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ABSTRACT

We studied the computational complexity of the over-complete
wavelet representation for the commonly used Spline wavelet
family with an arbitrary order. By deriving a general expression
for the complexity, it is shown that the inverse transform is
significantly more costly in computation than the forward
transform. In order to reduce the computational complexity, a
new spatial implementation is proposed. This new
implementation exploits the redundancy between the lowpass
and the bandpass outputs that is inherent to the over-complete
wavelet scheme. It is shown that the new implementation can
greatly simplify the computations, give an efficient inverse
structure and allow the use of an arbitrary boundary extension
method without affecting the ease of the inverse transform.

1. INTRODUCTION

Mallat and Zhong proposed a representation known as the over-
complete wavelet representation (OCWR) for multi-scale edge-
based signal characterization [1]. As points of sharp variations
are one of the most important features for analyzing signal
properties, this OCWR is useful in many applications, ranging
from image compression, surface reconstruction to medical
image processing [1-4].

Despite its capability for providing a meaningful representation,
a major concern with the OCWR is its computational
complexity. Unlike the sub-sampled wavelet scheme, the
computational time increases linearly with the number of
decomposition levels in the OCWR [1-2]. Therefore, complexity
becomes a major issue in its practical implementation. In
addition, it is conceived that the inverse transform is
computationally more expensive than the forward transform
since the reconstruction filters are always longer than the
forward filters in the Spline wavelet family.

In this paper, we study the computational complexity of the
OCWR. A general expression for the complexity of the Spline
wavelet family with an arbitrary order is derived. It is found that
the inverse transform is significantly more complicated than the
forward transform. This is undesirable in applications such as
surface reconstruction and image compression where the inverse
transform needs to be performed [2-6]. For example, while the
encoder in compression application can be very complicated, the
decoder is often required to be simple.

In order to reduce computation, we use the fact that the OCWR
provides a redundant image representation. This implies that
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correlation exists between the lowpass and the bandpass outputs.
By studying this redundancy, a new spatial interpretation for the
OCWR is obtained. Using this interpretation for an alternative
implementation, a general expression for the complexity is
derived. It is found that the proposed implementation can greatly
simplify the computation and give an efficient inverse structure.

2. OVER-COMPLETE WAVELET
REPRESENTATION

The OCWR for an image is obtained by applying filters to both
the horizontal and the vertical directions. There are three outputs
from a single level decomposition: the lowpass approximation of
the original image and two bandpass outputs. Mathematically,
the lowpass output is given by,

Xy(z1,22)=H(z1 )H(z2)X (21, 22) ey
Two bandpass outputs are written as,

Dll(Zl’ZZ):G(Zl)XO(Zl’ZZ) 2

D} (z1,2,)=G(z,)X,(z1.2,) A3)

where H(z), G(z) and Xg(z1,zp) denote respectively the
lowpass filter, the bandpass filter and the original image. In
reconstruction, the original image is given as,
_ 1
Xolz1,22) = K(Zl)L(Zz)D1 (z1.22)+

L(z) )K (22 )D12 (z1.22)+ H(z) )H (22)X1 (21, 22)
where H(z) is the time reverse of H(z) and K(z) and L(z) are

the bandpass reconstruction filters.
reconstruction, it is required that,
K(21)2(22)G(z1) + Lz )K (22 )6(z2) + )
H(z21)H (22 )H (21 )H (z3) =1
Eqn.5 is a necessary and sufficient condition for perfect
reconstruction.  Unlike the sub-sampling scheme, there is
considerable freedom in choosing these four filters.

“4)

To achieve perfect

Mallat and Zhong have constructed the wavelet function in such
a way that it is the derivative of a smoothing function [1]. The
local extrema of the resultant transform then characterize the
multiscale edges in the image. The set of wavelet functions is
commonly known as the Spline wavelet family. For an order n ,
the lowpass and the bandpass filters can be expressed
respectively as,

n
H(z) = ﬁ(l +27 )2n+l
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and G(z)= 2(2—1 - 1) (6)
The reconstruction filters can be shown to be,

()= ‘12”{ (/H /H ™

8 k=0
4n+2
L<z)_2{1 e } ®

Comparing the forward and the inverse filters shown in eqn.6 to
eqn.8, it can be seen that the numbers of filter coefficients for
G(z), H(z), K(z) and L(z) are 2, 2n+2, 4n+2 and 4n+3
respectively. As the inverse filters are significantly longer than
the forward filters, the computational complexity associated with
the inverse is much higher than that with the forward transform.

To analyze the computational complexity, the number of
additions and multiplications are calculated. This complexity
metric is of interest for both hardware and software realization.
The complexity for G(z) is given by,

Complexity (G) = Cost gqq + Cost yyltiply )
where Costgy and Cost,y4ipy, define the costs in having an

addition and a multiplication operations respectively. Using the
Binomial theorem, H (z) in eqn.6 can be expanded as follows,

H(z)= §C2n+1|: n—k +an+/(71] (10)

22n+1

m _ m! 1
where C; V%! (m B k)! . Analyzing eqn.10 gives that,

Complexity (H)= (2n +1)Cost 434 + (n + I)Costmumply (11)
In reconstruction, the complexities of H(z), K(z) and L(z)

need to be determined. H(z) can be obtained from eqn.10

simply by replacing z with 27" The complexity of A(z) thus
equals to that of H(z). For K(z), we expand the summations in

eqn.7 as follows,

K(Z) =B, [22n+1

2n]+ ZEk[ k_ kel

(12)
k=1
where
1 2n 2k
ngkz— “m oand  E;j=Bi -8 (13)
m

Eqn.12 shows that the complexity of K (z) equals to,

Complexity [K] = (4n + l)Cost add + (2n + l)costmulnply (14)
Employing the Binomial theorem, an expression for L(Z) can be
obtained through expanding eqn.8 as follows,

1
I(z)=PR+—— e Z{C4n+2[ 2n+17k+272n71+k:|} (15)
k=
where
1 I ani2
Pl = E|:1 t— 24n+2 CZI:’:l :| (16)

Analyzing eqn.15 shows that,
Complexity[L] = (4n + Z)Costadd + (Zn + 2)C0stmum~ply 17

A one level forward transform involves filtering in both
horizontal and vertical directions (cf. eqn.l to eqn.3).

Substituting filters expressions in eqn.7 and eqn.10 to eqn.l,
eqn.2 and eqn.3, we obtain,

1 2 2n+1 n —k —n+k, -1
Xl(Zlazz):m PINO thz X
2 k=0

z C2n+l[22n—k2 + 22—n+k2—1 ]Xo(Zl,Zz) (18)

Two multiphcatlons are merged into one in eqn.18, thus the
complexity in obtaining X (zl,zz) equals to,

(4n + 2)Cost 4qq + (2n + 1)Cost multiply (19)
The bandpass outputs can be obtained by substituting eqn.6 to
eqn.2 and eqn.3, their complexities then equal to,

Complexity [Xl ] =

Comple)city|:Dl1 :| = Complexil‘y|:Dl2 } (20)
= Costygq + COStmultiply

The complexity of the forward transform can thus be calculated
by summing up the complexities in eqn.19 and eqn.20, i.e.,
Complexity rp [F orward ]

= (4n + 4)Cost add + (2n + 3)Cost multiply
Similarly, the complexity of the inverse transform is calculated

e2))

by summing up the complexities in K(zl)L(zz)Dll(zl,zz),

Lz )K ()00 (21,23)  and  H(z)H(zp)X)(21,22).  The
complexity of H(zy)H(z3)X;(z1,z2) is same as that of

H(zl)H(zz)XO(zl,zz) and is given in eqn.19. For either

K (Zl )L(22 )Dl1 (Zl R 22) or L(Zl )K (22 )D12 (Zl , 22) , the complexity
equals to the sum of the complexities in K (z) and L(z) )

,l.e,
(811 + 3)C0stadd + (4n + 2)C05tmuln'ply (22)
Then the inverse complexity is found to be,
Complexity pp [[nverse]

= (201 +10)Cost 444 + (101 + 5)Cost yyipiy

Comparing eqn.21 and eqn.23, the inverse transform has a
significantly higher complexity (nearly five times) than the
forward transform. This is undesirable and we need to reduce its
computational complexity.

(23)

3. The NEW FORMULATION

The OCWR provides a redundant representation for an image.
Correlation exists between the lowpass and the bandpass outputs
which can be exploited in our calculation of the wavelet
transform. Indeed, many applications, such as discontinuity-
preserving surface reconstruction, contrast enhancement and
denoising, have benefited from this correlation in solving their
problems [1,3-6]. In order to study the correlation, we consider
the following expression from the 1D study [7].

1D Formulation: The expression

¥(z)= i c2ml [Z nek | k-l ]Xo ()
#=0

can be rewritten as,

Y(e)- 22n+1X0(z)+%{ 2y
k=1

k }DI(Z)

I -310




where
k
Di()=2 - 1Jrg(c) ana 4, = T2
m=0
Using the 1D formulation, we can derive an alternative

implementation structure for the OCWR.

Alternative Implementation: The lowpass output of the over-
complete wavelet transform using the Spline wavelet family with
an arbitrary order n can be rewritten as,

X](Zlazz) = Xo(zl,zz)+

#{E[Dlz(zbzz)]*' F2[D11(Zl=22)>yl(zl’22)]}

where
K [012(21, Zz)]: Yi(z1,2,)
= {22” + i Ay, [Zz_k2 - szz ] }Dlz(zbzz) 24)
k=l
and

D2 2] - {2% .

A,y [zl_k‘ - zlkl ] } X
-1

z1 -1
{Dll(zlszz)len—H)Yl(szz)} (25)
2
Proof: Using Lemma 1, it can be written that,

1
H(ZZ)XO(ZI’Zz): )(()(21,22)4_22’1T

{22" + i 4,4, [227"(2 —szz ] }Dlz(zl,zz) (26)

k=1
then,
X1(z1.22)

1 m, L k_k ] |
= X0(21,22)+—22n+2 {2 +kZ1A”_k' [zl Y=z Dy (zl,zz)+
=

2
Di(z.2,)] & 2n+1[ nk - 7]
1 n+k;—1
— 2y Ckl z, +z) X

24n+3 k=0

n
24 Y A4, , [zz*kz -z, ] 27)
k=1 :
Note that the last term in eqn.27 can be rewritten as,

W’G(Zlazz)‘*

(28)

1 P —k k ] -1
24%4{22%](2_1/1”,{1 [zl Lok 2(z1 —1)1/1(21,22)
<

The lowpass output can then be expressed as,

1
Xi(z1,22)=Xo(z1.22)+ S22 Yi(z1,22)+

1 m & [ —k k]
YIS {2 +k;1An*k1 zp =zt px
=

{of<zl,22>+ Yl<zl,22>]

(29)

2

which completes the proof. The alternative implementation
provides a way to relate the lowpass output, the original image

and the two bandpass outputs. It provides not only an alternative
implementation scheme for the forward transform, but also
simplifies the computation of the inverse transform. In
particular, the inverse can be easily calculated as follows,

1
Xo(zl,Zz)=X1(ZnZz)—22WX (30)

{FI[DIZ(ZI’ZZ)]+FZ[DII(ZI’ZZ)’YI(ZDZZ)]}
The proposed implementation for both the forward and the
inverse transforms is shown in Figure 1. In analyzing the
complexity, the complexities in /] and F, can be written as,

Complexity [Fl] = (Zn)Costadd + (n)Costmumply (€3]
Complexily[Fz] = (Zn + 2)Costadd + (n + l)Costmump[y 32)

Using eqn.31 and eqn.32, the forward and the inverse
complexities are found to be,
Complexity S[Forward ]

= (4n + 6)Costadd + (2n + 4)C05lmultiply (33)

and
Complexityg [Inverse]

= (4n + 4)Costadd + (21’! + Z)COSlmultiply (34)

4. ANALYSIS

In the filtering approach, the complexity of the forward
transform is much lower than that of the inverse transform
(eqn.21 and eqn.23). In contrast, the complexity of the forward
transform is slightly higher than that of the inverse transform in
the proposed approach (eqn.33 and eqn.34). Comparing the
filtering and the proposed approaches, we can see that the
complexity of the forward transform of the proposed scheme is
slightly higher than that of the filtering approach. However, the
complexity of the inverse transform of the proposed scheme is
much lower than that of the filtering approach.

In the proposed approach, no filtering is required for the
reconstruction of the original image. Rather, a simple spatial
implementation is used for the reconstruction. The
computational complexity of the inverse transform is thus greatly
reduced. It can be seen that the inverse transform using our
proposed scheme is one multiplication less than the forward
transform in the filtering approach.

Figure 2 shows a comparison of the computational complexity
between the filtering and the proposed spatial approaches for
different n orders. The saving in computation is significant. For
the quadratic Spline wavelet (n=1), the number of additions
reduces from 30 to 8 whereas the number of multiplications
reduces from 15 to 4. This gives a saving of 73.3% for both the
additions and multiplications. For the cubic Spline wavelet
(n=2), the number of additions reduces from 50 to 12 whereas
the number of multiplications reduces from 25 to 6. This gives a
saving of 76.0% for both the additions and multiplications.

Besides the decrease in computational complexity, the proposed
scheme handles the boundary in a nice way. Using the filtering
approach, there are two ways to deal with the boundary
extension problem: the signal is either symmetrically extended
before filtering or the boundary is corrected after the inverse
transform. The former would increase the computational time
especially for a large image while the latter involves the design
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of non-trivial boundary correction rules and is filter dependent.
However, using our proposed scheme, any arbitrary boundary
extension scheme can be used without affecting the ease of the
inverse transform. The prediction terms, /| and F,, always

remain the same in both the forward and the inverse transforms.
There is thus no need for boundary correction after
reconstruction.  The image can always be reconstructed
perfectly.

S. CONCLUSIONS

By deriving a general expression for the computational
complexity of the over-complete wavelet representation, it is
found that the inverse transform 1is significantly more
complicated than the forward transform using the filtering
implementation structure. In order to reduce the computational
complexity, a new spatial implementation is proposed. This
implementation exploits the correlation between the lowpass and
the bandpass outputs. It is shown that the new implementation
can greatly simplify the computation, give an efficient inverse
transform and allow the use of an arbitrary boundary extension
method.
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Figure 1: New spatial domain approach, (a) forward and (b)
inverse.

Figure 2: Plots of (a) the number of addition and (b) the number
of multiplication for different order n. The solid line is the
filtering approach and the dotted line is the new spatial approach.
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