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ABSTRACT

The minimization of roundoff noise subject to l2-norm
dynamic-range scaling constraints in two-dimensional
(2-D) state-space digital filters is considered by using
joint error feedback and coordinate transformation op-
timization. An iterative approach for minimizing the
roundoff noise under l2-norm dynamic-range scaling
constraints is developed by jointly optimizing a scalar
error-feedback matrix and a coordinate transformation
matrix. A numerical example is presented to illustrate
the utility of the proposed technique.

I. INTRODUCTION

When a given transfer function is realized through
hardware implementation using fixed-point arithmetic,
the internal noise caused by finite-word-length (FWL)
registers may be the most serious concern to be dealt
with. One of the primary FWL register effects in
fixed-point digital filters is the roundoff noise caused
by the rounding of products/summations within the
realization. The synthesis of state-space digital filter
structures with minimum rounfoff noise under l2-norm
dynamic-range scaling constraints has been investigat-
ed in two-dimensional (2-D) state-space digital filters
[1],[2]. Another technique for the reduction of round-
off noise at the filter output is to use error feedback.
Some techniques for error feedback have been presented
in the past for 2-D digital filters [3]-[7].

In this paper, an iterative noise reduction technique
for 2-D state-space digital filters is developed by jointly
optimizing a scalar error feedback matrix and a coor-
dinate transformation matrix. A numerical example is
presented to illustrate the algorithm proposed and to
demonstrate its performance.

Throughout the paper, the ith diagonal element of
a square matrix A is denoted by (A)ii.

II. 2-D STATE-SPACE DIGITAL FILTERS
WITH ERROR FEEDBACK

Consider the Roesser local state-space (LSS) model
(A, b, c, d)m,n which is stable, separately locally con-
trollable and separately locally observable:

x11(i, j) = Ax(i, j) + bu(i, j)

y(i, j) = cx(i, j) + du(i, j)
(1)

where

x11(i, j) =
[

xh(i + 1, j)
xv(i, j + 1)

]
, x(i, j) =

[
xh(i, j)
xv(i, j)

]

A =
[

A1 A2

A3 A4

]
, b =

[
b1

b2

]
, c =

[
c1 c2

]
.

Here, xh(i, j) is an m × 1 horizontal state vector,
xv(i, j) is an n × 1 vertical state vector, u(i, j) is a
scalar input, y(i, j) is a scalar output, and A1, A2,
A3, A4, b1, b2, c1, c2, and d are real constant matrices
of appropriate dimensions.

Carrying out the quantization before matrix-vector
multiplication, an FWL implementation of (1) can be
expressed as

x̃11(i, j) = AQ[x̃(i, j)] + bu(i, j)

ỹ(i, j) = cQ[x̃(i, j)] + du(i, j)
(2)

where each component of A, b, c, and d assumes an
exact fractional Bc bit representation. The FWL local
state vector x̃(i, j) and the output ỹ(i, j) all have a B
bit fractional representation, while the input u(i, j) is
a (B − Bc) bit fraction.

The quantizer Q[·] in (2) rounds the B bit frac-
tion x̃(i, j) to (B − Bc) bits after multiplications and
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additions, where the sign bit is not counted. The quan-
tization error

e(i, j) = x̃(i, j) − Q[x̃(i, j)] (3)

coincides with the residue left in the lower part of
x̃(i, j). The roundoff error e(i, j) is modeled as a zero-
mean noise process of covariance σ2Im+n with

σ2 =
1
12

2−2(B−Bc).

To reduce the filter’s roundoff noise, the quantization
error e(i, j) is fed back to each input of delay operators
through an (m + n) × (m + n) constant matrix D in
the FWL filter (2). The 2-D filter with error feedback
can be characterized by

x̃11(i, j) = AQ[x̃(i, j)] + bu(i, j) + De(i, j)

ỹ(i, j) = cQ[x̃(i, j)] + du(i, j)
(4)

where D is referred to as an error-feedback matrix.
Subtracting (4) from (1) yields

∆x11(i, j) = A∆x(i, j) + (A − D)e(i, j)

∆y(i, j) = c∆x(i, j) + ce(i, j)
(5)

where

∆x(i, j) = x(i, j) − x̃(i, j)

∆x11(i, j) = x11(i, j) − x̃11(i, j)

∆y(i, j) = y(i, j) − ỹ(i, j).

Let GD(z1, z2) be the 2-D transfer function from the
quantization error, e(i, j), to the filter output, ∆y(i, j).
Then, we obtain

GD(z1, z2) = c(Z − A)−1(A − D) + c (6)

where Z = z1Im ⊕ z2In. The noise variance gain
I(D) = σ2

out/σ2 is then defined by

I(D) = tr[W D] (7)

where σ2
out denotes noise variance at the output, and

W D =
1

(2πj)2

∮
Γ1

∮
Γ2

G∗
D(z1, z2)GD(z1, z2)

dz1dz2

z1z2

with Γi = {zi : |zi| = 1} for i = 1, 2. By applying the
2-D Cauchy integral theorem, we obtain

W D = (A − D)T W o(A − D) + cT c (8)

where W o is called the local observability Gramian of
the 2-D filter, and is defined by

W o =
1

(2πj)2

∮
Γ1

∮
Γ2

(Z∗ − AT )−1cT c(Z − A)−1

·dz1dz2

z1z2
=

∞∑
i=0

∞∑
j=0

g(i, j)T g(i, j). (9)

If there is no error feedback in the 2-D filter, then
the noise variance gain I(D) with D = 0 becomes

I(0) = tr[AT W oA + cT c]

= tr[W o].
(10)

The l2-norm dynamic-range scaling constraints on
the local state vector involves the local controllability
Gramian of the 2-D filter, which is defined by

Kc =
1

(2πj)2

∮
Γ1

∮
Γ2

(Z − AT )−1bbT (Z∗ − AT )−1

·dz1dz2

z1z2
=

∞∑
i=0

∞∑
j=0

f(i, j)f(i, j)T . (11)

III. JOINT OPTIMIZATION OF ERROR
FEEDBACK AND COORDINATE
TRANSFORMATION

An equivalent description of (1), (A, b, c, d)m+n,
obtained via a coordinate transformation x(k) =
T −1x(k) with T = T 1 ⊕ T 4 is characterized by

A = T −1AT , b = T −1b, c = c T

W o = T T W oT , Kc = T−1KcT
−T .

(12)

The purpose of this section is to investigate the joint
optimization of scalar error-feedback matrices D1 =
αIm and D4 = βIn, and coordinate transformation
matrices T 1 and T 4 for roundoff noise minimization
under l2-norm dynamic-range scaling constraints:

(Kc)ii = (T−1KcT
−T )ii = 1, i = 1, 2, · · · , n. (13)

Let matrix W D in (8) with D = αIm⊕βIn and matrix
Kc in (11) be denoted by

W D =
[

W 1α W T
αβ

W αβ W 4β

]
, Kc =

[
Kc1 Kc2

Kc3 Kc4

]
,

respectively.
Under the joint application of scalar error-feedback

and coordinate transformation, we minimize I(D)
(with α and β temporarily fixed) over an m × m non-
singular matrix T 1 and an n × n nonsingular matrix
T 4 subject to the constraints stated in (13). To this
end, we define the Lagrange function

J(α, β,P ) = tr[W 1αP 1 ] + λ1(tr[Kc1P
−1
1 ] − m)

+tr[W 4βP 4 ] + λ4(tr[Kc4P
−1
4 ] − n)

(14)
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where P = P 1 ⊕ P 4, P i = T iT
T
i for i = 1, 4, and λi

for i = 1, 4 are Lagrange multipliers. We compute

∂J(α, β,P )
∂P 1

= W 1α − λ1P
−1
1 Kc1P

−1
1

∂J(α, β,P )
∂P 4

= W 4β − λ4P
−1
4 Kc4P

−1
4

∂J(α, β,P )
∂λ1

= tr[Kc1P
−1
1 ] − m

∂J(α, β,P )
∂λ4

= tr[Kc4P
−1
4 ] − n.

(15)

Let ∂J(α, β,P )/∂P i = 0 and ∂J(α, β,P )/∂λi = 0 for
i = 1, 4. Then, it is derived that

P 1 =
√

λ1W
− 1

2
1α [W

1
2
1αKc1W

1
2
1α]

1
2 W

− 1
2

1α

P 4 =
√

λ4W
− 1

2
4β [W

1
2
4βKc4W

1
2
4β ]

1
2 W

− 1
2

4β

1√
λ1

tr[Kc1W 1α]
1
2 =

1√
λ1

(
m∑

i=1

µi

)
= m

1√
λ4

tr[Kc4W 4β ]
1
2 =

1√
λ4

(
n∑

i=1

νi

)
= n

(16)

where µ2
i for i = 1, 2, · · · ,m and ν2

i for i = 1, 2, · · · , n
are the eigenvalues of Kc1W 1α and Kc4W 4β , respec-
tively. Therefore, we obtain

P 1 =
1
m

(
m∑

i=1

µ1

)
W

− 1
2

1α [W
1
2
1αKc1W

1
2
1α]

1
2 W

− 1
2

1α

P 4 =
1
n

(
n∑

i=1

νi

)
W

− 1
2

4β [W
1
2
4βKc4W

1
2
4β ]

1
2 W

− 1
2

4β .

(17)
Substituting (17) into (14) yields the minimum value
of J(α, β,P ) for fixed α and β as

min
P

J(α, β,P ) =
1
m

(
m∑

i=1

µi

)2

+
1
n

(
n∑

i=1

νi

)2

. (18)

An iterative procedure for minimizing (14) with re-
spect to scalar parameters λi for i = 1, 4, α and β as
well as an (m+n)×(m+n) symmetric positive-definite
matrix P = P 1 ⊕ P 4 can be summarized as follows:

1) Set i = 1 and

P (0) = diag{(Kc)11, (Kc)22, · · · , (Kc)m+n,m+n}.
2) Compute scalars α(i) and β(i) using

α(i) =
tr[(W o1A1 + W o2A3)P 1(i − 1)]

tr[W o1P 1(i − 1)]

β(i) =
tr[(W o3A2 + W o4A4)P 4(i − 1)]

tr[W o4P 4(i − 1)]
.

3) Compute Imin(α(i)Im ⊕ β(i)In) = (1 − α(i)2)
·tr[W o1P 1(i−1)]+ (1−β(i)2) tr[W o4P 4(i−1)].

4) Replace W 1α and W 4β by W 1α(i) and W 4β(i)

computed using

W 1α(i) = (1 + α(i)2)W o1 − α(i)[(W o1A1

+W 02A3)T + W o1A1 + W 02A3]

W 4β(i) = (1 + β(i)2)W o4 − β(i)[(W o4A4

+W 03A2)T + W o4A4 + W 03A2],

respectively.

5) Derive P = P 1 ⊕ P 4 from (17), and take the
resulting matrix P = P 1⊕P 4 as P (i) = P 1(i)⊕
P 4(i).

6) Compute tr[W 1α(i)P 1 (i)] + tr[W 4α(i)P 4 (i)].

7) Update i := i + 1 and repeat from Step 2) un-
til the change in either I(α(i)Im ⊕ β(i)In) or
tr[W 1α(i)P 1(i)] + tr[W 4α(i)P 4(i)] becomes in-
significant compared to a prescribed tolerance.

From (17), the optimal coordinate transformation
matrices T 1 and T 4 that minimize (14) can be obtained
in closed form as

T 1 =
1√
m

(
m∑

i=1

µi

) 1
2

W
− 1

2
1α [W

1
2
1αKc1W

1
2
1α]

1
4 U1

T 4 =
1√
n

(
n∑

i=1

νi

) 1
2

W
− 1

2
4β [W

1
2
4βKc4W

1
2
4β ]

1
4 U4

(19)
where U1 and U4 are m × m and n × n orthogonal
matrices, respectively, which are obtained by applying
a method reported in [7].

Once the optimal coordinate transformation ma-
trix T (N) = T 1(N) ⊕ T 4(N) is computed after N
iterations, the diagonal error-feedback matrix D =
D1 ⊕ D4 with D1 = diag{α1, α2, · · · , αm} and D4 =
diag{β1, β2, · · · , βn} that minimizes I(D), (7), in a new
realization characterized by (12) is given by

αi =
(T T

1 (N)(W o1A1 + W o2A3)T 1 (N))ii

(T T
1 (N)W o1T 1 (N))ii

βi =
(T T

4 (N)(W o3A2 + W o4A4)T 4 (N))ii

(T T
4 (N)W o4T 4 (N))ii

.

(20)

This diagonal error-feedback matrix D = D1 ⊕ D4

leads to further reduction of the noise variance gain,
i.e.,

Imin(D) < Imin(α(N)Im ⊕ β(N)In). (21)
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IV. A NUMERICAL EXAMPLE

Let a 2-D state-space digital filter (A, b, c, d)3,3

where d = 0.0 be described by

A1 =


 0.621553 0.014666 −0.476979

−0.081625 0.621548 −0.181986
0.181983 0.476990 0.663600




A2 =


 0.059369 −0.004829 −0.024002

−0.646852 0.061969 0.227715
−0.229635 0.021958 0.076674




A3 =


 0.000378 0.000763 0.001503

−0.000463 −0.001501 0.000812
−0.000021 −0.000219 0.000908




A4 =


 0.620418 0.016504 −0.479313

−0.083124 0.620420 −0.181961
0.181967 0.479315 0.661692




b1 =
[ −0.007708 0.081835 0.028969

]T

b2 =
[ −0.079883 0.846271 0.294745

]T

c1 =
[ −0.766526 0.072050 0.267706

]
c2 =

[ −0.074064 0.007031 0.026238
]

which is stable, separately locally controllable and sep-
arately locally observable. This corresponds to the op-
timal realization with minimum roundoff noise I(0) =
4.927082, subject to the l2-norm dynamic-range scaling
constraints.

Now we apply the iterative optimization procedure
to the above optimal realization. The proposed algo-
rithm converges after nine iterations to α = 0.845965,
β = 0.845177, and a coordinate transformation matrix
T (9) = T 1(9) ⊕ T 4(9) with

T 1(9) =


 −0.915091 0.162455 0.058237

−0.470675 0.116512 0.581377
−0.094509 0.398443 0.657685




T 4(9) =


 0.157780 −0.908860 −0.069259

0.117342 −0.463086 −0.587994
0.403126 −0.087756 −0.657977




which yield the noise variance gain I(αI3 ⊕ βI3) =
1.665203. After 3-bit quantization (integer quan-
tization), this scalar error-feedback matrix gives
Imin(αI3 ⊕ βI3) = 1.670002 (1.803185).

Next, a refined solution which offers further re-
duced noise variance gain is deduced by calculating an
optimal diagonal error-feedback matrix for the opti-
mal realization (T o−1AT o,T o−1b, cT o, d)3,3. In this
case, the optimal diagonal error-feedback matrix D =

D1 ⊕ D4 is obtained using (20) as

D1 = diag{0.310843, 0.931481, 0.773711}
D4 = diag{0.931135, 0.307381, 0.772593}

which yields Imin(D) = 1.497455. After 3-bit quanti-
zation (integer quantization), the above diagonal error-
feedback matrix gives I(D) = 1.512761 (1.629652).

VI. CONCLUSION

The minimization of roundoff noise in 2-D state-space
digital filters has been investigated by means of joint
optimization of error feedback/coordinate transforma-
tion. An iterative procedure for minimizing the round-
off noise in a 2-D digital filter has also been develope-
d by jointly optimizing a scalar error-feedback matrix
and a coordinate transformation matrix subject to the
usual l2-norm dynamic-range scaling constraints. Sim-
ulation results have been presented to illustrate the va-
lidity of our proposed algorithm.
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