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ABSTRACT

While the hidden Markov model (HMM) has been extensively ap-
plied to one-dimensional problems, the complexity of its extension
to two-dimensions grows exponentially with the data size and is in-
tractable in most cases of interest. In this paper, we introduce an
efficient algorithm for approximate decoding of 2-D HMMs, i.e.,
searching for the most likely state sequence. The basic idea is to
approximate a 2-D HMM with a Turbo-HMM (T-HMM), which
consists of horizontal and vertical 1-D HMMs that “communi-
cate”, and allow iterated decoding (ID) of rows and columns by
a modified version of the forward-backward algorithm. We derive
the approach and its re-estimation equations. We then compare
its performance to another algorithm designed for decoding 2-D
HMMs: the Path Constrained Variable State Viterbi (PCVSV) al-
gorithm [1]. Finally, we combine our approach with PCVSV and
show that the combination outperforms each algorithm taken sep-
arately.

1. INTRODUCTION

One dimensional HMMs have a long history of success in vari-
ous problem domains, perhaps most notably in speech recognition.
Their success is largely due to the development of computationally
efficient algorithms, namely, dynamic programming (Viterbi) and
Baum-Welch (see [2] for a tutorial). However, direct extension of
these techniques to 2-D HMMs suffers from exponential growth
in complexity (with data size) [3] and is hence intractable in most
applications of practical value.

Many approaches to solve the 2-D problem consist of approx-
imating the 2-D HMM with one or many 1-D HMMs. Perhaps
the simplest approach is to trace a 1-D scan that takes into ac-
count as much of the neighborhood relationship (or 2-D structure)
of the data as possible, e.g., the Hilbert-Peano scan [4]. Another
approach is the so-called pseudo 2-D HMM [3]. The assumption
is that there exists a set of “super” states which are Markovian and
which subsume a set of simple Markovian states. A recent exam-
ple of such an algorithm, the PCVSV algorithm [1], is particularly
relevant to this paper and will be briefly described in section 6.

The approach we pursue here is to first convert a 2-D HMM
into a Turbo-HMM (T-HMM): a set of inter-connected horizon-
tal and vertical 1-D HMMs that “communicate” through induc-
�
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ing prior probabilities on each other. A modified version of the
forward-backward algorithm, is performed successively on rows
and columns and the process is iterated until convergence. Similar
approaches have been proposed in the image processing commu-
nity, mainly in the context of image restoration [5] or page layout
analysis [6]. The term “turbo” was also used in [6] in reference to
the now celebrated turbo error-correcting codes. However, in [6]
the layout of the document is pre-formulated with two orthogonal
grammars and the problem is clearly separated into horizontal and
vertical components in distinction with the more challenging case
of general 2-D HMMs.

The next section specifies how to approximate a first order 2-
D HMM with a T-HMM. In section 3, we derive the re-estimation
equations. In section 4 we discuss potential convergence problems.
Section 5 elaborates on the horizontal and vertical separability as-
sumption. Section 6 briefly describes the PCVSV algorithm. We
then proceed to combine it with our approach so as to benefit from
their complementary nature. Experimental results are presented in
section 7 for performance evaluation.

2. APPROXIMATION OF THE LIKELIHOOD FUNCTION

We assume in the following that the reader is familiar with 1-
D HMMs (see e.g., [2]). Let ���
	���
�� �����������������������! "�
������������#%$ be the set of all observations. For convenience we also
introduce the notations ��&
 and ��'� for the i-th row and j-th col-
umn of observations, respectively. Similarly, (���	�)*
�� ����������������������+ ,�-���������.��#%$ denotes the set of all states, while )�&

and )/'� denote the i-th row and j-th column of states. Finally, let0

be the set of all model parameters, and let
0 &
 and

0 '� be the
respective rows and columns of parameters. We first approximate
the joint likelihood of � and ( given
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Note that the conditional probability
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duces to
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132 ) =9� = 4 076 if �5�B C�D� . We will assume from now on
that

132 ) 
;� � 4 ) 
;� ��<%= �E) 
;<%=9� � � 076 is separable, i.e. that it can be de-
composed into the product of horizontal and vertical components.
This approximation will allow us to run the forward-backward al-
gorithm on rows and columns. Hence:132 )@
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where G 2 ) 
�� ��<%= �9) 
;<%=9� � 6 is a normalization factor:G 2 )@
�� ��<%=@� ) 
;<%=9� � 6 � � � 2�������� 	%H & 2 )@
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In effect, the factors
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This approximation will be justified in section 5. Hereafter, we
will replace the notations

H & 2 )@
�� ���9)@
�� ��<%= 6 and
H ' 2 ) 
;� �/�9)@
�<�=9� � 6

with the more intuitive notations
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ing assumption. To avoid the complexity due to terms that depend
on states that are both on different rows and columns we assume
that G 2 )@
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�<�=9� � 6 is approximately constant (i.e. does not de-
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We approximate the conditional probability
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 6 by

modifying the condition:132 ) 
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which can be justified as follows:
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where � and
�

are the forward and backward variables used in the
forward-backward algorithm (see Table 1 for the list of notations).
So

132 )@
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 6 can be seen as a weighted average of the132 ) 
�� � 4 ) 
�� ��<�= � 0 &
 6 ’s. The weights depend on the probability of
the paths passing through )*
�� ��<�= and )@
�� � . Now we have:
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where each term
132 ��'� �E)�'� 4 0 '� 6 correspondsto a 1-D vertical HMM.

Note that � 
 132 )@
�� �F4 � &
 � 0 &
 6 is in effect a horizontal prior for col-
umn  and, hence, horizontal and vertical decoding “communi-
cate”. We assume that the quantity

132 )�
�� �F4 � &
 � 0 &
 6 is known, i.e.,
that it was obtained during the previous horizontal step.

3. THE MODIFIED FORWARD-BACKWARD
ITERATIONS

If we sum over all possible paths, we obtain the marginal:
132 �54 076 � ��� 132 �3��(54 076
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Table 1. HMM notation summary

Let us note
1 '� �-, 132 � '� �9) '� 4 0 '� 6 � 
 132 )@
�� �F4 � &
 � 0 &
 6�. .

1 '� ’s can
be computed with a modified version of the forward-backward al-
gorithm which we describe next after introducing one last notation:� &����� 	 2 �/
�� � 6 �0/ � ����� 	 2 � 
;� � 6 if  � �� ���#� 	 2 �/
�� � 6 ' &
�� � 2 )@
�� � 6 if  21 �
3.1. The Forward � Variables3 Initialization: 4 � � � 	�5#6 � � 	87)9;:=<?> � �!�8@ > � �!� 5BA ���!� 7 if C 9ED@8F> � � 	 5BA ��� 	�7 if CHG D3 Recursion:

4 � �!I�� � 	 5#6 �!I�� � 	87J9 KL�M> �#� 	 4 � ��� 	 5�6 �#� 	N7�O �> ��� 	 � > � IP��� 	RQS @ F> � IP��� 	 5BA � IP��� 	�7
3 Termination: T �	 9VU > W � 	 4 �W � 	 5#6 W � 	 7

3.2. The Backward
�

Variables3 Initialization: X �W � 	 9ED3 Recursion:X � �#� 	 5�6 �#� 	 7Y9 M> �!I�� � 	 O �> �#� 	 � > � IP��� 	 @ F> � IP��� 	 5BA � I�� � 	 7 X � � IP��� 	 5#6 � IP��� 	 7
3.3. Occupancy Probability '

Z ��#� 	[5�6 �#� 	 7�9 4 � �#� 	�5�6 �#� 	 7 X � �#� 	�5#6 ��� 	 7U > ��� 	 4 � �#� 	 5#6 �#� 	 7 X ���� 	 5#6 �#� 	 7
Similar formulae can be derived for the horizontal pass. It is

worthwhile to note that our re-estimation equations are similar to
the ones derived for the page layout problem in [6] based on the
graphical model formalism. Also, we can see that the interaction
between horizontal and vertical processing, which is based on the
occupancy probability ' , is not as simple as the one used in [5].

Let us next consider the steps of the algorithm. We first ini-
tialize ' ’s uniformly (i.e. assuming no prior information). Then,
the modified forward-backward algorithm is applied successively
and iteratively on the rows and columns. Whether the iterative pro-
cess is initialized with row or column operation may theoretically
impact the performance. However, this choice had a very limited
impact in our experiments and we always started with a horizontal
pass. This algorithm is clearly linear in the size of the data and can
be further accelerated with a parallel implementation, simply by
running the modified forward-backward for each row or column
on a different processor.
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Our goal in this paper is to perform decoding. Both [5] and [6]
used the following heuristic: they chose the most likely state for
every observation. Although this is known to be suboptimal when
one is concerned with the probability of occurrence of sequences
of states [2], we tested this heuristic since it gave acceptable re-
sults. We also tried another approach which combines our itera-
tive decoding (ID) and PCVSV (see section 6) and which proved
to perform better for our task.

4. A MEASURE OF CONVERGENCE

Although we cannot guarantee that the ID algorithm converges, i.e.
that the horizontal and vertical passes will “agree” in a well defined
sense, we can define and employ a measure of convergence. The
divergence or Kullback Leibler distance between two probability
mass functions � and ) is defined as [7]:

�52 � �E) 6 � ��� � 2��86��	��
 � 2��86) 2��76 �
Let ' & (resp. ' ' ) be the joint distributions of the ' &
�� � 2��76 ’s (resp.' '
�� � 2��86 ’s).

� 2 ' & � ' ' 6 is a measure of how well the horizontal
and vertical decodings agree over the entire image. If we further
assume independence of ' &
�� � 2��76 ’s and similarly of ' '
�� � 2��76 ’s, then� 2 ' & � ' ' 6 � � 
�� � � 2 ' &
�� � � ' '
�� � 6
The measure of convergence is useful as a stopping criterion. After
the k-th pass of ID, we compute

�
� ��� 2 ' & � ' ' 6 and stop iterating
if
� � ��� � � � � <%= � falls below a pre-defined threshold � . Gener-

ally, only two to three iterations were necessary to converge in our
experiments.

5. OPTIMAL SEPARABILITY

In section 2 we approximated
132 ) 
�� � 4 ) 
�� ��<�= �9) 
�<�=9� � � 076 by the prod-

uct of horizontal
H & 2 ) 
�� � �9) 
;� ��<�= 6 and vertical

H ' 2 ) 
�� � �E) 
;<%=9� � 6 fac-
tors. Here we derive equations for the optimal horizontal and ver-
tical components. We then show that, if

H & 2 ) 
;� � �9) 
�� ��<�= 6 ’s andH ' 2 ) 
�� � �9) 
;<%=9� � 6 ’s are optimal, then they effectively approximate132 )@
�� ��4 )@
�� ��<�=@� 076 and
132 )@
�� ��4 )@
;<%=9� �/� 076 , respectively.

Let us first consider the problem generally. Consider a con-
ditional distribution � 
�� � � where

� 
 � 
�� � � � ����� 2  *� �76 . We want
to approximate � 
�� � � into the product " 
 � � 
 � , where " 
 � and

� 
 �
are non negative and satisfy the requirement:

� 
 " 
 � � �*���F and� 
 � 
 � � �*��� � . A positive normalization factor �7� � is needed to
ensure:

� 
 � � � " 
 � � 
 � � ����� 2  �� �86 . Since for all
2  �� �76 , both � 
�� � �

and � � � " 
 � � 
 � are probability distributions, we can define the di-
vergence between them:
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 � 
�� � � �	��
�� � 
�� � ���� � " 
 � � 
 ���
Our goal is to minimize

� ��� � � � � subject to the above constraints.
We hence minimize the Lagrangian:� � � ��� � � � � ( � � 0 � 2 � 
 " 
 � � � 6�( � ��� � 2 � 
 � 
 � � � 6

We obtain the following formulae: !� " 
 � �#"%$ " 
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�� � �� 
�� � � 
�� � � � 2 �!�! 6 !� � 
 � �#"%$ � 
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Since index  and

�
run from 1 to # and ' , respectively, we can

simplify the formulae for " 
 � and
� 
 � :

" 
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 � �
� � � 
�� � �

#
Now to interpret the result we observe that in general � 
�� � �� � � 
�� � � � �(� � . If we further assume that � �)� � is maximally non-

informative, i.e., uniformly distributed then we obtain

� 
�� � � � � � 
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# �

which is exactly the formula we derived for
� 
 � above. A similar

observation can be made regarding " 
 � .
Next we specialize to the problem of interest, hence, � 
�� � � is

replaced with
132 ) 
�� � 4 ) 
�� ��<%= �9) 
�<�=9� � � 076 , " 
 � with

H & 2 ) 
�� � �E) 
;� ��<%= 6
and

� 
 � with
H ' 2 )@
�� �/�E)@
;<%=9� � 6 . So, when

H & 2 )@
�� �/�E)@
;� ��<%= 6 ’s (resp.H ' 2 ) 
;� �/�9)@
�<�=9� � 6 ’s) are chosen optimally, they approximate132 )@
�� ��4 )@
�� ��<�=@� 0 &
 6 ’s (resp.
132 )�
�� �F4 )@
�<�=9� �/� 0 '� 6 ’s) assuming no prior

information on
132 )�
�<�=9� �F4 ) 
;� ��<�=@� 086 (resp.

132 )@
;� ��<%=�4 )@
�<�=9� �/� 076 ).

6. PATH-CONSTRAINED VARIABLE STATE VITERBI

In this section, we will first introduce the PCVSV algorithm and
then show how to combine it in a simple manner with our proposed
algorithm to exploit their complementary contributions.

6.1. The PCVSV algorithm

We recall that )�&
 is the sequence of states on the i-th row. )�&
 ’s
can be seen as states of a 1-D HMM. However, this 1-D HMM
has such a huge number of states that the direct application of the
Viterbi algorithm is often unpractical. The central idea in PCVSV
is to consider only the * sequenceswith the largest posterior prob-
abilities (hence the name “Path Constrained Variable State Viterbi”
algorithm). A fast algorithm is designed to avoid the calculation
of posterior probabilities for all state sequences. It separates the
blocks on a row from other blocks by neglecting their statistical
dependencies. So the selection of * near optimal nodes for row �
consists simply of identifying * state sequences with the largest� � �	��
 � ���#� 	 2 � 
�� � 6 .

Columns or diagonals could also be chosen instead of rows. In
[1], diagonals are chosen since blocks on diagonals are more ge-
ometrically distant than blocks on rows or columns and are there-
fore expected to exhibit less correlation. In the following, PCVSV-
H (resp. PCVSV-D) will be the notation for the horizontal (resp.
diagonal) variant of the PCVSV algorithm.
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6.2. A Combined Technique

PCVSV is guaranteed to converge to an at least local maximum-
likelihood solution for sufficiently large * , the number of prese-
lected paths. However, one may have to choose a very large value* to find an optimal path and hence defeat the purpose of the
method. Indeed, the preselection of paths is inefficient since we
only take into account local information. On the other hand, the
computation of ' ’s during the iterative decoding takes into account
both local and context information but the selection of the best path
is admittedly suboptimal.

Hence the idea is to combine both approaches. The preselec-
tion of * nodes for PCVSV is based on the ' ’s computed during
the iterated forward-backward. During the preselection, we will
look for the * state sequences with the largest

� � �	��
 ' 
;� � 2 ) 
�� � 6 .
As we will see in the next section, this combined approach pro-
vides significant performance improvement over the individual ap-
plication of the proposed approach or PCVSV.

7. EXPERIMENTAL RESULTS

7.1. The Database

We use 40 images from the ORL face database [8] and we gener-
ate synthetic images using a 2-D HMM (c.f. Fig. 1). The original
ORL images are tiled into blocks which can undergo two types of
transformations: Gaussian noise addition and small shifts. The pa-
rameters of the Gaussian noise (mean and variance) are determined
by the emission probabilities of the 2-D HMM and the shifts by the
transition probabilities. For each original image, we generate 25
images, which results in a total of 1,000 synthetic images.

            ��������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

2-D HMM

            ��������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

Fig. 1. Transformation of a face through a 2-D HMM

7.2. Results

The goal is to find the best possible match between the blocks
of a synthetic image and its associated ORL image knowing the
2-D HMM parameters. The performance measure is the difference
between the log-likelihood of the path ( that generated the syn-
thetic data and the log-likelihood of the best path that is found.
The larger this quantity, the closer is the match to the maximum-
likelihood solution. This quantity may even exceed zero if the
algorithm finds a path that “explains” the data better than ( . This
score was plotted on Fig. 2 as a function of the computation time
to match two images. For ID and PCVSV, the maximum number
of iterations or the number * of preselected paths are indicated.

We can see that PCVSV-H is outperformed by both PCVSV-D
(as expected) and ID, and that PCVSV-D performs slightly better
than ID. This is due to the suboptimal choice for the best path in
ID. However, when PCVSV-D is initialized with ID, the perfor-
mance is significantly better than each algorithm taken separately,
at the expense of a very modest amount of additional computation.
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Fig. 2. Performance of ID, PCVSV-H, PCVSV-D and ID +
PCVSV-D

8. CONCLUSION

We introduced in this paper a novel algorithm for decoding 2-D
HMMs. The idea is to approximate a 2-D HMM by a T-HMM and
to perform the forward-backward algorithm alternatively and iter-
atively on rows and columns. We derived re-estimation equations
and discussed convergence and separability issues. We compared
the performance of the proposed approach with the PCVSV algo-
rithm and combined them into a new algorithm that outperforms
each of the individual techniques.

While this paper focused on decoding, future work will con-
centrate on the problem of training 2-D HMMs based on the same
principles.
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