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ABSTRACT However, they have a drawback: the next scan cannot begin

A large variety of methods based on Partial Differential Equa-before the previous one ends. Therefore, the scanning-based

tions (PDE) use the interface propagation. For their flex- meth-ods are optmal pnly fOT those_ applications Where the
I : . solution on the entire image is required. Moreover, it is not
ibility these methods are being more and more applied to

. . ) . : simple (or even possible) to calculate the influence zones
various problems ranging from physics, fluid mechanics to . . . S
C : coming from different sources. The algorithms operating in
control theory and computer vision. The solution of the

PDE-based interface evolution is in itself a complex itera- the narrowband are more appropriate for the p_ro_pagatlon of
. . ) . . labels. On the other hand, they rely in sophisticated data
tive computational task involving a great number of itera-

tions (unknown a priori). Therefore, these applications are structures. Their implementation is more complex and it is

. : T even more difficult to conceive a specific hardware.
very demanding on the hardware and their real-time imple- )
T . o The paper proposes a new parallel algorithm called Mas-
mentation is still a challenging problem. An efficientimple-

: : e . sive Marching, close by its straightforwardness to the scan-
mentation could be done by using a specific parallel archi- . : ; i
ning-based algorithms, but derived from methods working
tecture. . . . i
. - . in the narrowband with all their advantages. Section 3 pre-
This paper proposes an original, entirely parallel algo- sents the principles of Massive Marching, followed by the
rithm to solve the Eikonal equation. Which is the base of P P 9, y

applications using a weighted distance function. This algo- discussion of the error and the complexity. Section 4 gives

rithm alllows the parallel implementation of active contours some examples of applications of the algorithm.

methods or continuous watershed on a specific hardware.
2. DEFINITIONS

1. INTRODUCTION The initial condition to solve Eq. (1) is the curdg placed
in a continuous space. This curve is represented implicitly

Recently, the image processing methods based on partiaby the (discrete) distance to Cy [1]. g is therefore the
differential equations have gotten an ever increasing atten-zero-level set of the functioa.
t?on. The application domains .includ('e segmer}tation by ac- Co = {(%y) € R2ju(z,y) = 0} @)
tive contours, shape from shading, object tracking and short- _
est path computation. [1]. The formulation of a large num- Given the curvey, we want to findu. _ _
ber of operators, using the description of interface evolution, ~ 1hroughout this paper we use the following notations.

leads to the Eikonal equation: Letp = [z,,y,] be a point of an isotropic, rectangular and
unitary grid. P denotes the set of all points in an image.
|VulF =1 (1) V(p) denotes the neighborhood pfdefined asV (p) =

{lzp, yp £ 1], [xp £ Lyp|}. The pointg is a neighbor of

In the context of the methods referenced above, the equay if ¢ € V(p). u(p) denotes the value of the distance func-
tion (1), has often to be solved repetitively. Furthermore, tion in p. To obtainu given the initial condition, we assume
this calculus represents only a support for other application-that the value of distance in point p is a function of its
specific computation. For this reason, it has to be done effi-neighborhood :
ciently. . 4 ] _

Current algorithms used to solve this equation are from wp) = tmin(p) + fait(luz (p) = uy(P)], F(P)) - (3)
the implementation aspect optimal only for a particular type Whereu,(p), uy(p) andunm, (p) are defined as :
of applications.. Two types of glgorithms exist: the ones pro- U (p) = min {u([z, + 1,3)), u(fzp, — 1,3]))}  (4)
ceed by scanning the entire image [2], the others propagate wy(p) = min {u([z 1)), ulfz 1)y 5)
a narrow-band solution from the source [1], [3]. The algo- v\P _ P Y ’ P Y
rithms using multiple scannings are simple to implement. ~ %min(p) = min {u.(p), uy(p)} (6)

)
)
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and F(p) is some weight. Suppose thats is increasing
and strictly positive with respect ta,, — u,|. The formula-
tion of f4i depends on the choice of the numerical scheme.

3. MASSIVE MARCHING

3.1. Algorithm

The algorithm consists in two stages: initialization and pro-
pagation. During the initialization stage, the values of the
neighbors of’y are obtained by some interpolation method.

Fig. 1. The front of propagation (dashed lines) and the con-
tours (solid lines) of the distance after five iterations. The
source is placed a,.

The choice of the interpolation depends on the requirements
of the application. One can use either a constant value either

a bilinear or a more sophisticated interpolation method al-
lowing to detect more or less complicated forms (for exam-

by using the values obtained &f.,. The two-step com-
putation allows to process in parallel the values of adjacent

ples see [4], [5]). The second stage consists in propagating?0ints (each one depending on the other). (The values of

the distance from the curve.

Let .4 be the set of points initialized by the interpolation.
Let Q be the set of points marked as act®e= {q; | ¢; &
AandV(g;) N A # 0}. The algorithm reads as follows:

Initialization

e Initialize the neighborhood of the curve with a signed
distance (set)

e Initialize the distance value of the other points teo

e Mark the neighbors afd asactive(setQ)
Propagation

while Q # {}, do in parallel for alp € Q:

{

e Jacobi step:
u" M (p) = i (p)+
min{ fairr (|uz (p)—uyy (p).F(p)) » F(p)}
e Gauss-Seidel step:
u" M (p) = ety (p)+
II’liIl{fdiff(|UZ+1

)

8
(p)—uy ™ (D). F(p)), Fp)} ©

e Activation of new points to process:
* deletep from Q, insertp in A
x if u(p) < NByigth then for allg;, ¢; € V(p) such
thatu™** (¢;)—u"* (p)>e(a)
insertg; — Q

©)
}

where NByigi is the desired width of the narrow band
At each iteration, the value is calculated for thetive

points. The calculation is done in two steps named after

their Markov properties, as introduced in [6]. The first one,
theJacobi stepcalculates the value of the distance function
att, 1 given the values obtained gt. The second one, the
Gauss-Seidel stepecalculates the distance valuetat ;

1To obtainu on the entire image let Ny = oo

unprocessed points it), are automatically carried over to
the next iteration and are noted as values,at .)

The algorithm does not use any sorted waiting list. Con-
sequently, the front of the propagation is not equidistant to
the initialization curve, see Figure 1. Two situations ex-
ist where the points that are currently being calculated will
have to be reactivated later:

1. The value of the point is calculated on an incomplete
neighborhood.

2. The points are activated by a propagation front com-
ing from a source which is not necessarily the closest
one.

These two issues are treated by the activation rule.

3.2. Activation rule

The activation rule (9) is derived from the analysis of the
numerical scheme. Suppose thdp) has just been calcu-
lated. For a given pixep, every neighbor verifying (9) is
activated in the next iteration whileitself is desactivated.
To know whether a neighbay; of p should be activated to
compute its value(q; ), we search for an estimator @fg; ).

From Eq. (3),fair(p) is the difference between the dis-
tance value:(p) of a given poinip and the least of the neigh-
bors umin(p). Suppose thap is the least neighbor of;.
Theng; receives in the next iteration its value frgm The
valueu(q;) will satisfy u(g;) > u(p) + inf fqix.

SupposeF (p) is an arbitrary but time invariant function
then the lower boundk i, of fgyir reads

Kmin(p) = inf faitt(Juz(p) — uy(p)|, F(p)) =
= fairr(0, F(p))

Knin is a predictor of the least increment ofin one it-
eration according to (9). All neighborg of p such that
u(qi) — u(p) > Kmin(g;) should therefore be (re-)activa-
ted and (re-)calculated since the new valiig) may affect

(10)
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u(g;) in the next iteration. Hence,must satisfy:

5(17) > Kmin(p) >0

Settinge < Kmin is useless because it would authorize the
activation of points that will not be updated [7]. By set-
ting e > Kmin one can authorize fewer reactivations (lower
execution time) at the price of some error (proportional to
e—Kmin) in the result.

(11)

Kmin depends on the numerical scheme. The most often

place may appear in some special cases (as corners etc.),
see [7]. The experiments have shown that the two-step cal-
culation gives sufficient accuracy for most practical appli-
cations. Should more accurate results be required then the
Gauss-Seidel step can be repeated.

The Massive Marching does not suffer from the direc-
tional bias induced by the direction of scanning of the neigh-
borhood as Fast Marching.

used one is, in the domain of the Level Set, the Godunov3 4. Calculation complexity

scheme [1]:

[max {u(p) — u([z, = 1,5,]), 0}~

1 12
max {u(p) —u([xp,yp:tl]),O}Q]2 ! (12)

- F(p)

In order to obtain the maximum values of the terms in Eq.
(12) we need to consider the neighbors with minimum val-
ues ofu and only the neighbors with lower thanu(p). The

Godunov scheme requires to determine the maximal solu-

tion of a quadratic equation. Then the functifyy in Eq.
(3) reads as

w0 F®)? (a(p)=uy (0))?
Jaitt = 5 Y +\/ 5 —< 5 ) (13)
Kmin(p) =/ 72" (1)
whereF(p) = ﬁ. From Eq. (L)F(p) > 0.

Note thates is a constant whenevér is constant in (1)
and becomes a function @ wheneverF' varies over the
image.

3.3. Estimation of the error

In order to obtain the most accurate solution of (1), all the
methods referenced in the introduction allow the points in

To estimate the execution time, we outline the calculation
complexity of the algorithm.

Upon the initialization, the algorithm calculates by in-
terpolation the values of the points-neighbors of the ob-
ject(s). The complexity is of>(n) wheren is the number
of initialized points.

During the propagation, for every active point the calcu-
lation is performed twice, with a constant calculation com-
plexity. Henceafter, the point desactivates itself while acti-
vating some of its neighbors. (A point is activated by one
of its neighbors whenever the condition (9) is satisfied.) For
the sequential implementation of the algorithm, one needs
only some FIFO-like data structure to memorize all active
points. The complexity of accessing to a FIFO-like struc-
ture is constant for both reading and writing.

The overall complexity of Massive Marching is 6fn)
with n being the number of points. Since some points are
recalculated because the propagation front is not equidistant
to the initial curveCy, the number of points can exceed
the number of points in the image. The execution time is
proportional to the computation complexity.

Massive Marching is conceived as parallel. In the case
of a fully parallel execution, all operations the currently ac-
tive points, are performed simultaneously. The execution
time is constant for every iteration. The number of itera-
tions is proportional to the maximal distance found in the

the image to be recalculated several times. The scanning-
based methods recalculate during each scan all the pointémage'
in the image. Scans have to be repeated unless the conver-
gency. Methods for the narrow band use a variable num-
ber of recalculations, implemented by using a sorted heap,
depending locally on the neighborhood of every particular As mentioned in section 1, various types of problems are
point. The number of recalculations is between one andequivalent to finding the solution of the Eikonal equation
three. At every recalculation the point receives a new value (1). In order to prove the validity of the algorithm, sev-
of the distance according to the new values of the neighbors.eral application examples, solved by Massive Marching, are
However, every recalculation does not necessarily result ingiven in this section.
a lower value. Hence some recalculations are useless. Also  The first example is the computation of the Vorono tes-
Massive Marching authorizes the points to be reactivatedselation for a given set of points in a 2D euclidian space. In
and recalculated later. this case, we considef(p) = 1 for Vp € P (see Figure 2).
Massive Marching being a parallel algorithm calculates Note that if needed, the propagation of labels can be done
simultaneously the values of adjacent points, i.e. values desimultaneously with the propagation of the distance. The
pending each on the others. Therefore the calculation is per+esult achieved by Massive Marching is compared to the re-
formed in two steps. An additive error at the fourth decimal sult of Fast Marching [1], which is the one of the most fre-

4. APPLICATIONS
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guently used algorithms, based on heap-sorting. The slighterate the computation of the distance function in applica-
difference of the results is due to i)a directional bias of the
Fast Marching induced by the direction of the neighborhood
scanning and ii)an approximation error of Massive March-

ing.

(a) Massive Marching (b) Fast Marching

Fig. 2. The Vorono tessellation obtained by Massive March-
ing, compared to Fast Marching

By letting 7 = I, wherel(p) is a field of strictly pos-
itive values, one can obtain a solution which is a weighted

distance function. See the contours of a distance weighted
by the input image given by Fig. 3(a). This approach is used

in such applications as shape from shading or search of th
shortest path. If the distance is computed from a given se
of markers, the solution is equivalent to a continuous imple-

tions of segmentation by active contours. Here, the distance
is computed repetitively on a narrow neighborhood of the
curve, and therefore needs to be very fast. Massive March-
ing does not use any sorted waiting lists and allows to obtain
the distance in a narrow band.

Its implementation on sequential computers is also very
simple. The Massive Marching can be used to compute the
distance in a narrow band as well as on the entire image.
It supports simultaneous evolution of more curves and the
propagation of markers can be done during propagation of
the distance. Therefore, it also can yield the watershed or
Vorono tessellation.

In such applications where the distance function is smo-
oth and only a few pixels need to be recalculated, the com-
plexity of Massive Marching is close t®(n). Massive
Marching outperforms other algorithms, which are penali-
zed by the access to the sorted heap.
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