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ABSTRACT

A new class of multiscale multidimensional stochastic processes
called spatial random trees is introduced. The model is based
on multiscale stochastic trees with stochastic structure as well as
stochastic states. Procedures are developed for exact likelihood
calculation, MAP estimation of the process, and estimation of the
parameters of the process. The new framework is illustrated through
a simple binary image classification problem.

1. INTRODUCTION

In this work, we develop a new class of multiscale stochastic mod-
els for multidimensional signals that we callspatial random trees
(SRTs). Similarly to [1,2], our models are stochastic processes on
trees with each leaf corresponding to a single sample. Our key in-
novation, however, is that the tree structure itself is random and is
generated by aprobabilistic grammar[3].

Probabilistic grammars have been widely used in natural-lan-
guage processing, for example, to model the structure of sentences
[4]. The concept of probabilistic grammar is based on the notion of
branching stochastic processes which have been used in studying
population dynamics since 1845 [5–7]. These problems have been
posed either in 1-D where the objects under consideration, for ex-
ample, words in sentences, are arranged linearly; or even in “0-D”
where the arrangement of objects, such as molecules of different
types in a population of particles, does not matter. Recently, there
have been efforts to apply probabilistic grammars to 2-D problems
such as optical character recognition [8].

These developments have motivated SRTs–our new general
framework for modeling multidimensional signals with probabilis-
tic grammars. This framework is described in Section 2 and is the
central contribution of this paper. For simplicity, we restrict our
exposition of SRTs to 2-D, but the generalization to an arbitrary
number of dimensions is straightforward.

With our framework, we obtain exact algorithms for perform-
ing the three fundamental tasks required of such models: comput-
ing data likelihoods; finding the MAP estimate of both the tree
structure and the tree states; and computing the parameter up-
dates required for each iteration of the EM algorithm [9] used to
train the model. These resulting algorithms–collectively termed
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Fig. 1. An illustration of our notation for images.

the Center-Surround algorithm–are described in Section 3. They
are an extension of–and were inspired by–the Forward-Backward
algorithm [4] for hidden Markov models and the Inside-Outside
algorithm [4,10,11] for 1-D probabilistic grammars.

While extensive experiments with real data are beyond the
scope of this paper, we include a simple synthetic example in Sec-
tion 4 which illustrates our framework.

2. SPATIAL RANDOM TREES

We consider images defined on anM1 �M2 rectangular domain
illustrated in Fig. 1. In other words, an imageu is anM1 �M2

matrix of numbers. The rectangular domain whose upper left cor-
ner isp = (p1; p2) and whose lower right corner isq = (q1; q2) is
denoted�pq . Forp = (p1; p2), we writeup and�pp = �p = p
to denote the value and location, respectively, of the pixel at the
intersection of rowp1 and columnp2. We abbreviate1 = (1; 1)
andM = (M1;M2), so that the whole domain of definition of
imageu is�1;M .

2.1. Probabilistic Grammars and Spatial Random Trees

SRTs model images with binary (dyadic) trees whose leaves are
image pixel locations, as illustrated in Fig. 2(a,b). A sample path
of an SRT is a (deterministic) tree, i.e. a triple(V; E ; x) consist-
ing of a setV of all vertices, a setE of all edges, and a mapping
x which associates astatex� to every vertex�. We distinguish
between two types of states: the states corresponding to the im-
age pixel values which can only appear at the leaf vertices of the
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Fig. 2. (a) A tree generated by our image grammar, by applying productionsj
o
! j; j andj ! u for o 2 fh; vg andu 2 f1; 2; 3; 4; 5; 6g. (b) The same

tree superimposed onto the corresponding image. A short horizontal (vertical) line through a vertex signifies a horizontal (vertical) split at that vertex. (c) A
tree that does not correspond to anM1 �M2 rectangular grid. (d) Regardless of the split locations, the first row will have two “pixels” whereas the second
and third rows will only have one “pixel” each.
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Fig. 3. Possible relationships between the yield of a vertex and the yields
of its children: (a) horizontal split; (b) vertical split.

tree, and the “hidden” states corresponding to the remaining ver-
tices of the tree. Any state which can occur at a leaf vertex (i.e.
any possible pixel value) is called aterminal state, and the set of
all terminal states is denoted byT . Any possible state for an inter-
nal vertex (i.e. a vertex which is not a leaf) is called anonterminal
state, and the set of all nonterminal states is denoted byN .

Theyieldof any internal vertex�, denotedY(�), is the set of
all leaf descendants of�. In our model, the yield of every internal
vertex of a tree is a rectangular region of the image. Every internal
vertex whose yield is a single pixel�p is required to have a single
child–pixel location�p–with a terminal state which is the image
value at that pixel,up. If the parent of�p has statej, we describe
this transition asj ! up. Following the terminology of natural-
language processing, we call any transition of the formj ! u
with j 2 N andu 2 T , a terminal production.

We moreover impose that unless the yield�pq of an internal
vertex� is a single pixel,� must have two children which are in-
ternal vertices with disjoint yields such that the union of the yields
is equal to the yield of�. In this case, one further restriction is
that the two children be an ordered pair, with the upper left cor-
ner�p falling into the yield of the first child and the lower right
corner�q falling into the yield of the second child. An equivalent
explanation of these requirements is that there are the following
possibilities for the yields of the children� and
 of �:

(i) Y(�) = �p;(d;q2) andY(
) = �(d+1;p2);q for somed 2
fp1; : : : ; q1 � 1g, as illustrated in Fig. 3(a).

(ii) Y(�) = �p;(q1;d) andY(
) = �(p1;d+1);q for somed 2
fp2; : : : ; q2 � 1g, as illustrated in Fig. 3(b).

If x� = j, x� = k, andx
 = `, we denote a transition of the

first type (splitting ofY(�) along a horizontal line) byj
h
! k; `

and call it ahorizontal nonterminal production. We denote a tran-
sition of the second type (splitting ofY(�) along a vertical line) by
j

v
! k; ` and call it avertical nonterminal production. We useO

to denote the set of possible orientations of a nonterminal produc-
tion: O = fh; vg, and we useP to denote the set of all possible
productions (both terminal and nonterminal).

The triple (N ; T ;P) is called agrammar. The discussion
above means that, in our model,P consists of the following pro-
ductions:

j
o
! k; ` 8j; k; ` 2 N ; 8o 2 O (1)

j ! u 8j 2 N ; 8u 2 T : (2)

Each nonterminal productionj
o
! k; ` is assigned probability

Pprod(j
o
! k; `), and each terminal productionj ! u is assigned

probability Pprod(j ! u), in such a way that the following nor-
malization equations are satisfied:
X
o;k;l

Pprod(j
o
! k; `) +

X
u

Pprod(j ! u) = 1; 8j 2 N :

In our model, the state of the root vertex can be any nonterminal
statej 2 N with probabilityProot(j) where

X
j2N

Proot(j) = 1:

The probability of any treeT is then defined to be the product of
the root state probability and the probabilities of all the produc-
tions that are involved in generatingT . Denoting the set of all
internal vertices ofT by Vint, the root ofT by �, and the produc-
tion applied at� by��, we have:

P(T ) �
= Proot(x�)

Y
�2Vint

Pprod(��):

Definition 1. The stochastic process defined by the probabilistic
grammar with productions (1,2), is called aspatial random tree
(SRT).
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2.2. Generating Images from the Grammar of Eqs. (1,2)

Note that a sequence of productions from Eqs. (1,2) may generate
a tree whose leaves are not arranged in anM1�M2 rectangle. For
example, while the tree of Fig. 2(c) is consistent with Eqs. (1,2),
the “image” it produces is not defined on anM1�M2 rectangular
grid, for anyM1 andM2. In addition to some desired trees such
as the tree of Fig. 2(a), our grammar generates undesired trees.
It is moreover unclear whether there may be several images cor-
responding to the same desired tree. In the previous section, we
defined a probability for each tree; what we would like, however,
is a probabilistic model for images. We therefore need to resolve
the issue of unambiguously associating an image with every tree.

Fortunately it turns out that if a tree does produce an image,
that image is unique.

Definition 2 (Admissible trees). LetT be a tree generated by the
grammar of Eqs. (1,2). LetVint be the set of its internal vertices,
and let � be its root vertex. Suppose that there exist a pair of
positive integersM = (M1;M2), and a bijective function

F : Y(�)! �1;M

which uniquely maps each leaf of the tree to a location in anM1�
M2 grid, and which has the following property.

The yield of each internal vertex of the tree is
mapped to a rectangular region. More formally,

8� 2 Vint 9p; q such that fF(�)j� 2 Y(�)g = �pq:

We then say thatT is an admissible tree, andF is an associated
admissibility function.

The following theorem, which we state without proof, shows
that if the yield of a tree can be mapped to an image grid in a man-
ner described above and illustrated in Fig. 2(a,b), such a mapping
is unique.

Theorem 1 (Admissibility Theorem). If a treeT is admissible,
there is a unique admissibility function forT .

2.3. Probability Model for Images

Suppose now that we have anM1 �M2 imageu = u1;M , and
an admissible treeT . If the yield ofT is �1;M and the states of
the leaves areu1;M , we say that the treeT generatesthe image
u. We define the event
u to be the set of all admissible trees that
generate the imageu. The termprobability of imageu (denoted
P(u)) is shorthand for the probability of the set
u. Note that
P(u) does not, in general, define a probability distribution on the
set of all images since the set of all admissible trees is not required
to have unit probability.

3. SPATIAL RANDOM TREES AND INFERENCE

Our framework of SRTs admits recursive algorithms for likelihood
calculation and for the estimation of the MAP (maximum a pos-
teriori probability) tree. The EM algorithm [9] can moreover be
adapted to search for the parameter values which maximize the
likelihood of an image or a set of images. These algorithms are
collectively termed theCenter-Surround algorithm. The Center-
Surround algorithm is based on recursive calculations involving
centerandsurroundprobabilities which we presently describe.

For every rectangular region�pq of an imageu, we define
the center probabilitycjpq to be the probability of all admissible
trees that generate the subimageupq and whose root state isj. In
other words, the center probability is the conditional probability of
subimageupq given the event
j where
j is the set of all trees
with root statej: cjpq = P(upq j
j). In particular, the conditional
probability of the whole image given
j is c

j
1;M . Therefore, the

probability of imageu can be easily computed if the center prob-
abilitiescj

1;M are known for all possible root statesj 2 N :

P(u) =
X
j2N

c
j
1;MProot(j): (3)

The following proposition, illustrated in Fig. 3, gives a recursive
algorithm for the computation ofcj

1;M . It takes advantage of the
fact that any center probability for a rectangle containing multi-
ple pixels can be expressed in terms of the center probabilities for
smaller rectangles. Note that the first term of the recursion formula
below corresponds to summing over all possible horizontal split-
tings (Fig. 3(a)), and the second term corresponds to the vertical
splittings (Fig. 3(b)).

Proposition 1. For any nonempty rectangular domain�pq �
�1;M with p 6= q, and anyj 2 N ,

c
j
pq =

q1�1X
d=p1

X
k2N

X
`2N

Pprod(j
h
! k; `)ckp;(d;q2)c

`
(d+1;p2);q

+

q2�1X
d=p2

X
k2N

X
`2N

Pprod(j
v
! k; `)ckp;(q1;d)c

`
(p1;d+1);q:

For anyp 2 �1;M and anyj 2 N ,

c
j
pp = Pprod(j ! up):

Combining Proposition 1 with Eq. (3) gives a recursive algorithm
for calculating the probabilityP(u) of imageu.

The probabilityP(u) can also be recursively calculated using
the surround probabilitiessjpq . Each surround probability gives
the probability of the image region surrounding�pq. The com-
bination of these two recursions makes it possible to perform one
iteration of the EM procedure for estimating the parameters of the
SRT from data. Due to space constraints, we are unable to de-
scribe the details of the training algorithm in this paper. It will be
published elsewhere.

There also exists a dynamic programming algorithm for MAP
tree estimation–i.e. for extracting the most probable tree
u for a
given imageu. The recursive formulas are a simple variant of the
center recursion of Proposition 1, with “

P
” replaced by “max”.

The probability of the most probable tree in
u with root statej is
denotedgjpq. The base case is:

g
j
pp = Pprod(j ! up):

We recursively calculategjpq for any rectangle in terms of proba-
bilities associated with smaller rectangles:

g
j;h
pq = max

k;`;d
Pprod(j

h
! k; `) gkp;(d;q2) g

`
(d+1;p2);q ;

g
j;v
pq = max

k;`;d
Pprod(j

v
! k; `) gkp;(q1;d) g

`
(p1;d+1);q ;

g
j
pq = max(gj;vpq ; g

j;h
pq ):
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Fig. 4. The rate of correct classification of noisy digit images from the X
WINDOWS 9x15 font, as a function of the noise level".
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Fig. 5. These two noisy digits (6 and 0) are classified correctly with our
algorithm. The noise levels are" = 0:1 and" = 0:2, respectively.

We in addition store the four-tuple of parameters(o; k; l; d) which
have led to the maximalgjpq whereo 2 fh; vg stands for the split
orientation. We call this four-tuplef jpq . If gj;hpq > gj;vpq , then

f jpq = (h; argmax
k;`;d

Pprod(j
h
! k; `) gkp;(d;q2) g

`
(d+1;p2);q

):

Otherwise,

f
j
pq = (v; argmax

k;`;d
Pprod(j

v
! k; `) gkp;(q1;d) g

`
(p1;d+1);q):

If the maximum is not unique, we can choose an arbitrary maxi-
mizing four-tuple. The probability of the MAP treebT is calculated
from theg variables,

P( bT ) = max
j2N

g
j
1;MProot(j);

and bT itself is constructed from the list of thef variables.

4. EXPERIMENTAL EXAMPLE

We now apply our likelihood computation algorithm of Section 3
to classifying binary images of noisy digits. Our data set consists
of the ten digits from the X WINDOWS 9x15 font whose charac-
ters are10�7 pixel images, placed at various locations on a white
14 � 11 background. These images are corrupted by synthetic
noise which independently flips every pixel with probability".

For each level of noise" and each digitk = 0; 1; : : : ; 9, a
probabilistic grammarGk;" was obtained through a combination
of automatic training via the EM algorithm and manually writing
down certain productions and their probabilities. For several noise
levels in the range0 � " � 0:2, we conducted 900 classifica-
tion experiments with noisy digit images. Each of the 900 images
was classified by calculating its likelihoods with respect to the ten
grammarsG0;"; : : : ;G9;". Classifying each image took about 3
seconds on an 800 MHz Pentium III processor.

Our experiments are summarized in Fig. 4 which shows a plot
of our estimates of the correct classification probability as a func-
tion of the noise level", from the noise-free case" = 0 to the
extremely noisy case of" = 0:2. This latter case corresponds to
an average of about 31 incorrect pixels per14� 11 image, which,
as shown in Fig. 5, makes some images difficult to recognize for a
human. The plot in Fig. 4 demonstrates excellent performance of
our algorithm and graceful degradation for very noisy images.

5. CONCLUSIONS

We have presented general methods for computing the likelihood
of an observation of a multidimensional random field, and for es-
timating both the structure and the states of a stochastic tree from
such an observation. We refer to the associated new class of mul-
tiscale processes as spatial random trees. These models can be
used to classify and interpret images, and they can be trained using
the EM algorithm. A simple experiment illustrates their potential
value in signal-processing applications.
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