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ABSTRACT

The minimization of roundoff noise subject to lo-norm
dynamic-range scaling constraints in two-dimensional
(2-D) state-space digital filters is considered by using
joint error feedback and coordinate transformation op-
timization. An iterative approach for minimizing the
roundoff noise under ly-norm dynamic-range scaling
constraints is developed by jointly optimizing a scalar
error-feedback matriz and a coordinate transformation
matriz. A numerical example is presented to illustrate
the utility of the proposed technique.

I. INTRODUCTION

When a given transfer function is realized through
hardware implementation using fixed-point arithmetic,
the internal noise caused by finite-word-length (FWL)
registers may be the most serious concern to be dealt
with. One of the primary FWL register effects in
fixed-point digital filters is the roundoff noise caused
by the rounding of products/summations within the
realization. The synthesis of state-space digital filter
structures with minimum rounfoff noise under ls-norm
dynamic-range scaling constraints has been investigat-
ed in two-dimensional (2-D) state-space digital filters
[1],[2]. Another technique for the reduction of round-
off noise at the filter output is to use error feedback.
Some techniques for error feedback have been presented
in the past for 2-D digital filters [3]-[7].

In this paper, an iterative noise reduction technique
for 2-D state-space digital filters is developed by jointly
optimizing a scalar error feedback matrix and a coor-
dinate transformation matrix. A numerical example is
presented to illustrate the algorithm proposed and to
demonstrate its performance.

Throughout the paper, the ith diagonal element of
a square matrix A is denoted by (A);;.
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II. 2-D STATE-SPACE DIGITAL FILTERS
WITH ERROR FEEDBACK

Consider the Roesser local state-space (LSS) model
(A,b,c,d)m,, which is stable, separately locally con-
trollable and separately locally observable:

z11(i,7) = A=z(i,j) + bu(i, j)

1

where
N R TN T)
R F RS P

Here, z"(i,7) is an m x 1 horizontal state vector,
x¥(i,7) is an n x 1 vertical state vector, u(i,j) is a
scalar input, y(i,j) is a scalar output, and A;, A,
As, Ay, by, by, c1, Co, and d are real constant matrices
of appropriate dimensions.

Carrying out the quantization before matrix-vector
multiplication, an FWL implementation of (1) can be
expressed as

{Bll(ivj) = AQ[:E(Z)])] + bu(z>.7)

2

7(i,) = eQ(i, )] + dui. j) .

where each component of A,b,ec, and d assumes an

exact fractional B, bit representation. The FWL local

state vector &(i,j) and the output g(4,5) all have a B

bit fractional representation, while the input (i, j) is
a (B — B.) bit fraction.

The quantizer Q-] in (2) rounds the B bit frac-

tion &(¢,7) to (B — B.) bits after multiplications and
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additions, where the sign bit is not counted. The quan-
tization error

coincides with the residue left in the lower part of

Z(i,7). The roundoff error e(, j) is modeled as a zero-
mean noise process of covariance 0I,,,, with

o2 — iQ—Q(B—BC).

12

To reduce the filter’s roundoff noise, the quantization
error e(i, j) is fed back to each input of delay operators
through an (m + n) x (m + n) constant matrix D in
the FWL filter (2). The 2-D filter with error feedback
can be characterized by

@11(i,j) = AQ[z(i, j)] + bu(i, j) + De(i, j)

where D is referred to as an error-feedback matriz.
Subtracting (4) from (1) yields

Aen(isj) = Abalij) + (A~ Dlelid)
Ay(i, j) = eAz(i, ) + ce(i, j)
where
Ax(i,j) = x(i,j) — (i, j)
Awy1(i, j) = @114, J) — 2113, )
Ay(i,j) = y(i, ) — y(i, j)-
Let Gp(z1,22) be the 2-D transfer function from the

quantization error, e(i, ), to the filter output, Ay(s, j).
Then, we obtain

Gp(z1,2) =c(Z—-A) ' (A-D)+c (6)

where Z = 21, & z2I,. The noise variance gain
I(D) = ¢2,,/0? is then defined by

out
I(D) = tr[Wp] (7)
where 02, denotes noise variance at the output, and
1 dz1dzo
= —— G G
D= G ]{1 s p(21,22)Gp(21, 22) oy

with T'; = {z; : |2;] = 1} for i = 1,2. By applying the
2-D Cauchy integral theorem, we obtain

Wp=(A-D)W,A-D)+cc (8)

where W, is called the local observability Gramian of
the 2-D filter, and is defined by

— 1 * AT 7lcTC o -1
W, = @) ji éz(z A7) (Z-A)

le dZQ

If there is no error feedback in the 2-D filter, then
the noise variance gain I(D) with D = 0 becomes

1(0) = tr[ATW,A + ¢

(10)
= tr[W,].
The ls-norm dynamic-range scaling constraints on
the local state vector involves the local controllability
Gramian of the 2-D filter, which is defined by

K, = ﬁy{ 7§ (Z—- AT ob" (zF — A7)

dadzy S
2129 _;jgof(%])f(%]) . (11)

III. JOINT OPTIMIZATION OF ERROR
FEEDBACK AND COORDINATE
TRANSFORMATION

An equivalent description of (1), (A,b,€, d)min,
obtained via a coordinate transformation ®(k) =
T ~'x(k) with T =T & T4 is characterized by

A=T AT, b=T 'b, ¢=cT

— _ (12)
W,=TTW,T, K.=T'K.17T.
The purpose of this section is to investigate the joint
optimization of scalar error-feedback matrices D; =
al,, and D, = (I,, and coordinate transformation
matrices T; and T4 for roundoff noise minimization
under /o-norm dynamic-range scaling constraints:

(Koi=(T'K T )y=1, i=1,2,---,n. (13)

Let matrix W p in (8) with D = al,,®81,, and matrix
K. in (11) be denoted by

Wi, W, K. Ko

Wn = a ap K.= ,

b [ Was Wag } ’ [ K K

respectively.

Under the joint application of scalar error-feedback
and coordinate transformation, we minimize I(D)
(with a and 8 temporarily fixed) over an m x m non-
singular matrix T'; and an n X n nonsingular matrix
T4 subject to the constraints stated in (13). To this
end, we define the Lagrange function

J(e, B, P) = tr[W 1o Py ]+ A\ (tr[K 1 P{ '] — m)

+tr[W s Py + M(tr[K s Py '] — n)
(14)
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where P = P, @ Py, P; = T, T7 for i = 1,4, and \;
for i = 1,4 are Lagrange multipliers. We compute

oJ(a, 3, P _ _
aJ(g}f’P) = Wap — )‘4134_1Ifc4f)4_1
, (15)
oJ(a, 3, P _
dJ(a,3,P) 1y
a)\4 = tI’[KC4P4 }
Let 0J (o, B, P)/OP; = 0 and 0J(«, 3, P)/0A; = 0 for

i = 1,4. Then, it is derived that
Py = VAW WKW EW 2

1 1
P,= Ww [W K AW 25 W 2

where p? for i = 1,2,---,m and v? for i = 1,2,---,n
are the eigenvalues of KW, and K 4W 43, respec-
tively. Therefore, we obtain

<ZM1) a faKClwlﬁa]%W;cF
() w
= — Vs
4 n r i
(17)

Substituting (17) into (14) yields the minimum value

of J(a, 8, P) for fixed a and (3 as
n 2
el Zyi
n ‘
=1

m 2
() +

An iterative procedure for minimizing (14) with re-
spect to scalar parameters A; for i = 1,4, o and ( as
well as an (m+n) x (m—+n) symmetric positive-definite
matrix P = P1 & P4 can be summarized as follows:

1) Set i =1 and
P (0) = diag{(K )11, (K¢)22, -
2) Compute scalars (i) and (i) using
tr[(Wo1Ai + W2 Az) Py (i — 1)]
tr[Wo1 Py (i — 1))

tr[(Wo3 Ao + Wi Ay)Py(i — 1))
tI'[VVOéL-F)4(i - 1)]

P, =—

1 3 1
KW |2 W 7.

min J(a, 8, P
3 (

afi) =

i) =

5 (KC)m+n,m+n}-

3) Compute Ipin(a(i) L, & B(6),) =
tr[Wo1 Py (i—1)]+ (1—B(i)%) tr

4) Replace Wi, and Wys by W) and Wg(,
computed using

(1 - a(i)?)
[WoaPa(i—1)].

Wiag) = (1+a()* )W — (i) (W1 Ay

W2 A3)" + W, Ay + Wi As]
Wasey = (14 B(0)")Wos — B()[(W o1 Ay
W3 Ao)! + WAy + W3 Ay,
respectively.

5) Derive P = Py @ P4 from (1
resulting matrix P = P1® P4 as P (i)
Py(i).

6) Compute tr[W 4Py ()] + tr[Wyq ) Pa (1)].

7), and take the
=Pi(i)®

7) Update i := 7 4+ 1 and repeat from Step 2) un-
til the change in either I(a(:)I,, ® B(:i)I,) or
tr[Wia@) P1(i)] + tr[Waa ) Pa(i)] becomes in-
significant compared to a prescribed tolerance.

From (17), the optimal coordinate transformation
matrices T'; and T'4 that minimize (14) can be obtained
in closed form as

1
<Z /~L74> Wla W KClWI%a]%Ul

1 n %
7@) w
- (19)

where U, and U4 are m X m and n X n orthogonal
matrices, respectively, which are obtained by applying
a method reported in [7].

Once the optimal coordinate transformation ma-
trix T(N) = T1(N) & T4(N) is computed after N
iterations, the diagonal error-feedback matrix D =
D; ® D, with Dy = diag{a1, a2, - +,an} and Dy =
diag{p1, B2, - -, Bn} that minimizes I(D), (7), in a new
realization characterized by (12) is given by

_ (T (V)W Ay + W A)T (N))ii
(T{ (N)W o1 Ty (N))is
)

1
KW 3,)iU,

(20)
8 = (T (N)(W,3A2 + W ATy (N))s
l (T4 (N)W04T4 ( ))u
This diagonal error-feedback matrix D = Dy & Dy

leads to further reduction of the noise variance gain,
ie.,

Inn'n(D) < InLin (a(N)Im @ ﬂ(N)In) (21)
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IV. A NUMERICAL EXAMPLE

Let a 2-D state-space digital filter (A,b,c,d)s3

where d = 0.0 be described by

A =

Ay =

Az =

Ay =

0.621553
—0.081625
0.181983

0.059369
—0.646852

| —0.229635

0.000378
—0.000463
—0.000021

0.620418
—0.083124

0.014666
0.621548
0.476990

—0.004829
0.061969
0.021958

0.000763
—0.001501
—0.000219

0.016504
0.620420

—0.476979
—0.181986
0.663600

—0.024002
0.227715
0.076674

0.001503 ]
0.000812
0.000908 |

—0.479313 |
—0.181961

0.181967 0.479315

0.661692 |

by = [ —0.007708 0.081835 0.028969 |"

—0.079883  0.846271 r

by = |
c1 = [ —0.766526 0.072050
c; = [ —0.074064 0.007031

0.294745 |
0.267706 |
0.026238 ]

which is stable, separately locally controllable and sep-
arately locally observable. This corresponds to the op-
timal realization with minimum roundoff noise 7(0) =
4.927082, subject to the lo-norm dynamic-range scaling
constraints.

Now we apply the iterative optimization procedure
to the above optimal realization. The proposed algo-
rithm converges after nine iterations to a = 0.845965,
(B = 0.845177, and a coordinate transformation matrix

T (9) = T1(9) ® T4(9) with

[ —0.915091 0.162455
—0.470675 0.116512
| —0.094509 0.398443

[ 0.157780 —0.908860
0.117342 —0.463086
0.403126 —0.087756

0.058237
0.581377
0.657685

—0.069259
—0.587994
—0.657977

T.(9) =

T4(9) =

which yield the noise variance gain I(als ® fI3) =
1.665203.  After 3-bit quantization (integer quan-
tization), this scalar error-feedback matrix gives
Iin(aI3 & fI3) = 1.670002 (1.803185).

Next, a refined solution which offers further re-
duced noise variance gain is deduced by calculating an
optimal diagonal error-feedback matrix for the opti-
mal realization (T°*AT°, T° 'b,cT?, d)s33. In this
case, the optimal diagonal error-feedback matrix D =

D; ¢ D, is obtained using (20) as
D; = diag{0.310843, 0.931481, 0.773711}
D, = diag{0.931135, 0.307381, 0.772593}

which yields I,,;, (D) = 1.497455. After 3-bit quanti-
zation (integer quantization), the above diagonal error-
feedback matrix gives I(D) = 1.512761 (1.629652).

VI. CONCLUSION

The minimization of roundoff noise in 2-D state-space
digital filters has been investigated by means of joint
optimization of error feedback/coordinate transforma-
tion. An iterative procedure for minimizing the round-
off noise in a 2-D digital filter has also been develope-
d by jointly optimizing a scalar error-feedback matrix
and a coordinate transformation matrix subject to the
usual lo-norm dynamic-range scaling constraints. Sim-
ulation results have been presented to illustrate the va-
lidity of our proposed algorithm.
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