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ABSTRACT

The Laplacian pyramid was proposed as a compact image code by
Burt. However, it is shown that it does not achieve optimal sig-
nal compaction due to significant overlap between subbands in the
frequency domain. In addition, it also leads to a slightly redun-
dant signal representation. An extension of the Laplacian pyramid
is proposed that exploits this redundancy to achieve better signal
compaction. In contrast to the unidirectional fine to coarse approach
used by all multiscale representations, the proposed signal repre-
sentation adopts a bi-directional approach. Each subband finally
depends on both its coarser and finer neighboring subbands. The
representation is symmetric in the sensethat eachsubbandis a prod-
uct of an approximation process (based on a finer approximation)
as well as a prediction process (based on a coarser approximation).
Applications are in the areas of image characterisation, zooming
and compression.

1. INTRODUCTION

The Laplacian pyramid proposed was proposed by Burt in [1]. It
was presented as a compact code, in that most of the originial sig-
nal energy would be encoded in a few of the transform coefficients.
The Laplacian pyramid was also a multiresolution representation of
the signal and one could construct an associated Gaussian pyramid
which essentially consisted of a series of fine to coarse approxima-
tions of the input. Subsequently, the even more compact wavelet
representation gained in popularity due to its mathematical elegance.
A key difference between the two is that the Laplacian pyramids
are an overcomplete (redundant) representation unlike the wavelets
which are just complete. The redundancy in Laplacian pyramids
(� ��� for 2D) gives a lot of flexibility in filter design. The Lapla-
cian pyramid gives exact reconstruction for arbitrary filters, though
the subbandsand multiscale approximations are useful only for rea-
sonably designed lowpass filters. The essential similarity between
Laplacian pyramids and wavelets is the idea of forming successive
approximations of an input and forming subbands based on the dif-
ferences in these approximations. The process is entirely bottom-
up with each subband depending solely on the approximation at its
own level.

The subbands as produced above are not in fact independent.
This arises in the case of wavelets because high frequencies are of-
ten caused by sharp edges. As a result, these frequencies are pre-
dictably coherent and knowledge of some of these components al-
lows one to guess the others. The predictability is even greater in
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Laplacian pyramids. The overcompleteness of the representation
forces certain relationships among coefficients across subbands. Also,
the subbands have a lot of overlap in the frequency domain and
hence are correlated. In this paper we present a way to exploit the
redundancyto remove this correlation between Laplaciansubbands.
The redefined subbands are now the product of an approximation
process as well as a prediction process. This symmetric residue
(SR) pyramid can be used to perfectly construct the Laplacian pyra-
mid and therefore the original signal. This results in a signal repre-
sentation that achieves better energy compaction with more inde-
pendent subbands. As a side benefit, it gives a novel way to double
image sizes by generating coherent high frequencies.

2. INTERBAND PREDICTION IN PYRAMIDS

The Laplacian pyramid defined by Burt [1] is constructed as fol-
lows. Given an approximation at level i asGi , the next approxima-
tion is Gi�� � ss�lpf�Gi�� where lpf is a low pass filtering oper-
ation and ss is a subsampling operation. The bandpass Laplacian
subbands are generated as L i � Gi� exp�Gi��� where exp is an
up-sampling operation followed by smoothing that exapnds the im-
age. As the bandpass Laplacians, L i , are not subsampled the rep-
resentation is overcomplete. Gi can be exactly reconstructed from
Li and Gi�� as Gi � Li � exp�Gi��� by construction.

Corresponding to an input image withN � pixels, the Laplacian
pyramid representation has � �N ��� pixels. Clearly, this implies
there are many more possible pyramids corresponding to N � pixel
images than there are N � pixel images. It has been shown in [2]
that this fact can be exploited to use the Laplacian pyramid as an
error correcting code for images. LetP � P�I� denote the process
of constructing a pyramid P from an image I and let I � I�P �
denote the process of reconstructing an image I from a pyramid
P . Error correction is based on the fact that P � P�I�P �� if and
only if P � P�I� for some image I [2]. A variant of this idea can
be used for interband prediction as well.

Given a Gi�� , not all possible Li are candidate Laplacians at
level i. The true Li will satisfy the consistency condition

Gi�� � ss�lpf�Li � exp�Gi������ (1)

This relationship does not specify a unique L i for every Gi��. In
order to see this, consider the mapping from Gi to Gi��. Due to
the subsampling operation, Gi�� has only 1/4 as many pixels as
Gi. Thus multiple Gi map on to the same Gi�� . More precisely,
let there be K different Gi and P different Gi�� . Since Li have
as many pixels as Gi, there will be K different Li as well. Let Q
be the number of Gi such that their Gi�� � �. Due to linearity,
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these Gi can be added to any other G i without changing the cor-
responding Gi�� . (These Gi contain all possible high frequency
patterns that get completely blocked by the lpf operation.) Con-
versely, if two different Gi map to the same Gi��, then the Gi��

corresponding to the difference of these Gi must be �. Thus each
Gi�� has associated with it exactly Q different Gi which implies
that Q�P � K . Correspondingly, there will be Q different Li that
satisfy Eqn 1 for each Gi�� .

Let us analyze the above in information theoretic terms. If Gi

andLi have n� pixels, then Gi�� will have n��� pixels. SinceGi

completely specifies Li and Gi�� , the �n��� pixels of Gi�� and
Li must be coding only as much information as the n� pixels of
Gi. SinceGi�� is unconstrained, the n� pixels of Li must be hav-
ing only �n��� effectively independent pixels once the condition
of consistency is imposed. The information that can be encoded
in images is proportional to the number of pixels and hence varies
as the logarithm of the number of possible distinct images. By the
notation used above, we then expect log�Q� � log�K�� log�P �
which is identical to the relation Q�P � K derived above. Hence
the P different Gi�� partition the K different Li into K�P cosets
of sizeQ each. The exact values ofK�P andQ depend on number
of pixels, bits per pixel and the low pass filter, lpf . By the Slepian-
Wolf theorem [3], the knowledge of Gi�� should lead to an effi-
cient coding of Li proportional to log�Q� rather than log�K�.

In terms of a frequency domain analysis, the Laplacian sub-
bandsmultiply encodecertain parts of the input spectrum. The con-
sistency requirement of Eqn 1 implies that the lower frequencycom-
ponentsofLi need to be consistent with similar components inGi�� .
As can be seen in Fig. 1, the frequency responses of the Laplacian
pyramid subbandsshow significant overlap. In particular, each Lapla-
cian subband has a significant ‘tail’ that picks up low frequency
information from the next subband. This introduces dependencies
in addition to that caused by the fact that sharp edges produce co-
herent harmonics at various resolutions. The information in each
subband can be decomposed into three components. (i) The low
frequency component that is present in higher subbands. (ii) High
frequency components that are coherent with harmonics present in
higher subbands. (iii) High frequencies that are independentof har-
monics present in other subbands. Clearly, the first can be rigourously
computed. Given a prior model of edges, the second may be pre-
dicted as per the model. The third component is the independent
information of the subband and cannot be predicted.
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Fig. 1. Frequency responses of Burt Laplacian pyramid subbands
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Fig. 2. Frequency responses of SR pyramid subbands

3. SYMMETRIC RESIDUE PYRAMIDS

An extension of the original Burt Laplacian pyramid is proposed
that takes into account the predictability of the Li subband based
onGi��. The motivation for this extension is to achieve better sig-
nal compaction. In addition, we would like to emphasize that this
compaction is being achieved by altering the way multiresolution
representations are computed and not by designing a better filter
or transform. Traditionally, the aim has always been to compute
successive approximations and subband signal decorrelation was
based on the orthogonality of the underlying basis functions (ex-
actly in the case of wavelets, only approximately for pyramids).
No attempt was made to formulate representations where subbands
were mutually independent in an information theoretic sense. As
a result, a cursory glance at a pyramid or wavelet representation
shows a striking similarity across subbands and one can always tell
subbands of one image from that of others. True signal indepen-
dence is clearly a far cry. The presence of dependent low frequen-
cies makes the Laplacian pyramid an obvious choice for this type of
redundancy removal. However, model based prediction for coher-
ent harmonics can be applied to wavelets as well. Models for such
prediction and algorithms for image zooming based on this can be
found in [4, 5].

Eqn 1 can be rewritten in terms of a consistency condition on
theLi itself. TheLi, when used to recreate aGi from aGi�� , must
create aGi that will again lead to the creation of the sameLi during
pyramid creation process.

Gi � Li � exp�Gi��� (2)

Li � Gi � exp�ss�lpf�Gi��� (3)

In practise, one does not know Li and must start with a guess.
An iterative process is used to converge to one of the many admis-
sible Li.

	Gi � Lj
i � exp�Gi��� (4)

	Li � 	Gi � exp�ss�lpf� 	Gi��� (5)

Lj��
i � �Lj

i �
	Li��
 (6)

The process is stopped as soon as L j
i has converged to one of the

many solutions consistent with a givenGi�� , sayL�i . This is deter-
mined by checking if ss�lpf� 	Gi��� Gi�� . Beyond that the sys-
tem may oscillate between various admissible Li, picking up high
frequency components. The estimated L�i can differ from the true,
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desired Li only in terms of such high frequencies as would be to-
tally blocked by the lpf operation. It is this difference pattern that
constitutes the independent information that needs to be encoded
by the subband at level i.

If one wishes to invoke a prior for L� , then that can be done
while choosing L�

i to start the iteration. In the absence of a prior,
L�i may be set to � or exp�Li���. Either ways, it starts without
high frequencies and stays that way. Alternately, one could intro-
duce selected high frequencies into L�

i to model (expected) sharp
edgesbased on an analysisofG i��. The estimation of various types
of priors is an ongoing activity and beyond the scope of this paper.
The results reported here are for L�

i � exp�Li��� (no prior).
The Symmetric Residue (SR) pyramid may now be formulated

as follows

1. Form the Burt Laplacian pyramid: fLi� i � ����ng, Gn��

2. Recursively, compute the Gi�� and best predicted Lapla-
cians L�i , i � n����.

3. Define the SR pyramid subbands as SL i � Li � L�i

4. The SR pyramid is defined by fSLi� i � ���ng, Gn��

The SR pyramid construction is a two pass algorithm. The first
pass is a bottom up process leading to successive approximations.
The second pass is a top down process based on inter-band predic-
tion leading to subband independence. The creation of each sub-
band now depends on the previous as well as next subband leading
to a symmetric process. The information it encodes is the residual
which is not encoded at the next subband or the previous one. The
process is perfectly reversible as first theLi and then theGi can be
recursively computed based on the SL i and Gn��.

Fig. 3. Two levels of Burt Laplacian pyramid for LENA. Left: L�
subband, top right: L� subband and bottom right: G� subband

The frequencyresponsesof the SR pyramid are shown in Fig. 2.
As can be seen, in comparison with the responses for the Lapla-
cian pyramid the SR pyramid subbands have much less overlap. In
particular, the subbands do not have significant low frequency re-
sponses. The Laplacian pyramid and an SR pyramid for the LENA

image is shown in Fig. 3 and Fig. 4 respectively. In the case of the
SR pyramid, the subbands consist solely of ripples around sharp
edges of the image. These are the residuals (corrections) that need
to be applied to the predicted subbands. This is shown in detail in
Fig. 5. The G� image for LENA is shown along with the L� sub-
band that it predicts. This is quite close to the actualL� subbandfor
LENA as shown in Fig 3. This leads to the expectation that compact
encoding of Li given L�i should be possible based on the Slepian-
Wolf theorem [3].

Fig. 4. Two levels of Symmetric Residue pyramid for LENA. Left:
SL� subband, top right: SL� subband and bottom right: G� sub-
band

Fig. 5. Based on theG� subband, theL� subbandcan be estimated.
Compare the L� estimation in this figure to the true L� shown in
Fig. 3. The difference is the SL� subband in Fig. 4

4. CHARACTERISATION OF SR PYRAMIDS

The SR pyramids are characterisedby comparing some of their prop-
erties with those of the original Burt Laplacian pyramids. In order
to carry out this exercise, the following set of images were used:
LENA, MANDRIL, BARBARA, CLOWN and GIRL.

4.1. Energy Compaction

The ability of Laplacian pyramids and SR pyramids to encode im-
ages with most of the energy concentrated in the higher subbandsis
tested. The energy in each subband is measured as sum squared of
all pixel values. The results are shown in Table 1 for 4 level pyra-
mid representations. G�, common to both, is not shown. The low
values arise as pyramids are not snug (norm preserving) frames [2].

Band Laplacian, Li SR, SLi

Lev 0 1.426 % 0.756 %
Lev 1 0.298 % 0.093 %
Lev 2 0.109 % 0.031 %
Lev 3 0.042 % 0.014 %

Table 1. The energy in the subbandsof Laplacian and SR pyramids
as percentages of the input (G�) energy. The results are averaged
over five images mentioned in the text.
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4.2. Independence of Subbands

The independencebetween subbandsis measured in two ways. The
first is based on correlation, wherein the smaller subbands are ex-
panded to a common size and the cross correlation between these
images is estimated. This is effective in determining if there is any
signal component common between the two subbands. In addition,
the mutual information between the two subbandsis also estimated.
This measure is based on the individual entropies and the cross en-
tropy. (All entropies are calculated based on pixel intensity distri-
butions only.) The mutual information tests for predicatbility be-
tween two signals.

Table 2 shows the extent to which subbands are correlated in
Laplacian and SR pyramids. As can be seen, SR pyramid subbands
are significantly de-correlated as compared to the Laplacian sub-
bands. A similar trend is seen in Tab. 3 for the mutual information
between subbands. As noted before, the SR pyramid results shown
here are without the use of any priors. The use of priors is expected
to improve these results.

L� L� L� L�

L� 1.000 0.487 0.186 0.066
L� 0.487 1.000 0.614 0.248
L� 0.186 0.614 1.000 0.621
L� 0.066 0.248 0.621 1.000

SL� SL� SL� SL�

SL� 1.000 0.037 0.010 0.006
SL� 0.037 1.000 0.052 0.019
SL� 0.010 0.052 1.000 0.059
SL� 0.006 0.019 0.059 1.000

Table 2. The top half shows the correlation between subbands in
Laplacian pyramid. The bottom half shows correlation between
subbands in SR pyramids. The SR pyramids subbands are more
decorrelated. Results have been averaged over five images.

L� L� L� L�

L� 5.502 0.371 0.183 0.173
L� 0.371 5.401 0.940 0.427
L� 0.183 0.940 5.758 1.175
L� 0.173 0.427 1.175 6.025

SL� SL� SL� SL�

SL� 5.097 0.103 0.064 0.067
SL� 0.103 4.654 0.841 0.302
SL� 0.064 0.841 4.913 0.711
SL� 0.067 0.302 0.711 5.241

Table 3. The top half shows the mutual information (in bits) be-
tween subbandsin Laplacian pyramid. The bottom half shows mu-
tual information between subbands in SR pyramids. The SR pyra-
mids subbandsare more independent. The diagonal entries indicate
the entropies of the histograms of the subbands. Results have been
averaged over five images.

4.3. Image Interpolation

The SR pyramid formulation allows good interpolation and mag-
nification of images. If a given image is considered as the G� ap-
proximation, then the next higher resolution would be the G�� ap-
proximation. It may be computed as G�� � exp�G�� � L��
with L�� � � for the Burt Laplacian pyramid. Similarly, one
may use SR pyramids with SL�� � � and wavelets with H�� �
V�� � D�� � �. A comparison was performed based on the
task of estimating the G� image from the G� image as this pro-
vided ground truth for SNR estimation. The Burt, SR and wavelet
methods all used 5-tap filters (Daub N � 
 for wavelets). Results
for interpolation using a windowed 21-tap sinc filter and nonlinear
frequency domain interpolation (NFDI)[5] are also reported. The
results shown below are an average over the five images mentioned
earlier.

Burt Sinc21 NFDI Wlet SR pyr

SNR (dB) 18.51 18.11 18.93 17.45 21.21

5. CONCLUSION AND FUTURE WORK

The Burt Laplacian pyramid algorithm has been extended to in-
clude a top-down prediction process. The new representation, the
Symmetric Residue pyramid, is also a complete representation ca-
pable of exactly reconstructing the original signal. The prediction
process is shown to remove the redundancy in information encod-
ing that is present in the original Laplacian pyramid. This is shown
to lead to a representation that has better subbandfrequency charac-
teristics, energy compaction properties and subbandindependence.
The scheme allows for the use of priors to further reduce energy in
subbands. The formulation and analysis of such priors is currently
being carried out. One of the benefits of the prediction process is
the ability to create higher resolution approximations that are con-
sistent with a given image. Applications for compression and tex-
ture characterization will be pursued in future.
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