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ABSTRACT isotropic sampling of the signal. For many imaging devices

Tensors and tensor fields are commonly used in multidimen-this condition is not fulfilled. In medical imaging CT and
sional signal processing to represent the local structure ofMRI volume data do generally have significantly higher res-
the signal. This paper focuses on the case where the samplution within gach scan plane compared to the_d|stance be-
pling on the original signal is anisotropic, e.g when the res- tween two adjacent planes. Another example is ultrasound
olution of the multidimensional image varies depending on images where the scanning is performed on a polar grid,
the direction which is common e.g. in medical imaging de- See fig. 1. In order to produce a correct geometry of the lo-
vices. To obtain a geometrically correct description of the cal structure such images are generally resampled to a regu-
local structure there are mainly two possibilities. To resam- lar grid before the computation of the local structure of the
ple the image prior to the computation of the local structure Signal. Such a regularization introduce anisotropic proper-
tensor field or to compute the tensor field on the original ties in the signal as well as in the noise which significantly
grid and transform the result to obtain a correct geometry of complicates both the computation of the local structure ten-
the local structure. This paper deals with the latter alterna-SOr and subsequent computations such as e.g. estimation of
tive and contains an in depth theoretical analysis establish-motion fields. For an ultrasound image a resampling to a
ing the appropriate rules for tensor transformations inducedgeometrically correct grid will induce a difference in res-
by changes in space-time geometry with emphasis on veloc-Olution between the radial and angular directions of more

ity and motion estimation. than5 times in the lower part of the image.
In this paper a new method to overcome the anisotropy
1. INTRODUCTION effects induced by a resampling is proposed. The local struc-

ture tensor field is computed on theginal grid and is then
transformed to coincide with the resampled image with cor-
rect geometrical properties. To make such a transformation
eighties. The concept of tensor representation for local jm- US€ful @ number of mathematical conditions has to be met

age structure can be generalized to an arbitrary number ofoUt quéstions of more philosophical art do also appear as e.g

dimensions and tensors have e.g been used for representin%}"omd the transformation induce changes in the relations

orientation, velocity, curvature [3], diffusion and are central Petween the eigenvalues of the local tensor. In section 7 an
for adaptive filtering [4] and motion compensation [5]. efficient algorithm for transformation of local structure ten-
sors is proposed. In this paper 3D tensors (3D volumes or

2D +time) are used to exemplify the results but the theory is
straight forward to generalize to second order tensors of ar-
bitrary dimensionality. In tensor calculus the Einstein sum-
mation convention is frequently used to streamline algebraic
expressions. For second order tensors a matrix notation is
sufficient and as it is expected to be more familiar to most
readers this presentation is based on a matrix notation.

Local structure tensotg1, 2] has played an important role
in multidimensional image processing since the end of the

2. LOCAL AFFINE COORDINATE
TRANSFORMATIONS

Fig. 1. Actual sampling grid and Initial representation of

ultrasound images. Denote the coordinates of the original sample points by the

. . . vectorz. Let A be a local matrix that transforms the coor-
To obtain an true description of the local structure in §inatex to the a geometric correct grie.

the signal it is essential that the imaging device provide an

Lsymmetric tensors of order two T = Az (1)
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The diagonal ofA define the scale change in each dimen- In this case the transformation of the velocity components
sion. When working with MRI and CT data the off diago- become more complex.
nal terms are generally zero but for more complex changes
in the space-time geometry, as in the ultrasound example, '
the matrix A also include rotation, shear and deformation. U
The degrees of freedom in this local affine model of the co-
ordinate transformation is considered to be satisfactory for The derivation of eq. (4) is straight forward but cumbersome
most sampling patterns. The only formal requirement for and is for that reason left out. In this 3D (2D + time) envi-
the matrix A to be useful as a descriptor of the changes in ronment a moving line and a moving point corresponds to
geometry is thatlet(A) # 0. tensors of different rank which have obvious consequences
for the transformation.

2 2 2 2
vx+vy 9 varvy

!
—_— ’U' = k v _—
v2 + k%g y Y2+ k%g

(4)

3. VELOCITY ESTIMATION FROM LOCAL
STRUCTURE TENSORS 4. TRANSFORMATION OF RANK 1 TENSORS

There are several methods to compute a local structure tenln @ sequence of 2D images (2D + time) a moving line wil

sorT. The authors prefer to estimate the local tensor from generate a plane. In the Fpune_r Doma]n (F.D) a plane V‘.”"
a set of polar separable quadrature filters [2] but a varietyOrlly have energy contributions in one direction (perpendic-

: lar to the plane) and the resulting tensor will be of rank 1
methods exist see e.g.[6]. Independent of how the tensorl(J/\2 — ); = 0). From the inclination of the plane the ve-

is estimated a three dimensional tensor of order two can belocity companents in the image plane can be deduced, A

defined as . . . )
line moving with the velocity(v,,, v,)” corresponds to the
T = 2 687 + Xy 8287 + Ay e567 @) following tensor:
A A oA . I Ve
where the vectorg,, é,, €] constitute an orthonormal base er= | o _ v, T—e €1T ®)

and the eigenvalues are definedqyy Furthermore it is as- L= 9 9
T3 —Vz — vy

sumedthah; > Ay > \3. Before the actual tensor transfor-
as for a rank 1 tensor the image velocity is computed as:

=1 t=1 .
—43 T
] 3 : = — 6
Vy v vy v Vline l’% ¥ xg ( T ) ( )
t=0 &~V t=0 Vx see [2, p. 255] for details. Based on the matisin eq. (1)
X K x there are two possibilities to transform a second order ten-

sor. The transformation can be either ‘covariant’ or ‘con-
travariant, with respect to the transformation of the grid.

T = ATAT ‘covariant’ R
T = (A HTTA™! ‘contravariant
=0 As will soon be apparent it is the latter transformation that
is relevant in this case. The ‘contravariant’ transformation
Fig. 2. Scaling along the-axis,z’ = k z. in eg. (7) can be rewritten as
v T —I\T —I\T T
mation is considered lets study the simple example in fig. 2. T'=ejer =(A7) e [(A7) ei] (®)

The left part of the figure show a point and a line that move

a certain distance between= 0 andt = 1. The right part

of the figure illustrate the same situation where the image is e, = (AN e 9)

scaled in the horizontal direction. It is apparent that these

two velocity estimates behave differently under the transfor- |ets return to the simple example in fig. 2, this case corre-

mation. For the moving point, the velocity components are sponds to anA matrix with (k,1,1) in the main diagonal

transformed according to the image and zeros elsewhere. Using eq. (9) the new eigenvector is
computed as

The eigenvector o™ is identified as

v, =kvy v, =1y 3)
ko,
For a moving line or edge only the perpendicular motion el = Uy (20)
component can be estimated locally (the aperture problem). —(v2 + 115)

I - 286



from which the new image velocity can be computed using local structure can be expressed as
eq. (6)

, v2 + 07 kv, 1 -1 v
Vline = 73 32,2 \ k20 (11) e1=| Vi+1? | ea=| Vi+1?2 | es=| 0
Ve Ry Y —v v 1

which is in agreement with the initial result in eq. (4). Al-
though this is no formal proof we conclude for the moment T=e elT + eo e2T
that the local structure of spatio-temporal rank 1 tensors

P . .
are preserved when transformed®s—= (A~)T T A~ Computel™” using the samed matrix as in the rank 1 case.

Note, however, that norm of the tensor is changed during L2 0 _kly
the transformation. This will be attended to later. T =(AY'TA =2 0 1+ 22 0
—k o 0 v?

5. TRANSFORMATION OF RANK 2 TENSORS
wheree}, = (kv,0,1)T and T" e}, = 0
A moving point in a (2D + time) environment generates a

line. In the FD a line has energy contributions in two direc- 6. TRANSEORMATION OF EULL RANK TENSORS
tions perpendicular to the line. This local structure is repre-

sented by a tensor with; ~ A; andA; = 0. Inthiscase |, yractice all estimated local structure tensors have rank 3
the velocity mformat:lpon is carried by the third eigenvector. (A > 0). From the distribution of the eigenvalues a deci-

Fores = (21,2, 23)" the image velocity is computed 8 gjon has to be made on how to interpret the neighborhood
when e.g. a velocity field is computed from the local spatio-

Vpoint = ( Za; ) =231 ( i; ) (12) temporal structure tensors. This is an old problem and the

v proposed concept offers no solution here but if the origi-

nal sampling grid is anisotropic it is possible to address the

problem one step ahead.

So far we have concluded that the ‘contravariant’ trans-
formation in eq. (7) preserves the local structure for rank 1
and rank 2 tensors. By inserting a rank 3 tensor into eq. (17)
it is obvious that the velocity information is not preserved
in the full rank case. Consequently the isotropic part of the
tensor has to be removed prior to the transformation.

see [2, p. 255]. From the requirements for the moving point
example in fig. 2 it is obvious that the transformed rank 2
tensor must fulfill

es=Aes; MN;=0 (13)
Now consider a rank 2 tensor

A sT | 5 AT
T=¢6 6 +éé (14) To=T AT (18)
Let’s transform this tensor in accordance with the rank 1
case in the previous section. This may seem as the opposit
way but bear with us for a moment.

The eigenvectors dI" and the rank 2 tensd@F are identi-

al and consequently the local structure is preserved in the
transformation ofl’y. The isotropic part can, if desired,
be reinserted afterwards. Note that the eigenvalue#' of
can be computed efficiently e.g by using Cardanos formula
[7, 6], without solving the eigenvalue problem. In section 7

T =(AHTTA! (15)

The local structure is preserved in this transformation only

if an efficient algorithm for transformation of spatio-temporal
T Aés =0 (16) tensors is presented.
To verify this insert eq. (14) and (15) into eq. 16 6.1. Mapping of eigenvalues
T e} = (A’l)T(élé{ + éQég) A1Aé;=0 (17) The relations between the eigenvalues is an important fea-

ture for subsequent operations on the tensor fields. Since
This somewhat surprising result implies thaith rank 1 the relations between the eigenvalues are changed during
and rank 2 tensors preserves the velocity information whenthe transformation this may require some consideration. To
transformed ‘Contravariant’ with respect to to the image. simply let the coordinate transformation matri&, control
Note, however that the magnitudes of the nonzero eigenval-the entire process may at a cursory glance seem to be the
ues are changed during the transformation. proper way to perform the transformation and ensure that
the relation on the new grid is reflected as far as possible
by the transformed tensor. For volume data (data with no
temporal dimension) this is undoubtly the proper method to
Consider a point moving in the horizontal direction with ve- perform the transformation. In this case there is no need to
locity v. Following the requirements af; in eq. (12) this limit the rank of the tensor prior to the transformation.

5.1. Asimple rank 2 example
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For data set that contain a temporal dimension (spatio-
temporal data) additional requirements must be considered
as in this case the resulting structure must support a robust
estimation of the motion present in the sequence. A change

in the relation of the eigenvalues will in this case cause
a misinterpretation of the local neighborhood which limits

the precision in the estimated motion field. For a time se-
guence it is consequently better to let the relation between
the eigenvalues reflect relations on the original grid while

the eigenvectors are transformed. In the next section an ef-
ficient algorithm that meets these requirements is presented.

7. AN ALGORITHM FOR TENSOR
TRANSFORMATION

This section presents an efficient algorithm for tensor trans-
formation that preserves the original relation of the eigen-
values to enable estimation of the true velocity field on the
new grid from the resulting tensor.

1. For the original tensdf’ computeA;,A; andA; e.g.

by using Cardanos formula [7, 6].

. Remove the isotropic part of the tensor,
To=T-X31

. ComputeT) = (A~"" Ty A~'. The transforma-
tion preserves the velocity information but the rela-
tions between the eigenvalues are changed.

. Compute\(,; and\}, for T, using Cardanos formula
once more (\(; = 0 due to step 2).

. ComputeN; = e;el using Knutssons eigenvector
formula (for a rank 2 rensor).

N,
Ny
N3

(T)— NI) T
- 011/)\T0

N1 — Ny

(T% (19)
I—

tensor compute the resulting tensor as:

T = M N1+ ANo+ \3N; (20)

where™ denotes normalization.

Figure 3 shows an example of motion estimation using the
above algorithm. The arrows indicate the estimated motion
of the heart wall and the mitralis valve.

8. CONCLUSION

The temporal dimension is inherently different from the spa-
tial dimensions when a transformation of the local structure
tensor is considered. To preserve the velocity information

. To preserve the original eigenvalues in the transformed®!

Fig. 3. Motion estimation from ultrasound image.

attended to. In this paper we have presented an efficient al-
gorithm that preserves the velocity information during the
transformation which enable estimation of the local struc-
ture on the original grid and eliminates the anisotropy ef-
fects associated by estimation the local structure after a re-
sampling.
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