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ABSTRACT
Tensors and tensor fields are commonly used in multidimen-
sional signal processing to represent the local structure of
the signal. This paper focuses on the case where the sam-
pling on the original signal is anisotropic, e.g when the res-
olution of the multidimensional image varies depending on
the direction which is common e.g. in medical imaging de-
vices. To obtain a geometrically correct description of the
local structure there are mainly two possibilities. To resam-
ple the image prior to the computation of the local structure
tensor field or to compute the tensor field on the original
grid and transform the result to obtain a correct geometry of
the local structure. This paper deals with the latter alterna-
tive and contains an in depth theoretical analysis establish-
ing the appropriate rules for tensor transformations induced
by changes in space-time geometry with emphasis on veloc-
ity and motion estimation.

1. INTRODUCTION

Local structure tensors1 [1, 2] has played an important role
in multidimensional image processing since the end of the
eighties. The concept of tensor representation for local im-
age structure can be generalized to an arbitrary number of
dimensions and tensors have e.g been used for representing
orientation, velocity, curvature [3], diffusion and are central
for adaptive filtering [4] and motion compensation [5].

Fig. 1. Actual sampling grid and Initial representation of
ultrasound images.

To obtain an true description of the local structure in
the signal it is essential that the imaging device provide an

1symmetric tensors of order two

isotropic sampling of the signal. For many imaging devices
this condition is not fulfilled. In medical imaging CT and
MRI volume data do generally have significantly higher res-
olution within each scan plane compared to the distance be-
tween two adjacent planes. Another example is ultrasound
images where the scanning is performed on a polar grid,
see fig. 1. In order to produce a correct geometry of the lo-
cal structure such images are generally resampled to a regu-
lar grid before the computation of the local structure of the
signal. Such a regularization introduce anisotropic proper-
ties in the signal as well as in the noise which significantly
complicates both the computation of the local structure ten-
sor and subsequent computations such as e.g. estimation of
motion fields. For an ultrasound image a resampling to a
geometrically correct grid will induce a difference in res-
olution between the radial and angular directions of more
than5 times in the lower part of the image.

In this paper a new method to overcome the anisotropy
effects induced by a resampling is proposed. The local struc-
ture tensor field is computed on theoriginal grid and is then
transformed to coincide with the resampled image with cor-
rect geometrical properties. To make such a transformation
useful a number of mathematical conditions has to be met
but questions of more philosophical art do also appear as e.g
should the transformation induce changes in the relations
between the eigenvalues of the local tensor. In section 7 an
efficient algorithm for transformation of local structure ten-
sors is proposed. In this paper 3D tensors (3D volumes or
2D + time) are used to exemplify the results but the theory is
straight forward to generalize to second order tensors of ar-
bitrary dimensionality. In tensor calculus the Einstein sum-
mation convention is frequently used to streamline algebraic
expressions. For second order tensors a matrix notation is
sufficient and as it is expected to be more familiar to most
readers this presentation is based on a matrix notation.

2. LOCAL AFFINE COORDINATE
TRANSFORMATIONS

Denote the coordinates of the original sample points by the
vectorx. Let A be a local matrix that transforms the coor-
dinatex to the a geometric correct gridx′.

x′ = Ax (1)
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The diagonal ofA define the scale change in each dimen-
sion. When working with MRI and CT data the off diago-
nal terms are generally zero but for more complex changes
in the space-time geometry, as in the ultrasound example,
the matrixA also include rotation, shear and deformation.
The degrees of freedom in this local affine model of the co-
ordinate transformation is considered to be satisfactory for
most sampling patterns. The only formal requirement for
the matrixA to be useful as a descriptor of the changes in
geometry is thatdet(A) 6= 0.

3. VELOCITY ESTIMATION FROM LOCAL
STRUCTURE TENSORS

There are several methods to compute a local structure ten-
sorT . The authors prefer to estimate the local tensor from
a set of polar separable quadrature filters [2] but a variety
methods exist see e.g.[6]. Independent of how the tensor
is estimated a three dimensional tensor of order two can be
defined as

T = λ1 ê1ê
T
1 + λ2 ê2ê

T
2 + λ3 ê3ê

T
3 (2)

where the vectors[ê1, ê2, ê3] constitute an orthonormal base
and the eigenvalues are defined byλi. Furthermore it is as-
sumed thatλ1 ≥ λ2 ≥ λ3. Before the actual tensor transfor-
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Fig. 2. Scaling along thex-axis,x′ = k x.

mation is considered lets study the simple example in fig. 2.
The left part of the figure show a point and a line that move
a certain distance betweent = 0 andt = 1. The right part
of the figure illustrate the same situation where the image is
scaled in the horizontal direction. It is apparent that these
two velocity estimates behave differently under the transfor-
mation. For the moving point, the velocity components are
transformed according to the image

v′
x = k vx v′

y = vy (3)

For a moving line or edge only the perpendicular motion
component can be estimated locally (the aperture problem).

In this case the transformation of the velocity components
become more complex.

v′
x = k vx

v2
x + v2

y

v2
x + k2v2

y

v′
y = k2 vy

v2
x + v2

y

v2
x + k2v2

y

(4)

The derivation of eq. (4) is straight forward but cumbersome
and is for that reason left out. In this 3D (2D + time) envi-
ronment a moving line and a moving point corresponds to
tensors of different rank which have obvious consequences
for the transformation.

4. TRANSFORMATION OF RANK 1 TENSORS

In a sequence of 2D images (2D + time) a moving line will
generate a plane. In the Fourier Domain (FD) a plane will
only have energy contributions in one direction (perpendic-
ular to the plane) and the resulting tensor will be of rank 1
(λ2 = λ3 = 0). From the inclination of the plane the ve-
locity components in the image plane can be deduced. A
line moving with the velocity(vx, vy)T corresponds to the
following tensor:

e1 =


 x1

x2

x3


 =


 vx

vy

−v2
x − v2

y


 T = e1 eT

1 (5)

as for a rank 1 tensor the image velocity is computed as:

vline =
−x3

x2
1 + x2

2

(
x1

x2

)
(6)

see [2, p. 255] for details. Based on the matrixA in eq. (1)
there are two possibilities to transform a second order ten-
sor. The transformation can be either ‘covariant’ or ‘con-
travariant, with respect to the transformation of the grid.

T ′ = A T AT ‘covariant’
T ′ = (A−1)T T A−1 ‘contravariant’

(7)

As will soon be apparent it is the latter transformation that
is relevant in this case. The ‘contravariant’ transformation
in eq. (7) can be rewritten as

T ′ = e′
1 e′

1
T = (A−1)T e1

[
(A−1)T e1

]T
(8)

The eigenvector ofT ′ is identified as

e′
1 = (A−1)T e1 (9)

Lets return to the simple example in fig. 2, this case corre-
sponds to anA matrix with (k, 1, 1) in the main diagonal
and zeros elsewhere. Using eq. (9) the new eigenvector is
computed as

e′
1 =


 k−1 vx

vy

−(v2
x + v2

y)


 (10)
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from which the new image velocity can be computed using
eq. (6)

v′
line =

v2
x + v2

y

v2
x + k2v2

y

(
k vx

k2 vy

)
(11)

which is in agreement with the initial result in eq. (4). Al-
though this is no formal proof we conclude for the moment
that the local structure of spatio-temporal rank 1 tensors
are preserved when transformed asT ′ = (A−1)T T A−1.
Note, however, that norm of the tensor is changed during
the transformation. This will be attended to later.

5. TRANSFORMATION OF RANK 2 TENSORS

A moving point in a (2D + time) environment generates a
line. In the FD a line has energy contributions in two direc-
tions perpendicular to the line. This local structure is repre-
sented by a tensor withλ1 ≈ λ2 andλ3 = 0. In this case
the velocity information is carried by the third eigenvector.
Fore3 = (x1, x2, x3)T the image velocity is computed as

vpoint =
(

vx

vy

)
= x−1

3

(
x1

x2

)
(12)

see [2, p. 255]. From the requirements for the moving point
example in fig. 2 it is obvious that the transformed rank 2
tensor must fulfill

e′
3 = A e3 λ′

3 = 0 (13)

Now consider a rank 2 tensor

T = ê1 êT
1 + ê2 êT

2 (14)

Let’s transform this tensor in accordance with the rank 1
case in the previous section. This may seem as the opposite
way but bear with us for a moment.

T ′ = (A−1)T T A−1 (15)

The local structure is preserved in this transformation only
if

T ′ Aê3 = 0 (16)

To verify this insert eq. (14) and (15) into eq. 16

T ′ e′
3 = (A−1)T (ê1ê

T
1 + ê2ê

T
2 )A−1A ê3 = 0 (17)

This somewhat surprising result implies thatboth rank 1
and rank 2 tensors preserves the velocity information when
transformed ‘Contravariant’ with respect to to the image.
Note, however that the magnitudes of the nonzero eigenval-
ues are changed during the transformation.

5.1. A simple rank 2 example

Consider a point moving in the horizontal direction with ve-
locity v. Following the requirements ofe3 in eq. (12) this

local structure can be expressed as

e1 =


 1√

1 + v2

−v


 e2 =


 −1√

1 + v2

v


 e3 =


 v

0
1




T = e1 eT
1 + e2 eT

2

ComputeT ′ using the sameA matrix as in the rank 1 case.

T ′ = (A−1)T T A−1 = 2


 k−2 0 −k−1v

0 1 + v2 0
−k−1v 0 v2




wheree′
3 = (kv, 0, 1)T and T ′ e′

3 = 0

6. TRANSFORMATION OF FULL RANK TENSORS

In practice all estimated local structure tensors have rank 3
(λ3 > 0). From the distribution of the eigenvalues a deci-
sion has to be made on how to interpret the neighborhood
when e.g. a velocity field is computed from the local spatio-
temporal structure tensors. This is an old problem and the
proposed concept offers no solution here but if the origi-
nal sampling grid is anisotropic it is possible to address the
problem one step ahead.

So far we have concluded that the ‘contravariant’ trans-
formation in eq. (7) preserves the local structure for rank 1
and rank 2 tensors. By inserting a rank 3 tensor into eq. (17)
it is obvious that the velocity information is not preserved
in the full rank case. Consequently the isotropic part of the
tensor has to be removed prior to the transformation.

T 0 = T − λ3 I (18)

The eigenvectors ofT and the rank 2 tensorT 0 are identi-
cal and consequently the local structure is preserved in the
transformation ofT 0. The isotropic part can, if desired,
be reinserted afterwards. Note that the eigenvalues ofT
can be computed efficiently e.g by using Cardanos formula
[7, 6], without solving the eigenvalue problem. In section 7
an efficient algorithm for transformation of spatio-temporal
tensors is presented.

6.1. Mapping of eigenvalues

The relations between the eigenvalues is an important fea-
ture for subsequent operations on the tensor fields. Since
the relations between the eigenvalues are changed during
the transformation this may require some consideration. To
simply let the coordinate transformation matrix,A, control
the entire process may at a cursory glance seem to be the
proper way to perform the transformation and ensure that
the relation on the new grid is reflected as far as possible
by the transformed tensor. For volume data (data with no
temporal dimension) this is undoubtly the proper method to
perform the transformation. In this case there is no need to
limit the rank of the tensor prior to the transformation.
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For data set that contain a temporal dimension (spatio-
temporal data) additional requirements must be considered
as in this case the resulting structure must support a robust
estimation of the motion present in the sequence. A change
in the relation of the eigenvalues will in this case cause
a misinterpretation of the local neighborhood which limits
the precision in the estimated motion field. For a time se-
quence it is consequently better to let the relation between
the eigenvalues reflect relations on the original grid while
the eigenvectors are transformed. In the next section an ef-
ficient algorithm that meets these requirements is presented.

7. AN ALGORITHM FOR TENSOR
TRANSFORMATION

This section presents an efficient algorithm for tensor trans-
formation that preserves the original relation of the eigen-
values to enable estimation of the true velocity field on the
new grid from the resulting tensor.

1. For the original tensorT computeλ1,λ2 andλ3 e.g.
by using Cardanos formula [7, 6].

2. Remove the isotropic part of the tensor,
T 0 = T − λ3 I

3. ComputeT ′
0 = (A−1)T T 0 A−1. The transforma-

tion preserves the velocity information but the rela-
tions between the eigenvalues are changed.

4. Computeλ′
01 andλ′

02 for T ′
0 using Cardanos formula

once more (λ′
03 = 0 due to step 2).

5. ComputeN i = eie
T
i using Knutssons eigenvector

formula (for a rank 2 rensor).

N1 = (T ′
0 − λ′

02I)T ′
0

N2 = (T ′
0 − λ′

01I)T ′
0

N3 = I − N̂1 − N̂2

(19)

6. To preserve the original eigenvalues in the transformed
tensor compute the resulting tensor as:

T ′ = λ1N̂1 + λ2N̂2 + λ3N̂3 (20)

wherê denotes normalization.

Figure 3 shows an example of motion estimation using the
above algorithm. The arrows indicate the estimated motion
of the heart wall and the mitralis valve.

8. CONCLUSION

The temporal dimension is inherently different from the spa-
tial dimensions when a transformation of the local structure
tensor is considered. To preserve the velocity information
both the rank and the relations of the eigenvalues must be

Fig. 3. Motion estimation from ultrasound image.

attended to. In this paper we have presented an efficient al-
gorithm that preserves the velocity information during the
transformation which enable estimation of the local struc-
ture on the original grid and eliminates the anisotropy ef-
fects associated by estimation the local structure after a re-
sampling.
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