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ABSTRACT

We present a new class of estimators for approximating the

entropy of multi-dimensional probability densities based on

"m-spacing” estimators of Vasicek and others for estimating
entropies of one-dimensional probability densities. Unlike
plug-in estimators of entropy, which first estimate a proba-
bility density and then compute its entropy, our estimators
avoid the difficult intermediate step of density estimation.
For fixed dimension, the estimators are polynomial in the

Another method for estimating one-dimensional entropies
is based on the order statistics of a sample. In this paper, we
show how these consistent and rapidly converging estima-

.fors can be extended to multiple dimensions, resulting in ef-
?ective and computationally efficient entropy estimators for

multidimensional distributions.

2. M-SPACINGSESTIMATESIN ONE DIMENSION

2.1. Order statistics and spacings

sample size. Similarities to consistent and asymptotically consider a scalar random variafleand a random sample
efficient one-dimensional estimators of entropy suggest that ¢ 7 denoted byz!, Z2,...,ZN. Theorder statistics of a

our estimators may share these properties.

1. INTRODUCTION

The entropyH (f) of a continuous probability densitf( )
is given by

H(f) = —/jo f(z)log f(x) dz,

as described in [1]. In this paper, we concern ourselves with HN(Z',...Z

the estimation of the entropy when the dengify) is un-
known, but when we have a sample of siXedrawn iid
from this density. The estimation of entropy from a sam-
ple is an important problem, with applications in goodness-

of-fit tests, parameter estimation, source-coding, economet

rics, and many other areas [2].

Beirlant et al. [2] give an excellent review of standard
methods of entropy estimation. A common practice is to
use so-calleglug-in estimates. In this approach, the un-
known densityf(z) is first estimated from a sample using

any standard density estimation technique. Subsequently,

the entropy of the density estimaf¢z) is computed as an
estimate of the true entropy gt While plug-in estimates
work well in low-dimensions and for densities with known
parametric form, the difficult problem of density estimation
makes them impractical for small sample sizes in higher di-
mensions.
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random sample of are simply the elements of the sample
rearranged in non-decreasing ordgrt!) < Z(?) < .. <
ZW) (c.f. [3]). A spacing of order m, orm-spacing, is then
defined to bez(itm) — Z() for1 < i < i+m < N.
Finally, if m is a function of N, one may define the: y-
spacing as Zitm~) — z(0),

The m  —spacing estimator of entropy, originally due
to Vasicek [4], can now be defined as

( N gtitma) _ Z<i>)> ,

my
@
To see where this estimator comes from, we first make the
following observation regarding order statistics. oy
random variable Z with an impulse-free density p(-) and

)

continuous distribution function P(-), the following holds.
Let p* be theN-way product density*(Z*, Z2, ..., ZN) =

p(ZYHp(Z*)..p(ZN). Then

E,.[P(ZY) — P(Z")] Vi, 1<i< N-—1.

2
That is, the expected value of the probability mass of the
interval between two successive elements of a sample from
a random variabfeis justN+rl of the total probability (1.0).
This surprisingly general fact is a simple consequence of the
uniformity of the random variabl®(Z). P(Z), the random
variable describing the “height” on the cumulative curve of

TN+1

1The probability mass of the interval between two successive points is
the integral of the density function between these two points.
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a random draw fron¥ (as opposed to the functiaB(z))
is called theprobability integral transform of Z (c.f. [5]).
Thus, the key insight is that thetervalsbetween successi

order statistics have the same expected probability mass.

Using this idea, one can develop a simple entropy

mator. We start by approximating the probability density
p(z) by assigning equivalent masses to each interval be-.

tween points and assuming a uniform distribution of
mass across the intergalDefining Z (%)

mum of the support gé(z), we have:

1
N+1

Z(z‘+1) _

~ . 1
p(Z7Z 3t Z(2)7

zN) = ©)

for Z() < z < Z(+1D | Then, we can write
H(Z)

" p(2) logp(z)dz

.

o0

- / P(2) log p(2)d>
Z(1+1)

_ Z /

- Z /

_ZZ% Z(Hf)”r_l 700) log 70+

N 1 Z 08 ZGrD) — Z0)

Z log ————~

ﬁ ; log (N + (26 — 2))

zM)y.

. z) log p(z)dz

Z(i+1)
N+1
Z(i+1) _

N+1

7 — 0%

log

@) YAQ)

1 Z(i+1)
N+1
D _ 700 dz

Z (1)

N+1

Z(i+1) — 7(9)

N+1

Z(i+1) _ 7(i)

y 1
Hsimple(Z PRRRS

The approximatioria) arises by approximating the tr
densityp(z) by p(z; 2%, ..., ZN). The approximatior{b)

stems from the fact that we in general do not knoif)) and

ZN+1) i e. the true support of the unknown density. Th

fore, we form the mean log density estimate using only in-
formation from the region for which we have some informa-
tion, ignoring the intervals outside the range of the sample. .

This is equivalent to assuming that outside the sample r

the true density has the same mean log probability density

as the rest of the distribution.

to be the infimum
of the support op(z) and definingZ (N1 to be the supre-

2.2. Loweringthevariance of the estimate

The estimateqsimple has both intuitive and theoretical ap-
peaf, but it has relatively high variance since while the ex-
pectation of the interval probabilities (2) 'ﬁ’i_ their vari-
ance is high.

This problem can be mitigated, and asymptotically elim-
inated completely, by considering—spacing estimates of
entropy, such as

ve

esti-

this

Hon spacing(Z*,..., ZN) = 4)
N—1_
m 3 N+1 (m(i+1)+1) (mi+1)
v 2 (e zm) ).
=0
By letting
m — 00 m -0 (5)
7N b)
this estimator also becomes consistent [2]. It is typical to
setm = v/N.

The intuition behind this estimator is that by consider-
ing m-spacings with larger and larger valueswofthe vari-
ance of the probability mass of these spacings, relative to
their expected values, gets smaller and smallersAand
N grow, the probability masses fat-spacings concentrate
around their expected values. This property holdsafor
probability distributions with continuous cumulative distri-
bution functions.

A modification of (4) in which then—spacings overlap:

f{overlap(Zl, ceny ZN) = (6)
N—m
1 N+1 .
1 Zli+m) _ 7()
N —m Z Og < m ( ) I

i=1

reduces the asymptotic variance of the spacings estimator.
Note that this is equivalent asymptotically to Vasicek’s es-
timator [4]. Weak and strong consistency have been shown
given (5) by various authors under a variety of general con-
ditions. For details of these results, see [2]. Perhaps the
most important property of this estimator is that it is asymp-
totically efficient, as shown in [7].

ue
3. EXTENDING SPACING ESTIMATORSTO

MULTIPLE DIMENSIONS

ere- . . .
Ultimately, m-spacings estimators of entropy are based on

the intuition that sums of small random intervals (based
on order statistics) have consistent behavior. While there
is no clear extension ofrder statistics to higher dimen-
sions, there are methods for generating random regions of
multi-dimensional spaces with constant expected probabil-
ity mass. Such methods will allow us to extend the notion

ange,

2We use the notion of a density estimate to aid in the intuition behind
m—spacing estimates of entropy. However, we stress that density estima-  3The addition of a small constant renders this estimator weakly consis-
tion is not a necessary intermediate step in our ultimate entropy estimator. tent for bounded densities under certain tail conditions ([6]).
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Fig. 1. Hyper-Voronoi regions folNV = 4000 points. On the left the points were drawn from a uniform distribution over the

unit square. On the right, the points were drawn from a two-dimensional Gaussian distribution with diagonal covariance. In
each case, the Hyper-Voronoi regions have probability mass that is approximately linear in the number of Voronoi regions
that compose them. As a rudimentary test of tlxd/oronoi estimator we estimated the entropy of a two-dimensional unit
variance Gaussian like the one shown at right. The true entropy in nats for this distribution is approxtr8at@yOver 100

trials with N = 1000, our estimator produced a mean entropy Of7 with standard deviatiof.11. Presumably it is biased
upward by the assumption that probability is distributed uniformly (and hence with maximum entropy) in each Hyper-Voronoi
region. (For color versions of these figures, b&://www.eecs.ber kel ey.edu/"egmil/paper s/vor.pdf.)

of spacings estimates to higher dimensions. We present twoexternal regions when estimating expectations of quantities
(dual) methods for generating such random regions in the based on the sample, just as the spacings estimator ignores
next subsections. the Oth and Nth intervals in the spacings estimate. (See step
(b) of the H ;,,,... derivation.)
If the support off is known, then through a parallel

3.1. Voronoi regionsin D dimensions derivation. this leads to

Given a set of pointg'*, Z2, ..., Z~ in D dimensions, a set L
of Voronoi regions V', V2, ..., V¥ is formed by associating Hyor simpte = — Z log (NA(V?)), @
with each pointZ? the seti’? of all points which are closer N i=1

to Z! than to any other poing’. [8] is an extensive text

on Voronoi regions, Voronoi diagrams, and Voronoi tessel- where A(V") is the D-dimensional volume of Voronoi re

gion Vi, When the support is not known, an almost equiva-

lations. :
. . . lent estimator can be used:
One can easily construct a density estimate of an un-
known dlstr|but!0nf from asampleiof Siz&V in threg step;, Hyor—simptez = Z log (NA(VZ)) :
by 1) constructing the Voronoi regions, 2) assuming a fixed N — Vist AV oo
probability mass }%) for each Voronoi region, and 3) as- . ©)

suming uniform density over each Voronoi region. The only \yherex is the number of Voronoi regions with infinite vol-
subtlety here is that the density becomes effectively zero for me.

Voronoi regions which extend to infinity. As with the spac-
ings estimate, if we know the support of the unknown den-
sity f, we may bound these external regions and assign a
finite fixed density to them, or in the case when the sup- A simple variation on this theme is to use Delaunay regions
port is not known, we may simply choose to ignore these instead of Voronoi regions in the estimator. Delaunay re-

3.2. Delaunay regionsin D dimensions
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gions are the duals of Voronoi regions. In two dimensions, Assuming now that each Hyper-Voronoi regibri has

a Delaunay region is formed by connecting the centers of probability mass proportional to the number of (finite vol-
three mutually adjacent Voronoi regions [8]. Due to lack ume) regions it is composed of, that this mass is again dis-
of space, we cannot fully discuss the Delaunay estimators,tributed uniformly, that the number of (finite volume) Voronoi
but we note that they may be advantageous when we have aegions in a Hyper-Regioti ¢ is given byC(U?), and that

small sampleV and high dimensio®. N =Y, C(U?), we have the final form of our estimator:
m . ,
- _ cUY) NAUY)
3.3. m-Voronoi and m-Delaunay estimators Hitypervor = z; N log cui) - ©)
1=
Just as the 1-spacing estimat(ﬁ‘sgmp,e) was extended to We can extend this estimator to incorporate overlapping

them-spacings estimator{,,, - spacing), We can extend the  Hyper-Voronoi regions, as in the overlappingspacings
basic Voronoi and Delaunay entropy estimators to reduce estimate. We conjecture that these overlapping estimators
their variance. In one dimension, this was achieved by mereljiave similar consistency and convergence properties to the

“pasting” together contiguous intervals into anspacing, ~ one-dimensional overlappimg—spacing estimators, but the
as defined by the order statistics of a sampleDIdimen-  proof of these properties is left to future work.
sions, we will do this by pasting together multiple Voronoi Finally, regarding computational complexity, we note

regions intoHyper-Voronoi regions or multiple Delaunay  that for fixed dimension, the evaluation of (9) and its over-

regions intoDelaunay clusters. Hyper-Voronoi regions for ~ lapping version is polynomial itv. While Hyper-Voronoi

two different distributions are shown in Figure 2.2. regions can be implicitly defined in polynomial time, the
It is tempting to include in a Hyper-Voronoi region any ~ calculation of their volumes needed for (9) appears, unfor-

\oronoi region whose center is included in some Euclidean tunately, to be exponential in the dimension.

e-ball of a particular point. However, this method of form-

ing Hyper-Voronoi regions gives clusters with many more 4. REFERENCES
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