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ABSTRACT

The Laplacian pyramid was proposed as a compact image code by

Burt. However, it is shown that it does not achieve optimal sig-
nal compaction due to significant overlap between subbandsin the

frequency domain. In addition, it also leadsto a slightly redun-
dant signal representation. An extension of the Laplacian pyramid

is proposed that exploits this redundancy to achieve better signal

compaction. Incontrast to theunidirectional fineto coarseapproach
used by all multiscale representations, the proposed signal repre-

sentation adopts a bi-directional approach. Each subband finally

depends on both its coarser and finer neighboring subbands. The

representationissymmetricin the sensethat each subbandisaprod-
uct of an approximation process (based on a finer approximation)

aswell asaprediction process (based on a coarser approximation).

Applications are in the areas of image characterisation, zooming
and compression.

1. INTRODUCTION

The Laplacian pyramid proposed was proposed by Burt in [1]. It
was presented as a compact code, in that most of the originia sig-
nal energy would be encodedin afew of thetransform coefficients.
TheLaplacian pyramidwasal so amultiresol ution representation of
the signal and one could construct an associated Gaussian pyramid
which essentially consisted of a seriesof fineto coarse approxima-
tions of the input. Subsequently, the even more compact wavel et
representation gainedin popularity duetoits mathematical elegance.
A key difference between the two is that the Laplacian pyramids
arean overcompl ete(redundant) representation unlikethe wavel ets
which are just complete. The redundancy in Laplacian pyramids
(< 33% for 2D) givesalot of flexibility infilter design. TheLapla-
cian pyramid givesexact reconstructionfor arbitrary filters, though
the subbandsand multiscal eapproximationsareuseful only for rea-
sonably designed lowpassfilters. The essential similarity between
Laplacian pyramids and wavel etsis theidea of forming successive
approximationsof aninput andforming subbandsbased on the dif-
ferences in these approximations. The processis entirely bottom-
up with each subband depending solely on the approximation at its
own level.

The subbands as produced above are not in fact independent.
Thisarisesin the case of wavel etsbecausehigh frequenciesare of-
ten caused by sharp edges. As aresult, these frequencies are pre-
dictably coherent and knowledge of some of these componentsal-
lows one to guess the others. The predictability is even greater in
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Laplacian pyramids. The overcompleteness of the representation
forcescertain rel ationshi psamong coefficientsacross subbands. Also,
the subbands have a lot of overlap in the frequency domain and
henceare correlated. In this paper we present away to exploit the
redundancy to removethiscorrelation between L aplacian subbands.
The redefined subbands are now the product of an approximation
process as well as a prediction process. This symmetric residue
(SR) pyramid can beusedto perfectly construct the Laplacianpyra-
mid and thereforethe original signal. Thisresultsinasignal repre-
sentation that achieves better energy compaction with more inde-
pendent subbands. Asasidebenefit, it givesanovel way to double
image sizes by generating coherent high frequencies.

2. INTERBAND PREDICTIONIN PYRAMIDS

The Laplacian pyramid defined by Burt [1] is constructed as fol-
lows. Givenanapproximationat level ¢ asG';, thenext approxima:
tionisGiy1 = ss(Ipf(Gy)) wherelp f isalow passfiltering oper-
ation and ss is a subsampling operation. The bandpass Laplacian
subbandsaregeneratedas L ; = G; — exp(Gi41) whereezp isan
up-sampling operation followed by smoothing that exapndstheim-
age. Asthe bandpassLaplacians, L ;, are not subsampled the rep-
resentation is overcomplete. GG; can be exactly reconstructed from
L;and G41 asG; = L; + exp(Giq1) by construction.

Correspondingto aninputimagewith N 2 pixels, the Laplacian
pyramid representation has4 + N2 /3 pixels. Clearly, thisimplies
there are many more possible pyramids correspondingto NV 2 pixel
images than there are N2 pixel images. It has been shown in [2]
that this fact can be exploited to use the Laplacian pyramid as an
error correcting codefor images. Let P = P(I) denotetheprocess
of constructing a pyramid P from animage I andlet I = Z(P)
denote the process of reconstructing an image I from a pyramid
P. Error correction is based on the fact that P = P(Z(P)) if and
only if P = P(I) for someimage [2]. A variant of thisideacan
be used for interband prediction as well.

Givena G, 41, not al possible I; are candidate Laplacians at
level i. Thetrue L; will satisfy the consistency condition

ss(Ipf(Li + exp(Gig1))). @

This relationship does not specify aunique L ; for every G;41. In
order to see this, consider the mapping from G; to G;41. Dueto
the subsampling operation, G;4+1 has only 1/4 as many pixels as
G;. Thusmultiple GG; map on to the same GG;4+1. More precisely,
let there be K different G; and P different G;4+1. Since L; have
asmany pixelsas G, therewill be K different I; aswell. Let Q
be the number of G; such that their G;;1 = 0. Dueto linearity,

Giy1 =
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these GG; can be added to any other G; without changing the cor-
responding G;4+1. (These GG; contain al possible high frequency
patterns that get completely blocked by the ip f operation.) Con-
versely, if two different G; map to the same G 41, thenthe G; 41
corresponding to the difference of these G; must be 0. Thus each
G.4+1 hasassociated with it exactly @ different G; whichimplies
that @.P = K. Correspondingly, therewill be @ different ; that
satisfy Eqn 1 for each G 41 .

Let us analyzethe abovein information theoretic terms. If G;
and L; haven? pixels, then G4 will haven? /4 pixels. Since G,
completely specifies L; and G4+, the 5n° /4 pixels of G;41 and
L; must be coding only as much information as the »? pixels of
G;. Since G, 1 isunconstrained, the n® pixelsof L; must be hav-
ing only 3n? /4 effectively independent pixels once the condition
of consistency is imposed. The information that can be encoded
inimagesis proportional to the number of pixelsand hencevaries
asthe logarithm of the number of possible distinct images. By the
notation used above, we then expect log(Q) = log(K) — log(P)
whichisidentical to therelation Q. P = K derived above. Hence
the P different G4 partition the K different L; into K/ P cosets
of size@ each. Theexact valuesof K, P and @) depend on number
of pixels, bits per pixel andthelow passfilter, Ip f. By the Slepian-
Wolf theorem [3], the knowledge of G;41 should lead to an effi-
cient coding of Z; proportional to log(Q) rather thanlog( K).

In terms of a frequency domain analysis, the Laplacian sub-
bandsmultiply encodecertain partsof theinput spectrum. Thecon-
sistency requirement of Eqn1impliesthat thelower frequency com-
ponentsof L; needto beconsistent with similar componentsinG ;41 .
Ascanbeseenin Fig. 1, the frequency responses of the Laplacian
pyramid subbandsshow significant overlap. Inparticular, eachLapla-
cian subband has a significant ‘tail’ that picks up low frequency
information from the next subband. This introduces dependencies
in addition to that caused by the fact that sharp edges produce co-
herent harmonics at various resolutions. The information in each
subband can be decomposed into three components. (i) The low
frequency component that is present in higher subbands. (ii) High
frequency componentsthat are coherent with harmonics presentin
higher subbands. (iii) High frequenciesthat areindependent of har-
monicspresent in other subbands. Clearly, thefirst can berigourously
computed. Given a prior model of edges, the second may be pre-
dicted as per the model. The third component is the independent
information of the subband and cannot be predicted.
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Fig. 1. Frequency responsesof Burt Laplacian pyramid subbands
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Fig. 2. Frequency responsesof SR pyramid subbands

3. SYMMETRIC RESIDUE PYRAMIDS

An extension of the original Burt Laplacian pyramid is proposed
that takes into account the predictability of the Z; subband based
on G;41. Themotivation for this extensionisto achievebetter sig-
nal compaction. In addition, we would like to emphasize that this
compaction is being achieved by altering the way multiresolution
representations are computed and not by designing a better filter
or transform. Traditionally, the aim has always been to compute
successive approximations and subband signal decorrelation was
based on the orthogonality of the underlying basis functions (ex-
actly in the case of wavelets, only approximately for pyramids).
No attempt was madeto formul ate representationswhere subbands
were mutually independent in an information theoretic sense. As
aresult, a cursory glance at a pyramid or wavelet representation
showsastriking similarity acrosssubbandsand one canawaystell

subbands of one image from that of others. True signal indepen-
denceisclearly afar cry. The presenceof dependentlow frequen-
ciesmakesthe L aplacian pyramid an obviouschoicefor thistype of

redundancy removal. However, model based prediction for coher-
ent harmonics can be applied to waveletsaswell. Modelsfor such
prediction and algorithms for image zooming based on this can be
foundin [4, 5].

Eqgn 1 can berewritten in terms of a consistency condition on
the L; itself. The L;, whenusedtorecreateaG; fromaG, 41, must
createaG; that will againleadto the creation of thesame ; during
pyramid creation process.

Gy, = L;+ exp(GH_l) (2)
Li = Gi—exp(ss(lpf(G))) 3)

In practise, one doesnot know 7 ; and must start with a guess.
Aniterative processis used to convergeto one of the many admis-
sible Z;.

Gi = LI +exp(Gigr) (4)
L, = G- exp(ss(lpf(éi))) (5)
DY = (L4 Ly))2 (6)

The processis stopped as soon as . 7 has converged to one of the
many solutionsconsistentwithagiven G; 1, say L} . Thisisdeter-
mined by checkingif ss(Ipf(G)) — Git1. Beyondthat the sys-
tem may oscillate between various admissible 7. ;, picking up high
frequency components. The estimated L ! can differ from thetrue,
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desired ; only in terms of such high frequencies aswould be to-
tally blocked by the Ip f operation. It isthis difference pattern that
constitutes the independent information that needs to be encoded
by the subband at level 1.

If one wishes to invoke a prior for Lo, then that can be done
while choosing L9 to start the iteration. In the absenceof aprior,
L9 may besetto 0 or exp(L.41). Either ways, it starts without
high frequenciesand staysthat way. Alternately, one could intro-
duce selected high frequenciesinto L ? to model (expected) sharp
edgesbased onananaysisof G ;1. Theestimationof varioustypes
of priorsisan ongoing activity and beyond the scope of this paper.
Theresults reported herearefor LY = exp(Li11) (no prior).

The Symmetric Residue (SR) pyramid may now beformulated
asfollows

1. Formthe Burt Laplacianpyramid: {Z;,7 = 0...n}, Gpt1

2. Recursively, compute the G'; 41 and best predicted Lapla-
ciansL!,i=n...0.

3. Definethe SR pyramid subbandsas SL; = L; — L!
4. TheSR pyramidisdefinedby {SL;,7 = 0..n}, Gnt1

The SR pyramid constructionisatwo passalgorithm. Thefirst
passis a bottom up process |eading to successive approximations.
The second passis atop down processbased on inter-band predic-
tion leading to subband independence. The creation of each sub-
band now dependson the previousaswell asnext subbandleading
to asymmetric process. The information it encodesis the residual
whichis not encoded at the next subband or the previousone. The
processisperfectly reversibleasfirst the L; and thenthe G'; canbe
recursively computed basedon the SZ; and G, 41 .

Fig. 3. Two levelsof Burt Laplacian pyramid for LENA. Left: Lo
subband, top right: 71 subband and bottom right: G» subband

Thefreguency responsesof the SR pyramid areshownin Fig. 2.
As can be seen, in comparison with the responses for the Lapla-
cian pyramid the SR pyramid subbandshave much lessoverlap. In
particular, the subbands do not have significant low frequency re-
sponses. The Laplacian pyramid and an SR pyramid for the LENA
imageis shownin Fig. 3 and Fig. 4 respectively. In the case of the
SR pyramid, the subbands consist solely of ripples around sharp
edgesof theimage. These arethe residuals (corrections) that need
to be applied to the predicted subbands. Thisis shownin detail in
Fig. 5. The G; image for LENA is shown along with the Lo sub-
bandthat it predicts. Thisisquiteclosetotheactual 7, subbandfor
LENA asshownin Fig 3. Thisleadstothe expectationthat compact
encodingof 7; given L} should be possible based on the Slepian-
Wolf theorem [3].

Fig. 4. Twolevelsof Symmetric Residue pyramid for LENA. Left:
S Lo subband, top right: .57, subband and bottom right: G» sub-
band

Fig. 5. Basedonthe Gy subband, the ., subbandcan be estimated.
Compare the Ly estimation in this figure to the true Ly shown in
Fig. 3. Thedifferenceisthe S, subbandin Fig. 4

4. CHARACTERISATION OF SR PYRAMIDS

The SR pyramidsare characterised by comparing someof their prop-
ertieswith those of the original Burt Laplacian pyramids. In order
to carry out this exercise, the following set of images were used:
LENA, MANDRIL, BARBARA, CLOWN and GIRL.

4.1. Energy Compaction

The ability of Laplacian pyramidsand SR pyramidsto encodeim-
ageswith most of theenergy concentratedin thehigher subbandsis
tested. The energy in each subbandis measured as sum squared of
al pixel values. The results are shownin Table 1 for 4 level pyra-
mid representations. G4+, common to both, is not shown. The low
valuesarise aspyramidsare not snug (norm preserving) frames|[2].

[ Band | Laplacian, L; | SR, SL; |

LevO 1.426 % 0.756 %
Levl 0.298 % 0.093 %
Lev2 0.109 % 0.031%
Lev3 0.042% 0.014%

Tablel. Theenergy inthe subbandsof Laplacian and SR pyramids
as percentages of the input (G) energy. Theresults are averaged
over fiveimages mentioned in the text.
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4.2. Independenceof Subbands

Theindependencebetween subbandsismeasuredintwo ways. The
first is based on correlation, wherein the smaller subbandsare ex-
panded to a common size and the cross correl ation between these
imagesisestimated. Thisiseffectivein determining if thereisany
signal component common between the two subbands. In addition,
themutual information betweenthe two subbandsisal so estimated.
This measureis based on the individual entropiesand the crossen-
tropy. (All entropies are calculated based on pixel intensity distri-
butions only.) The mutual information tests for predicathility be-
tween two signals.

Table 2 shows the extent to which subbands are correlated in
Laplacianand SR pyramids. Ascan beseen, SR pyramid subbands
are significantly de-correlated as compared to the Laplacian sub-
bands. A similar trend isseenin Tab. 3 for the mutual information
between subbands. Asnoted before, the SR pyramid results shown
herearewithout the use of any priors. Theuseof priorsisexpected
to improve these results.

Ll Lo | Lo | Lz | Ls |
To ]| 1,000 | 0.487 | 0.186 | 0.066
T, || 0.487 | 1.000 | 0.614 | 0.248
T, || 0.186 | 0.614 | 1.000 | 0.621
T, || 0.066 | 0.248 | 0.621 | 1,000

[ SLo | SLi | 5L, | Sks |
SLo ]| 1.000 | 0.037 | 0.010 | 0.006
SL, || 0037 | 1000 | 0.052 | 0.019
SI, || 0010 | 0.052 | 1.000 | 0.059
SL, || 0.006 | 0.019 | 0.059 | 1.000

Table 2. The top half showsthe correlation between subbandsin
Laplacian pyramid. The bottom half shows correlation between
subbandsin SR pyramids. The SR pyramids subbands are more
decorrelated. Results have been averaged over five images.

Ll Lo | Lo | Lo | Ls |
T, || 5502 | 0.371 | 0.183 | 0.173
T, || 0.371 | 5401 | 0.940 | 0.427
T, || 0.183 | 0.940 | 5.758 | 1.175
T, || 0.073 | 0.427 | 1175 | 6.025

[ STo [ 5L | 5L [ SL2 |
SLo || 5097 | 0.103 | 0.064 | 0.067
5L, || 0103 | 4654 | 0.841 | 0.302
5L, || 0.064 | 0.841 | 4913 | 0.711
SLs || 0.067 | 0.302 | 0.711 | 5.241

Table 3. Thetop half shows the mutual information (in bits) be-
tween subbandsin Laplacian pyramid. The bottom half showsmu-
tual information between subbandsin SR pyramids. The SR pyra-
midssubbandsare moreindependent. Thediagonal entriesindicate
the entropies of the histograms of the subbands. Results have been
averaged over fiveimages.

4.3. Imagelnterpolation

The SR pyramid formulation allows good interpolation and mag-
nification of images. If agiven imageis considered asthe Gy ap-
proximation, then the next higher resolution would bethe G _; ap-
proximation. It may be computed as G_; = ezp(Go) + L_1
with Z_; = 0 for the Burt Laplacian pyramid. Similarly, one
may use SR pyramidswith S7_; = 0 and waveletswith H_; =
V_1 = D_; = 0. A comparison was performed based on the
task of estimating the Gy image from the Gy image as this pro-
vided ground truth for SNR estimation. The Burt, SR and wavel et
methods all used 5-tap filters (Daub N = 2 for wavelets). Results
for interpolation using awindowed 21-tap sinc filter and nonlinear
frequency domain interpolation (NFDI)[5] are aso reported. The
resultsshown below are an averageover the fiveimages mentioned
earlier.

| | Burt | Sinc21 | NFDI | WIiet [ SRpyr |
[SNR(dB) || 1851 | 1811 | 1893 | 1745 | 21.21 |

5. CONCLUSION AND FUTURE WORK

The Burt Laplacian pyramid algorithm has been extended to in-
clude atop-down prediction process. The new representation, the
Symmetric Residue pyramid, is aso acomplete representation ca-
pable of exactly reconstructing the original signal. The prediction
processis shown to remove the redundancy in information encod-
ingthat ispresentin theoriginal Laplacian pyramid. Thisisshown
tolead to arepresentationthat hasbetter subbandfrequency charac-
teristics, energy compaction properties and subbandindependence.
Theschemeallowsfor the use of priors to further reduce energy in
subbands. The formulation and analysisof such priorsis currently
being carried out. One of the benefits of the prediction processis
the ability to create higher resolution approximationsthat are con-
sistent with agivenimage. Applicationsfor compression and tex-
ture characterization will be pursued in future.
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