point out that refining DEMs is also of
great interest in itself, since crude DEMs can be obtained not only
by using stereo vision on radiometric images, but also by SAR
interferometry or LASER measurement. In those cases, there is no
radiometric information.

2. AMODEL FOR URBAN AREAS

We have seen that the marked point process framework fits our ap-
plication well. Within this framework, an urban area is modeled
by a set of an unknown number of points, each point standing for
a building. We choose to model a building by a rectangular silhou-
ette, a cost function telling how relevant is a proposed silhouette
and a roof estimator that build a roof for a given relevant silhouette.

2.1. Silhouette model

We choose to model the silhouette of buildings by rectangles. Ob-
viously, rectangles can be described by elements of a 5 dimen-
sional space, using a center, a length, a width and an orientation.
The space is denoted by .S, made of a compact set where points live
K = [0, Xmaz] X [0, Ymaz| and the space of marks representing
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orientation, length and width of a rectangle. S = K x M =
K x [_%, %] X [LminaLmam] X [lmin,lmam]

More complex models could be used, like polygonal ones for
instance.

2.2. Cost function

The cost function is a mapping from the space of rectangles to R.

Assuming the Digital Elevation Model is defined on K we
note h the mapping from points of K to R describing the DEM.
For a point p, h(p) is the height in meters given by the DEM.

Given a set u = {u1,...,u,} of points of K, we note @ its
mean, that is :
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Fig. 1. Points used on a silhouette to compute the cost function
and roof estimation.

Having a rectangle, we build a mask of points as shown on
Figure 1. This mask of points is composed of 2 main areas. The
first one is made of four lines around the rectangle (g1, ..., g4)
that are used to compute a ground height estimate iLg. The second
one is the central area c , which is made of NV lines along the length
c1,...cn . Inorder to compute roof models, we make from these
N lines m couples of lines {l1,...,lm}:

N+1
m:( ;_ ), ViE{l,...,m} li:C.;UCN_H_i

These couples of lines are symmetric with respect to the length-
way axis of the rectangle and give us m means m; = [;.

For the ground estimate ng , we choose the lowest mean of the
sets of points g;. From the central area, we first define v € [0, 1]
being the volume rate :

_card{p€c s.t. (h(p)—hy) > hmin}
a card ¢

where hmir is a parameter of the model giving the minimal height
we want to allow for a detected building. We also define the ho-
mogeneity rate ¢ € [0, 1] being :
1 Z:Zm card{p€l; s.t. |h(p)—my| <o}

m 4 card I;
i=1

t =

where o is a parameter of the model related to homogeneity. We
add a surface rate s € [0, 1] being :

l* L

lmam * Lmam

Finally, we can define the cost function, obtained by trial and error,
as a weighted product of these several rates. For a rectangle R and
a DEM of height h(.), we define the cost function J as :

J(R,h) =s*t*xv°

This cost function has two intrinsic parameters : h;, Which is a
physical parameter, and o that has to be tuned.

2.3. Roof estimation

There are quite a lot of possible roof models. The one we choose
is simple and fits the cost function well : we model roofs with
lines along the length, using the estimates of the cost function
myg, ..., Mm. This shape is symmetric, since the (m;) stand for
the mean estimates on symmetric lines along the length axis.

3. ENERGY MODEL

3.1. Marked point process

Working on .S, we first consider a marked Poisson process on K
and S, with intensity measure (Ax X Pr)(.) where Ag(.) is the
Lebesgue measure on K and Pas(.) is a probability distribution on
M. We note p(.) the distribution of this Poisson process.

This process will be our reference process. We are going to de-
fine the distribution Px(.) of our point process of interest X using
the Radon-Nikodym derivative :

APX () = gnx)
230 =" 1)

Here, (3 is a scale factor. The usual way of defining densities of
point process is to write the density under its Gibbs form :

1 v
x={ui,.. . uno} wE€S  f(xX)= e UG
where U (x) is the energy of the set of particles x. The lower the
energy, the more probable the configuration. Therefore, the final

goal of our framework consists in first building an energy, then
finding configurations that minimize it.

3.2. Overlapping

We are dealing with points that represent the shape of a building.
We know that buildings do not overlap. That is why we introduce
in our model a soft core term, as used in [1] for instance.

Using a real parameter V;,:. called potential of intersec-
tion, we define the energy linked to overlapping by Uinter(x) =
Vinter * $(x), where s(x) is an integer counting the number of
pairs of rectangles that intersect in the configuration x . If Vi ter >
0, intersections are made repulsive since each new intersection in-
creases the energy of the system.

3.3. Data term

The aim here is to use the cost function described before and the
DEM in an energy term. This energy is given by Ugate(X) =
Zui €x Vd (”U,z)

The data term Vg should be quite smooth in order to ease the
optimization. Moreover, minima of V should be relevant houses
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on the DEM. This is ensured by the construction of the cost func-
tion. Using two positive real numbers a, b, we propose the follow-
ing function Vg living in [—a, b]:

Va(R,h) =4 b*x(— HBME) i (R, h) < vmin
’ —ax J(REY if (R, k) 2 vmin

for a given rectangle R € S and a height function A(.). This data
term has been obtained by trial and error and is quite robust. In
practice, we use the following parameters (see section 5) :

b = 0.05 — 15m

For a low volume rate (ie. less than v, ) the rectangle is repul-
sive. But the closer v is from vmix, the less repulsive it is (smooth
term in v2). Then, when the volume rate is large enough, the ho-
mogeneity rate and the surface rate are involved in the data term.
The surface rate makes bigger silhouettes be more valuable. The
only important parameters are vmin Since it gives the authorized
error, homin and o. a and b allow to bound the energy of an object.
This is important for mathematical reasons (see [11] for details.)

3.4. External Field, Internal Field and Temperature

The last step of the construction of the proposed model consists
in using interactions and the data term in one energy. We call
internal field the part of the energy related to the interactions (ie.
the prior), external field the energy related to the data term, and
temperature the coefficient 7" :

1
U(X) =5 (P-Udata + (1 - p)-Uinter) )

T p€[0,1]

where p is the smoothing factor that tunes how important the data
term is versus the internal field. This kind of weighting is very
common in image processing.

4. OPTIMIZATION

Once we have defined the model, the next step consists in defining
a procedure that allows us to find the configuration minimizing the
energy. Here, this energy is related to a density of a point process,
so the optimal configuration is the one that maximizes this density.
This has been done several times, especially in image processing
(see [1]). Usually, proposed algorithms are Monte-Carlo samplers
coupled with simulated annealing. We follow this idea.

4.1. Monte Carlo Sampler for Point Process

The basic idea of such a sampler has been developed and justified
by Geyer and Moller (see [5]), based on an extension of Hasting-
Metropolis algorithm to point processes. The heart of the algo-
rithm consists in birth or death of points.

However, this method produces a highly correlated Markov
chain. As shown in the literature, while working with MCMC?,
one has to be careful with the proposition kernel involved in the
sampler.

So, in order to improve the results, we use the work of Green
in [6]. The idea is to add other transformations to the proposition

2MCMC : Monte Carlo Markov Chain.

kernel and to have a mixture of kernels. The ‘birth or death’ trans-
formation has to remain, since it gives the mathematical properties
we need.

The transformations we add to the birth and death, are transla-
tion, rotation and dilation. See [11] for mathematical details.

4.2. Simulated annealing

Once a sampler has been defined, it is possible to optimize the
density, using simulated annealing. In the previous algorithm, we
replace the temperature 7" by a time depending temperature 7%.

In theory, if we use the above sampler and make simultane-
ously decrease the temperature 7% from 7;,;: to 0, (using a loga-
rithmic law), the chain converges in total variation to a Dirac mea-
sure, whose mass is equally distributed on the global minima of
U(.).

Of course, since this kind of decrease is slow, we have to use
in practice a geometric one and we loose the theoretical properties
of global optimization.

5. RESULTS

We present below a result obtained on a part of a DEM of the
city of Amiens (France). The resolution of this DEM is 20 cm
by 20 cm horizontally and 15 cm vertically. Here, small intersec-
tions are allowed, for 3D visualization reasons. The results pre-
sented here have been obtained in 40 minutes with a SUN-blade
2 (500 MHz, 250 MB). The image size is 1060 by 1024.

We can see that some small and low buildings are missing, be-
cause of the structure of the data which is too smooth when build-
ings are low. Figure 2 (c) shows the results of roof estimation
and the ground truth (d) provided by the French Mapping Institute
(IGN). This ground truth is precise but not complete since it was
built by hand using high resolution (8 cm) aerial images.

As shown by Figure 2, some buildings are missing, and details
of the shape of buildings are missed, due to the rectangular silhou-
ette model we have chosen. Figure 3 shows the data and the result
obtained by the proposed method in 3D.

6. CONCLUSION AND FUTURE WORKS

The method we propose actually gives an automatic way of ex-
tracting buildings from a dense urban area by using a crude DEM
as initial condition. The originality of this method can be appreci-
ated as follows. First, the object oriented approach we have cho-
sen gives an elegant way of adding geometric constraints during
the extraction. Second, the way of adding a prior knowledge as in-
teractions between buildings gives a nice framework to deal with
poor quality data.

Of course, this work can be improved by testing the algorithm
on more DEMs (optical, radar, laser etc...) and quantifying the
quality of the result, improving the algorithm to be faster and to
deal with larger areas, adding more complex models of buildings
and roofs...

Tests have been done (see [10]) with more complex prior mod-
els, using relations such as alignment or orthogonality between
buildings. Results are not improved with a more complex prior
model due to the optimization step. Simulated annealing looses its
efficiency if the energy exhibits too many local minima. There-
fore, one way to improve the proposed technique is to work on
a more efficient optimization algorithm. This will allow to refine
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(b) building extraction.

(d) ground truth (IGN)

(c) estimated roofs

Fig. 2. Experimental results.

the model and use more complex silhouettes and a bigger set of
possible roofs. This should be done in a near future.
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