
A PARALLEL ALGORITHM FOR SOLVING THE EIKONAL EQUATION

Eva Dejnǒzkov́a and Petr Dokĺadal

School of Mines of Paris, Center of Mathematical Morphology, 35, Rue Saint Honoré,
77 300 Fontainebleau, FRANCE, e-mail:{dejnozke,dokladal}@cmm.ensmp.fr

ABSTRACT

A large variety of methods based on Partial Differential Equa-
tions (PDE) use the interface propagation. For their flex-
ibility these methods are being more and more applied to
various problems ranging from physics, fluid mechanics to
control theory and computer vision. The solution of the
PDE-based interface evolution is in itself a complex itera-
tive computational task involving a great number of itera-
tions (unknown a priori). Therefore, these applications are
very demanding on the hardware and their real-time imple-
mentation is still a challenging problem. An efficient imple-
mentation could be done by using a specific parallel archi-
tecture.

This paper proposes an original, entirely parallel algo-
rithm to solve the Eikonal equation. Which is the base of
applications using a weighted distance function. This algo-
rithm alllows the parallel implementation of active contours
methods or continuous watershed on a specific hardware.

1. INTRODUCTION

Recently, the image processing methods based on partial
differential equations have gotten an ever increasing atten-
tion. The application domains include segmentation by ac-
tive contours, shape from shading, object tracking and short-
est path computation. [1]. The formulation of a large num-
ber of operators, using the description of interface evolution,
leads to the Eikonal equation:

|∇u|F = 1 (1)

In the context of the methods referenced above, the equa-
tion (1), has often to be solved repetitively. Furthermore,
this calculus represents only a support for other application-
specific computation. For this reason, it has to be done effi-
ciently.

Current algorithms used to solve this equation are from
the implementation aspect optimal only for a particular type
of applications. Two types of algorithms exist: the ones pro-
ceed by scanning the entire image [2], the others propagate
a narrow-band solution from the source [1], [3]. The algo-
rithms using multiple scannings are simple to implement.

However, they have a drawback: the next scan cannot begin
before the previous one ends. Therefore, the scanning-based
methods are optimal only for those applications where the
solution on the entire image is required. Moreover, it is not
simple (or even possible) to calculate the influence zones
coming from different sources. The algorithms operating in
the narrowband are more appropriate for the propagation of
labels. On the other hand, they rely in sophisticated data
structures. Their implementation is more complex and it is
even more difficult to conceive a specific hardware.

The paper proposes a new parallel algorithm called Mas-
sive Marching, close by its straightforwardness to the scan-
ning-based algorithms, but derived from methods working
in the narrowband with all their advantages. Section 3 pre-
sents the principles of Massive Marching, followed by the
discussion of the error and the complexity. Section 4 gives
some examples of applications of the algorithm.

2. DEFINITIONS

The initial condition to solve Eq. (1) is the curveC0 placed
in a continuous space. This curve is represented implicitly
by the (discrete) distanceu to C0 [1]. C0 is therefore the
zero-level set of the functionu.

C0 =
{
(x, y) ∈ R2|u(x, y) = 0

}
(2)

Given the curveC0, we want to findu.
Throughout this paper we use the following notations.

Let p = [xp, yp] be a point of an isotropic, rectangular and
unitary grid. P denotes the set of all points in an image.
V (p) denotes the neighborhood ofp defined asV (p) =
{[xp, yp ± 1], [xp ± 1,yp]}. The pointq is a neighbor of
p if q ∈ V (p). u(p) denotes the value of the distance func-
tion in p. To obtainu given the initial condition, we assume
that the value of distanceu in point p is a function of its
neighborhood :

u(p) = umin(p) + fdiff(|ux(p)− uy(p)|,F(p)) (3)

whereux(p), uy(p) andumin(p) are defined as :

ux(p) = min {u([xp + 1, yp]), u([xp − 1, yp])} (4)

uy(p) = min {u([xp, yp + 1]), u([xp, yp − 1])} (5)

umin(p) = min {ux(p), uy(p)} (6)

III - 3250-7803-7663-3/03/$17.00 ©2003 IEEE ICASSP 2003

➠ ➡

andF(p) is some weight. Suppose thatfdiff is increasing
and strictly positive with respect to|ux−uy|. The formula-
tion of fdiff depends on the choice of the numerical scheme.

3. MASSIVE MARCHING

3.1. Algorithm

The algorithm consists in two stages: initialization and pro-
pagation. During the initialization stage, the values of the
neighbors ofC0 are obtained by some interpolation method.
The choice of the interpolation depends on the requirements
of the application. One can use either a constant value either
a bilinear or a more sophisticated interpolation method al-
lowing to detect more or less complicated forms (for exam-
ples see [4], [5]). The second stage consists in propagating
the distance from the curve.

LetA be the set of points initialized by the interpolation.
LetQ be the set of points marked as activeQ = {qi | qi 6∈
A andV (qi) ∩ A 6= ∅}. The algorithm reads as follows:

Initialization
• Initialize the neighborhood of the curve with a signed

distance (setA)
• Initialize the distance valueu of the other points to∞
• Mark the neighbors ofA asactive(setQ)

Propagation
whileQ 6= {}, do in parallel for allp ∈ Q:
{
• Jacobi step:

un+1(p) = un
min(p)+

min
{
fdiff

(|un
x(p)−un

y (p)|,F(p)
)
, F(p)

} (7)

• Gauss-Seidel step:

un+1(p) = un+1
min(p)+

min
{
fdiff

(|un+1
x (p)−un+1

y (p)|,F(p)
)
, F(p)

} (8)

• Activation of new points to process:
? deletep fromQ, insertp in A
? if u(p) < NBwidth then for allqi, qi ∈ V (p) such

thatun+1(qi)−un+1(p)>ε(qi) (9)

insertqi → Q
}

where NBwidth is the desired width of the narrow band1.
At each iteration, the value is calculated for theactive

points. The calculation is done in two steps named after
their Markov properties, as introduced in [6]. The first one,
theJacobi step, calculates the value of the distance function
at tn+1 given the values obtained attn. The second one, the
Gauss-Seidel step, recalculates the distance value attn+1

1To obtainu on the entire image let NBwidth = ∞

S

5
4

1
2

O

3

C
Fig. 1. The front of propagation (dashed lines) and the con-
tours (solid lines) of the distance after five iterations. The
source is placed atC0.

by using the values obtained attn+1. The two-step com-
putation allows to process in parallel the values of adjacent
points (each one depending on the other). (The values of
unprocessed points intn are automatically carried over to
the next iteration and are noted as values attn+1.)

The algorithm does not use any sorted waiting list. Con-
sequently, the front of the propagation is not equidistant to
the initialization curve, see Figure 1. Two situations ex-
ist where the points that are currently being calculated will
have to be reactivated later:

1. The value of the point is calculated on an incomplete
neighborhood.

2. The points are activated by a propagation front com-
ing from a source which is not necessarily the closest
one.

These two issues are treated by the activation rule.

3.2. Activation rule

The activation rule (9) is derived from the analysis of the
numerical scheme. Suppose thatu(p) has just been calcu-
lated. For a given pixelp, every neighbor verifying (9) is
activated in the next iteration whilep itself is desactivated.
To know whether a neighborqi of p should be activated to
compute its valueu(qi), we search for an estimator ofu(qi).

From Eq. (3),fdiff(p) is the difference between the dis-
tance valueu(p) of a given pointp and the least of the neigh-
bors umin(p). Suppose thatp is the least neighbor ofqi.
Thenqi receives in the next iteration its value fromp. The
valueu(qi) will satisfy u(qi) ≥ u(p) + inf fdiff.

SupposeF(p) is an arbitrary but time invariant function
then the lower boundKmin of fdiff reads

Kmin(p) = inf fdiff(|ux(p)− uy(p)|,F(p)) =
= fdiff(0,F(p))

(10)

Kmin is a predictor of the least increment ofu in one it-
eration according to (9). All neighborsqi of p such that
u(qi) − u(p) > Kmin(qi) should therefore be (re-)activa-
ted and (re-)calculated since the new valueu(p) may affect

III - 326

➡ ➡

u(qi) in the next iteration. Hence,ε must satisfy:

ε(p) ≥ Kmin(p) > 0 (11)

Settingε < Kmin is useless because it would authorize the
activation of points that will not be updated [7]. By set-
ting ε > Kmin one can authorize fewer reactivations (lower
execution time) at the price of some error (proportional to
ε−Kmin) in the result.

Kmin depends on the numerical scheme. The most often
used one is, in the domain of the Level Set, the Godunov
scheme [1]:

[
max {u(p)− u ([xp ± 1, yp]) , 0}2−

max {u(p)− u ([xp, yp ± 1]) , 0}2]
1
2 =

1
F (p)

(12)

In order to obtain the maximum values of the terms in Eq.
(12) we need to consider the neighbors with minimum val-
ues ofu and only the neighbors withu lower thanu(p). The
Godunov scheme requires to determine the maximal solu-
tion of a quadratic equation. Then the functionfdiff in Eq.
(3) reads as

fdiff =
|ux(p)−uy(p)|

2
+

√
F(p)2

2
−

(
ux(p)−uy(p)

2

)2

(13)

K min(p) =

√
F(p)2

2
(14)

whereF(p) = 1
F (p) . From Eq. (1)F(p) > 0.

Note thatε is a constant wheneverF is constant in (1)
and becomes a function ofF wheneverF varies over the
image.

3.3. Estimation of the error

In order to obtain the most accurate solution of (1), all the
methods referenced in the introduction allow the points in
the image to be recalculated several times. The scanning-
based methods recalculate during each scan all the points
in the image. Scans have to be repeated unless the conver-
gency. Methods for the narrow band use a variable num-
ber of recalculations, implemented by using a sorted heap,
depending locally on the neighborhood of every particular
point. The number of recalculations is between one and
three. At every recalculation the point receives a new value
of the distance according to the new values of the neighbors.
However, every recalculation does not necessarily result in
a lower value. Hence some recalculations are useless. Also
Massive Marching authorizes the points to be reactivated
and recalculated later.

Massive Marching being a parallel algorithm calculates
simultaneously the values of adjacent points, i.e. values de-
pending each on the others. Therefore the calculation is per-
formed in two steps. An additive error at the fourth decimal

place may appear in some special cases (as corners etc.),
see [7]. The experiments have shown that the two-step cal-
culation gives sufficient accuracy for most practical appli-
cations. Should more accurate results be required then the
Gauss-Seidel step can be repeated.

The Massive Marching does not suffer from the direc-
tional bias induced by the direction of scanning of the neigh-
borhood as Fast Marching.

3.4. Calculation complexity

To estimate the execution time, we outline the calculation
complexity of the algorithm.

Upon the initialization, the algorithm calculates by in-
terpolation the values of the points-neighbors of the ob-
ject(s). The complexity is ofO(n) wheren is the number
of initialized points.

During the propagation, for every active point the calcu-
lation is performed twice, with a constant calculation com-
plexity. Henceafter, the point desactivates itself while acti-
vating some of its neighbors. (A point is activated by one
of its neighbors whenever the condition (9) is satisfied.) For
the sequential implementation of the algorithm, one needs
only some FIFO-like data structure to memorize all active
points. The complexity of accessing to a FIFO-like struc-
ture is constant for both reading and writing.

The overall complexity of Massive Marching is ofO(n)
with n being the number of points. Since some points are
recalculated because the propagation front is not equidistant
to the initial curveC0, the number of pointsn can exceed
the number of points in the image. The execution time is
proportional to the computation complexity.

Massive Marching is conceived as parallel. In the case
of a fully parallel execution, all operations the currently ac-
tive points, are performed simultaneously. The execution
time is constant for every iteration. The number of itera-
tions is proportional to the maximal distance found in the
image.

4. APPLICATIONS

As mentioned in section 1, various types of problems are
equivalent to finding the solution of the Eikonal equation
(1). In order to prove the validity of the algorithm, sev-
eral application examples, solved by Massive Marching, are
given in this section.

The first example is the computation of the Vorono tes-
selation for a given set of points in a 2D euclidian space. In
this case, we considerF(p) = 1 for ∀p ∈ P (see Figure 2).
Note that if needed, the propagation of labels can be done
simultaneously with the propagation of the distance. The
result achieved by Massive Marching is compared to the re-
sult of Fast Marching [1], which is the one of the most fre-

III - 327

➡ ➡

quently used algorithms, based on heap-sorting. The slight
difference of the results is due to i)a directional bias of the
Fast Marching induced by the direction of the neighborhood
scanning and ii)an approximation error of Massive March-
ing.

(a) Massive Marching (b) Fast Marching

Fig. 2. The Vorono tessellation obtained by Massive March-
ing, compared to Fast Marching

By lettingF = I, whereI(p) is a field of strictly pos-
itive values, one can obtain a solution which is a weighted
distance function. See the contours of a distance weighted
by the input image given by Fig. 3(a). This approach is used
in such applications as shape from shading or search of the
shortest path. If the distance is computed from a given set
of markers, the solution is equivalent to a continuous imple-
mentation of watershed on the gradient of the input image
[8] (see Fig. 3(b)).

(a) (b)

Fig. 3. Applications of weighted distance function: (a) con-
tours of distance weighted by the input image calculated to
the source placed in the center of the face, and (b) continu-
ous watershed computed on Sobel gradient of the input im-
age.

5. CONCLUSIONS

This paper proposes an original, fully parallel algorithm to
calculate the distance function. The conception of Massive
Marching has initially been motivated by the need to accel-

erate the computation of the distance function in applica-
tions of segmentation by active contours. Here, the distance
is computed repetitively on a narrow neighborhood of the
curve, and therefore needs to be very fast. Massive March-
ing does not use any sorted waiting lists and allows to obtain
the distance in a narrow band.

Its implementation on sequential computers is also very
simple. The Massive Marching can be used to compute the
distance in a narrow band as well as on the entire image.
It supports simultaneous evolution of more curves and the
propagation of markers can be done during propagation of
the distance. Therefore, it also can yield the watershed or
Vorono tessellation.

In such applications where the distance function is smo-
oth and only a few pixels need to be recalculated, the com-
plexity of Massive Marching is close toO(n). Massive
Marching outperforms other algorithms, which are penali-
zed by the access to the sorted heap.

6. REFERENCES

[1] J. Sethian,Level Set Methods, Cambridge University
Press, 1996.

[2] Y. Tsai, “Rapid and accurate computation of the dis-
tance function using grids,” Tech. Rep. 17, Department
of Mathematics, University of California, Los Angeles,
2000.

[3] P.W. Verbeek and B.J.H. Verwer, “Shading from shape,
the eikonal equation solved by grayweighted distance
transform,” Pattern Recognition Letters, vol. 11, no.
10, pp. 681–690, October 1990.

[4] G. Sapiro, Geometric Partial Differential Equations
and Image Analysis, Cambridge University Press, 2000.

[5] Kaleem Siddiqi, Benjamin B. Kimia, and Chi-Wang
Shu, “Geometric shock-capturing ENO schemes for
subpixel interpolation, computation and curve evolu-
tion,” Graphical models and image processing: GMIP,
vol. 59, no. 5, pp. 278–301, 1997.

[6] M. Boué and P. Dupuis, “Markov chain approximations
for deterministic control problems with affine dynamics
and quadratic cost in the control,”SIAM Journal on
Numerical Analysis, vol. 36, no. 3, pp. 667–695, 1999.

[7] E. Dejnǒzková, “Massive marching : A parallel compu-
tation of distance function for pde-based applications,”
Tech. Rep. N-17/02/MM, ENSMP, Center of Mathe-
matical Morphology, 2002.

[8] L. Najman and M. Schmitt, “Watershed of a continuous
function,” Signal Processing, vol. 38, pp. 99–112, July
1994.

III - 328

➡ ➠

