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ABSTRACT

This paper describes a vector space approach to solving the
multidimensiona (m-D) Yule-Walker equations for an ar-
bitrary region of support. This approach leads to a solution
that is simple to implement.

1. INTRODUCTION

Two-dimensional (2-D) autoregressive (AR) modelling has
found applications in image processing, sonar, and other ar-
eas. 3-D and higher dimensional AR modelling hasasyet to
be extensively studied but applications to signals that vary
in time, frequency, and space can easily be envisioned.

2. PROBLEM STATEMENT

The Yule-Walker equations in one dimension can be very
conveniently represented in matrix format (see Kay [1]).
The matrix approach works well because the region of sup-
port (ROS) for thefilter parametersof a1-D AR processisa
line segment, which leads to a set of Yule-Walker equations
that can easily be put into a matrix format. This convenient
representation leads to relatively simple algorithms that are
easily implemented in MATLAB or C.

2-D AR models, on the other hand, can be put into ama-
trix format but the representation is less natural and more
forced. This is caused by the 2-D ROS, which leads to a
much more complicated set of linear equations[1],[2]. Less
insight is gained from the matrix format and coding is more
difficult. Forcing 3-D and higher dimensional models into
a matrix format is even more strained and leads to an ex-
tremely difficult implementation.

The motivation in using a vector space approach is that
it leads to a natural method of representing the m-D Yule-
Walker equations. Thisis because vector spaces easily gen-
eralize to higher dimensions. The vector space method also
aids one'sintuition in developing and coding algorithms.
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3. SOLVING THE MULTIDIMENSIONAL
YULE-WALKER EQUATIONS

Consider an m-D AR process.
zln) == Y alklz[n — K] + u[n] @
kes!,

wheren = [ny ny ... ny,]T, S!, istheregion of support
for alk], and u[n] is white noise. The m-D Yule Walker
equations are found as follows

Elefn]a"[n — 1] =

— > alK|E[x[n — K]z*[n = 1]] + E[u[n]z*[n = 1]]. ()
kes:,

Defining the autocorrelation function as

r.[K] = E[z*[n]x[n + K]]

we have from (2) that
rell] == " aklr[l =k 1€S,. ©)
kesy,
This assumes that E[u[n]z*[n —I]] = 0 for | € S],. Note

from (1) that z[n — 1] for | € S, constitutes the " past”,

which is uncorrelated with u[n]. Also from (1)
2
} (4)
where S,, = S/

7. U{k = 0} and a[0] = 1. This can be
shown to reduce to

0’=E [ > alklzn - k]x*[n]]

> alk]az[n - K]

keSm

Elluln]]’] = E {

keSS,
= alk]r.[-kK]. (5)
keS,
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As aresult (3) and (5) can be combined to yield the com-
plete set of Yule-Walker equations

> alKlra[l = K] = 0%0[] for 1€ S, (6)

kKeS
| =
ol = {(1) | 4 g.

= alk]/o?, this becomes

> bk

keSm
We can view (7) as a linear transformation, which trans-
forms the vector b[K] into the vector 6[k]. We represent this
transformation symbolically as

L{blk]} = d[k]. ®)

Note that the domain and range spaces are the same since
blk] € V, 0[k] € V whereV is the space of complex se-
quences defined on S,,,.To appreciate the generality of (8)
we give a few examples. In Figure 1a we show the usual
ROS for the parameters of a 1-D AR process (a[0] = 1
isincluded asit is for the following examples). In Figure
1b the ROS is shown for a 2-D quarter plane, in Figure 1c
the ROS is shown for a 2-D nonsymmetric half plane and
finaly, in Figure 1d the ROS is shown for a 3-D nonsym-
metric half space. The process parametersare al defined by
blk] = a[k]/a? fork € S,,.

where

Letting b[K]

re[l =k =6[] 1 €5, (7)

c

Fig. 1. lllustration of Common Regions of Supportsfor AR
Process Parameters

Now consider v as a vector in V. The dimension of V
is equal to the number of elementsin S,, and is denoted
by |Sm|. For example from Figure 1ab,c,d we have that
|Sl‘ =35, ‘52| =6, |S2| =13, and |Sg‘ = 14, r&spectlvely

Thenatural basisfor Vis{ei, ez, ..., ¢g,,}, Wheree; has
alinitsi™ position and O otherW|se To solve (8) for b[K]
we first define an inner product as

<1)u1>—-§£: 2:

keSm 1€Sm

To verify that thisisavalid inner product we notethat r,, [| —
k] can be written as

rzll — K] = Elz"[K]x[l]] (10)
and as aresult
<wvw > = SN v[k]x*[k]xmw*[l]]
keSm 1€Sm
= E|> okatk > x[l]w*[l]}
keSS, €S,

from which the usua properties of theinner product follow.
Assume we can find an orthonormal basis for V or

{111, V2, «vvy U\Sm|} where < Vi, Vj >= 51']' so that
> > vkl =Kol = {f ISty
KE Sy, 1€5m, t=J-

Since bk] € V we can represent it as a linear combination

of basisvectors, b[k] = Z‘S ‘ﬁzvz[ k] and the Yule-Walker
equations then become from (7)

[Smn |
S8 Y vilklral k] =6] €S, (12
i=1 keS,,

Now multiply by v[l] for each | € S,,, and sum to yield

|Sml
S5 > S wilklrall - Kzl = > el (13)
=1 keSS, 1€S, €S,
or
|SM‘
> Bi<vi,v> =Y vrlal]. (14)
=1 €S
But < v; y U > = 6”,Sothat
B = Y v;lall] (15)
1eSm
forj=1,2,...,|Sm|. Therefore,
‘SWL‘
=) v lsvilk]. (16)
i=1 €S,
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Findly, since > .o vf[lJd[l] =

comes
Z v} [0]v; [K].

We have assumed that we can find an orthonormal basis
for V. To obtain this basis for ¥V a Gram-Schmidt (GS) or-
thogonalization is performed on {ey, es, ..., ¢s,,|} Which
produces {v1, v2, ..., v|g,,}- It proceeds asfollows:

v7[0], the solution be-

(17)

€1

v = ——
P Jleall

andfork =2,3,...,|Sn]

k—1
—E < ;> U4
Vi = Ck 2_711 €k, Yi vi . (18)
llex — 21:1 < ek, vi > vl

It is important to realize that no matrix inversions are re-
quired. The principal source of computation is due to the
need to compute inner products. However, these are easily
done as follows. Theinner products can be computed as

<vw> = > 3 wlklr[l = Kjw*[]
keSm 1€Sm,
= > w0 okrall — k.
leSm keSm
Let 2[l] = Syes. vlk]ra[l —K]. Then,

To calculate the above we shift the r,, array and then per-
form an element by element array multiply and sum.

4. RESULTS

We will go through two examples to demonstrate some re-
sults and suggest how to use MATLAB to solve the Yule-
Walker equations. For thefirst example, wewill usethe sep-
arable 3-D AR(1,1,1) process with QP ROS that was used
by Choi (see[3])

x[n1, ne,ng] = 0.9z[ny — 1,ng, n3] + 0.88x[ny, ngy — 1, ng]
+ 0.95x[n1,n9,n3 — 1] — 0.7920z[ny — 1,n9 — 1, n3]
— 0.8550x[n; — 1,n9,n3 — 1] — 0.8360z[ny,ne — 1,n3 — 1]

+0.7524z[n; — 1,n2 — 1,n3 — 1] + u[ny, ne, ng).

The autocorrelation function is
o[k, ko, ks] = 0.91F110.881F210.951%s] (19)

To use the theory developed in this paper to find the AR
parameters the following steps must be coded.

1. Determine the ROS and hence indices of the AR pa-
rameters in the ROS.

2. With the indices of the AR parameters determine the
correlations needed in . [| — k] (see 9).

3. Use the Gram-Schmidt process of (18) to find an or-
thonormal basis using the inner product in (9).

4. The AR parameters are found directly from (17).

Using the above we obtain

a|0,0,0] = 1.0000

[0,0,0]
a[1,0,0] = —0.9000
al0,1,0] = —0.8800
al0,0,1] = —0.9500
af1,1,0] = 0.7920
a[1,0,1] = 0.8550
al0,1,1] = 0.8360
a[1,1,1] = —0.7524

which is the correct result.

For the next example we use another 3-D AR(1,1,1) pro-
cess but thistimeit is non-separable and hasthe NSHP ROS
asin Figure 1d.

=0.80z[n; — 1,n2 + 1,n3 + 1]
+0.50z[ny — 1,n9 —

l’[nl, na, n3]

1,m3 — 1] + u[ny, n2, ng).
The vector space method resultsin
al0,0,0] = 1.0000

a[l,—1,—1] = —0.8000
a[l,1,1] = —0.5000

the rest of the parameters are zero, as expected.

5. CONCLUSIONS

In this paper we have developed a simple method to solve
the m-dimensional Yule-Walker equations with an arbitrary
region of support. No matrix inversions are reguired and
coding is easily accomplished. A complete implementation
in MATLAB is available upon request.
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