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A new class of multiscale multidimensional stochastic processes  rowl —
called spatial random trees is introduced. The model is based
on multiscale stochastic trees with stochastic structure as well as p = (p1,p2)
stochastic states. Procedures are developed for exact likelihood — rowp; —
calculation, MAP estimation of the process, and estimation of the
parameters of the process. The new framework is illustrated through o Rectangld 1,
a simple binary image classification problem.

row q; —= N

1. INTRODUCTION q=(q1,q2)

row M;—{

In this work, we develop a new class of multiscale stochastic mod-
els for multidimensional signals that we capatial random trees
(SRTs). Similarly to [1, 2], our models are stochastic processes on
trees with each leaf corresponding to a single sample. Our key in-
novation, however, is that the tree structure itself is random and is
enerated by probabilistic grammai3]. . . . .
9 Probabil?/sgc grammarsghave b:a[e]n widely used in natural-lan- the Center-Surround algorithm—are described in Section 3. They

guage processing, for example, to model the structure of sentence§'© an extension qf—and were inspired by—the Forwqrd-Back\{vard
[4]. The concept of probabilistic grammar is based on the notion of algor!thm [4] for hidden Markov m_o_dt_els and the Inside-Outside
branching stochastic processes which have been used in studyin@‘lgomh_m [4.10, 1_1] for 1'D_ probablll_stlc grammars.

population dynamics since 1845 [5-7]. These problems have been While gxtenswe experlments W'th real datg are beyond the
posed either in 1-D where the objects under consideration, for ex-Scope of _th's_ paper, we include a simple synthetic example in Sec-
ample, words in sentences, are arranged linearly; or even in “0-D” tion 4 which illustrates our framework.

where the arrangement of objects, such as molecules of different

Pixel M = (M17M2)

Fig. 1. An illustration of our notation for images.

types in a population of particles, does not matter. Recently, there 2. SPATIAL RANDOM TREES
have been efforts to apply probabilistic grammars to 2-D problems
such as optical character recognition [8]. We consider images defined on &fi x M> rectangular domain

These developments have motivated SRTs—our new generalllustrated in Fig. 1. In other words, an imageis anM; x M-
framework for modeling multidimensional signals with probabilis- matrix of numbers. The rectangular domain whose upper left cor-
tic grammars. This framework is described in Section 2 and is the ner isp = (p1, p2) and whose lower right corneris= (g1, ¢2) is
central contribution of this paper. For simplicity, we restrict our denoted,,. Forp = (p1, p2), we writeu, andd,, = 0O, = p
exposition of SRTs to 2-D, but the generalization to an arbitrary to denote the value and location, respectively, of the pixel at the
number of dimensions is straightforward. intersection of rowp; and columnp,. We abbreviata = (1,1)

With our framework, we obtain exact algorithms for perform- and M = (A1, M), so that the whole domain of definition of
ing the three fundamental tasks required of such models: comput-imageu is O, ;.
ing data likelihoods; finding the MAP estimate of both the tree
structure and the tree states; and computing the parameter upy 1. probabilistic Grammars and Spatial Random Trees
dates required for each iteration of the EM algorithm [9] used to
train the model. These resulting algorithms—collectively termed SRTs model images with binary (dyadic) trees whose leaves are
image pixel locations, as illustrated in Fig. 2(a,b). A sample path
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Fig. 2. (a) A tree generated by our image grammar, by applying producjiehsj, j andj — u for o € {h,v} andu € {1,2,3,4,5,6}. (b) The same

tree superimposed onto the corresponding image. A short horizontal (vertical) line through a vertex signifies a horizontal (vertical) spdittexti{a) A

tree that does not correspond tofah x Ma rectangular grid. (d) Regardless of the split locations, the first row will have two “pixels” whereas the second
and third rows will only have one “pixel” each.

2 @iy Y(B) = O,p.(qy,a)y andV(y) = Oy 41y, fOr somed €
{p2,...,q2 — 1}, as illustrated in Fig. 3(b).

If zo = j, zg = k, andz,, = ¢, we denote a transition of the
first type (splitting ofY(«) along a horizontal line) by LN k0
and call it ahorizontal nonterminal productionNe denote a tran-
sition of the second type (splitting 8f(«) along a vertical line) by
j > k, £ and call it avertical nonterminal productionWe use®
to denote the set of possible orientations of a nonterminal produc-
tion: O = {h, v}, and we uséP to denote the set of all possible

Pixelg = (g1, 92) Piel(a1,d)  Pielg = (g1, 92) productions (both terminal and nonterminal).
@ (b) The triple (M, T, P) is called agrammar The discussion

. above means that, in our mod@t, consists of the following pro-
Fig. 3. Possible relationships between the yield of a vertex and the yields qyctions:
of its children: (a) horizontal split; (b) vertical split.

Pixelp = (p1, p2)

Pixel (p1, d + 1)

Pixelp = (P1,p2)

Pixel(d + 1, po)

Pixel (d, g2)

i > kot VjkteN,YoeO (1)
tree, and the “hidden” states corresponding to the remaining ver- i = u VjeEN, VueT. )
tices of the tree. Any state which can occur at a leaf vertex (i.e.
any possible pixel value) is calledterminal state and the set of Each nonterminal production- k, £ is assigned probability
all terminal states is denoted By. Any possible state for an inter-  Ppr0q(j — k, £), and each terminal productign— « is assigned
nal vertex (i.e. a vertex which is not a leaf) is calledaaterminal probability P,,04(5 — u), in such a way that the following nor-
state and the set of all nonterminal states is denotedvby malization equations are satisfied:

Theyield of any internal vertexx, denoted)(«), is the set of o
all leaf descendants of. In our model, the yield of every internal > Purod(i >k 0) + > Pproalj wu) =1, VjeN.
vertex of a tree is a rectangular region of the image. Every internal 0.kl u

vertex whose yield is a single pix&l,, is required to have a single
child—pixel locationd,—with a terminal state which is the image
value at that pixely,. If the parent of], has statg, we describe

In our model, the state of the root vertex can be any nonterminal
statej € N with probability P,..0¢(j) where

this transition ag — u,. Following the terminology of natural- Z Proot(j) = 1.
language processing, we call any transition of the fgrm» Jen
with j € A andu € T, aterminal production N ) )
We moreover impose that unless the yi€lg, of an internal The probability of any tre€’ is then defined to be the product of

vertexa is a single pixelo must have two children which are in- ~ the root state probability and the probabilities of all the produc-

ternal vertices with disjoint yields such that the union of the yields tions that are involved in generatilg. Denoting the set of all
is equal to the yield ofv. In this case, one further restriction is Intérnal vertices of” by Vi, the root ofT" by p, and the produc-

that the two children be an ordered pair, with the upper left cor- tion applied atx by A, we have:

ner, falling into the yield of the first child and the lower right
corne];Dq faIgIJing into th)é yield of the second child. An equivalgent P(T) £ Proot(2,) H Porod(Aa)-
explanation of these requirements is that there are the following «€Vint
possibilities for the yields of the childrefiand~y of a: Definition 1. The stochastic process defined by the probabilistic
(i) Y(B) = Op,(dge) @AY (Y) = O(dt1,ps),q fOr somed € grammar with productions (1,2), is calledspatial random tree
{p1,...,q1 — 1}, as illustrated in Fig. 3(a). (SRT).
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2.2. Generating Images from the Grammar of Eqgs. (1,2)

Note that a sequence of productions from Egs. (1,2) may generat
a tree whose leaves are not arranged ifAnx M, rectangle. For
example, while the tree of Fig. 2(c) is consistent with Egs. (1,2),
the “image” it produces is not defined on &y x M- rectangular
grid, for any M; and M. In addition to some desired trees such
as the tree of Fig. 2(a), our grammar generates undesired tree
It is moreover unclear whether there may be several images cor-

responding to the same desired tree. In the previous section, we

defined a probability for each tree; what we would like, however,
is a probabilistic model for images. We therefore need to resolve
the issue of unambiguously associating an image with every tree.

Fortunately it turns out that if a tree does produce an image,
that image is unique.

Definition 2 (Admissible trees). LetT be a tree generated by the
grammar of Egs. (1,2). Lé¥;,,: be the set of its internal vertices,
and letp be its root vertex. Suppose that there exist a pair of
positive integers\ = (M1, M>), and a bijective function

S: y(P) — Dl,M

which uniquely maps each leaf of the tree to a location id&nx
M, grid, and which has the following property.

The yield of each internal vertex of the tree is
mapped to a rectangular region. More formally,

Va € Vine 3p,q such that {F(6)|8 € Y(a)} = Op,.

We then say thal’ is anadmissible treeand § is an associated
admissibility function

The following theorem, which we state without proof, shows
that if the yield of a tree can be mapped to an image grid in a man-
ner described above and illustrated in Fig. 2(a,b), such a mapping
is unique.

Theorem 1 (Admissibility Theorem). If a treeT is admissible,
there is a unique admissibility function far.

2.3. Probability Model for Images

Suppose now that we have af, x M, imageu = u, u, and

an admissible tred&. If the yield of T is O, »; and the states of
the leaves ara, 7, we say that the tre® generateshe image

u. We define the everf?,, to be the set of all admissible trees that
generate the imaga. The termprobability of imageu (denoted
P(u)) is shorthand for the probability of the s@,. Note that
P(u) does not, in general, define a probability distribution on the
set of all images since the set of all admissible trees is not required
to have unit probability.

3. SPATIAL RANDOM TREES AND INFERENCE

Our framework of SRTs admits recursive algorithms for likelihood
calculation and for the estimation of the MAP (maximum a pos-
teriori probability) tree. The EM algorithm [9] can moreover be

adapted to search for the parameter values which maximize the

likelihood of an image or a set of images. These algorithms are
collectively termed th&enter-Surround algorithm The Center-
Surround algorithm is based on recursive calculations involving
centerandsurroundprobabilities which we presently describe.

For every rectangular regidnl,, of an imageu, we define
the center probability:,, to be the probability of all admissible

Grees that generate the subimagg and whose root state js In

other words, the center probability is the conditional probability of
subimageu,, given the evenf)! whereQ’ is the set of all trees
with root statej: cj,, = P(up,|€2’). In particular, the conditional

sorobability of the whole image giveft’ is c’lM Therefore, the

probability of imageu can be easily computed if the center prob-
abilitiesc’ ,, are known for all possible root statgs N

P(u) = Z Ci,MPToot(j)
JEN

®)

The following proposition, illustrated in Fig. 3, gives a recursive
algorithm for the computation af, ,,. It takes advantage of the
fact that any center probability for a rectangle containing multi-
ple pixels can be expressed in terms of the center probabilities for
smaller rectangles. Note that the first term of the recursion formula
below corresponds to summing over all possible horizontal split-
tings (Fig. 3(a)), and the second term corresponds to the vertical
splittings (Fig. 3(b)).

Proposition 1. For any nonempty rectangular domaif,, C
O,,m Withp # ¢, and anyj € NV,

q1—1

. h k L
Z Z Z Pproa(J = Ky €)Cp,(d,g0)C(d+1,p2).0

d=p1 kEN LEN

q2—1

) k L
DD Poroali 5 ks 0 (ay.a)Clprat) o

d=pa kEN LEN

d

Pq

—+

For anyp € O, a and anyj € N,

c

oo = Pproa(j — up).
Combining Proposition 1 with Eq. (3) gives a recursive algorithm
for calculating the probabilitf?(u) of imageu.

The probabilityP(u) can also be recursively calculated using
the surround probabilities;q. Each surround probability gives
the probability of the image region surroundibg},. The com-
bination of these two recursions makes it possible to perform one
iteration of the EM procedure for estimating the parameters of the
SRT from data. Due to space constraints, we are unable to de-
scribe the details of the training algorithm in this paper. It will be
published elsewhere.

There also exists a dynamic programming algorithm for MAP
tree estimation—i.e. for extracting the most probable figefor a
given imageu. The recursive formulas are a simple variant of the
center recursion of Proposition 1, with ™" replaced by tnax”.

The probability of the most probable treefdy with root statej is
denotedy’,. The base case is:

g‘;p = Pproa(j — up).

We recursively calculatgj;q for any rectangle in terms of proba-
bilities associated with smaller rectangles:

jsh . h, k ¢

Gy = max Pprod(J = k,€) 9p,(d,a2) I(d+1.p2).05
j ;v _ . k L

Gy = max Porod(J =k, ) 9p,(41.0) I(p1,d+1),4>
) o i

9 = max(ghy’, 9hy )
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Correct lassfication rate

0.2

Fig. 4. The rate of correct classification of noisy digit images from the X
WiNnDows 9x15 font, as a function of the noise level

Fig. 5. These two noisy digits (6 and 0) are classified correctly with our
algorithm. The noise levels ake= 0.1 ande = 0.2, respectively.

We in addition store the four-tuple of parametgwsk, I, d) which
have led to the maxima}},, whereo € {h, v} stands for the split

orientation. We call this four-tuplgl, . If gZi* > gZiv, then

j . h, k L
f]JJq = (h7 arg Ikn?fi( PP’I‘Od(] - k7 ‘é) gp,(d,qg) g(d+1,p2),q)'
Otherwise,
j . k L
f]JJq = (U: arg %1?‘?1( Pp'f’Od(J — k: Z) gp,(ql,d) g(pl,d+1),q)'

If the maximum is not unique, we can choose an arbitrary maxi-
mizing four-tuple. The probability of the MAP tré@is calculated
from theg variables,

~

P(T) = max g; 3Proot(4),
andT itself is constructed from the list of thevariables.

4. EXPERIMENTAL EXAMPLE

We now apply our likelihood computation algorithm of Section 3
to classifying binary images of noisy digits. Our data set consists
of the ten digits from the X Wipows 9x15 font whose charac-
ters arel0 x 7 pixel images, placed at various locations on a white
14 x 11 background. These images are corrupted by synthetic
noise which independently flips every pixel with probabikity

For each level of noise and each digit = 0,1,...,9, a
probabilistic grammag;,.. was obtained through a combination
of automatic training via the EM algorithm and manually writing
down certain productions and their probabilities. For several noise
levels in the rang® < ¢ < 0.2, we conducted 900 classifica-
tion experiments with noisy digit images. Each of the 900 images
was classified by calculating its likelihoods with respect to the ten
grammarsGo ., - - .,Go.. Classifying each image took about 3
seconds on an 800 MHz Pentium Ill processor.

Our experiments are summarized in Fig. 4 which shows a plot
of our estimates of the correct classification probability as a func-
tion of the noise levet, from the noise-free case = 0 to the
extremely noisy case af = 0.2. This latter case corresponds to
an average of about 31 incorrect pixels pérx 11 image, which,
as shown in Fig. 5, makes some images difficult to recognize for a
human. The plot in Fig. 4 demonstrates excellent performance of
our algorithm and graceful degradation for very noisy images.

5. CONCLUSIONS

We have presented general methods for computing the likelihood
of an observation of a multidimensional random field, and for es-
timating both the structure and the states of a stochastic tree from
such an observation. We refer to the associated new class of mul-
tiscale processes as spatial random trees. These models can be
used to classify and interpret images, and they can be trained using
the EM algorithm. A simple experiment illustrates their potential
value in signal-processing applications.
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