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ABSTRACT

A new unsupervisedFuzzy Reinforcement Learning Vector Quant-
ization (FRLVQ) algorithm for image compression based on the
combination of fuzzy K-means clustering algorithm and topology
knowledge is proposed. In each iteration ofReinforcement Learn-
ing (RL), the size and direction of the movement of a codevector
is decided by the overall pair-wise competition between the at-
traction of each training vector and the repellent force of the cor-
responding winning codevector. While each training vector only
affects the winning codevector in theGeneralised Lloyd Algorithm
(GLA) [1] strategy, and only the attraction of training vectors are
considered in theFuzzy K-means(FKM) [1] strategy. The com-
petition is measured by the membership function. Simulation res-
ults are presented to compare the proposed FRLVQ with GLA and
FKM algorithms. It is apparent that FRLVQ has the better quality
of codebook design, is very insensitive to the selection of the ini-
tial codebook, and relatively insensitive to the choice of learning
rate sequences.

1. INTRODUCTION

Vector Quantization(VQ) techniques have been widely used in
the past decade as a powerful data compression technique for use
in transmission and storage systems. Design of a vector quantizer
is accomplished by generating a codebook from the training data
based on the minimisation of an average distortion measure. GLA
is the most popular minimization technique using a gradient des-
cent algorithm. It is simple to implement but it strongly depends
on the selection of the initial codebook. Several studies have been
carried out to attempt a globally optimum codebook design. The
classical approaches to this problem includeStochastic Relaxa-
tion (SR) technique introduced by Zeger [1], andSoft Competition
Scheme(SCS) introduced by Yair [1].

However, all these techniques mentioned above are based on
crisp decisions in the sense that each training vector is assigned to
a single cluster according to some pre-specified criterion, ignoring
the possibility that this training vector may belong to a different
cluster. Based on the idea of fuzzy sets, the FKM algorithm was
firstly proposed by Dunn [1]. FKM assigns each training vector
to multiple clusters with some degree of certainty measured by the
membership function. Thus, the partition of training vector space
is based on soft decisions. Although FKM produces better res-
ult in codebook design, it is typically a time consuming process.
To overcome this problem, Karayiannis developed aFuzzy Vector
Quantization(FVQ) algorithm [2], which is based on a flexible

strategy allowing the transition from soft to crisp decisions. How-
ever, these FKM-group algorithms do not result in a better code-
book than the original FKM.

In recent years, conventional competitive learning algorithms
for unsupervised learning in artificial neural networks have been
widely used for vector quantization tasks [3] - [6]. The first study
of Learning Vector Quantization(LVQ) in clustering algorithm
was done by Kohonen [4], which is a supervised learning strategy.
This LVQ does have a strong connection with the K-means al-
gorithm. In each iteration, LVQ updates a winner node in the clus-
tering set for each input training vector. Similarly to FKM, a fuzzy
learning VQ updates all the nodes for each input training vector re-
garding the uncertainty degree of clustering. Some related works
includeDifferential Competitive Learning(DCL) algorithm intro-
duced by Kong [5], andCentroid Neural Networks(CNN) learning
algorithm introduced by Park [6]. Both of DCL and CNN intro-
duced a strategy of reward and punishment of learning coefficients
for winner nodes and loser nodes.

At this stage, it seems that none of the algorithms mentioned
above have achieved a better resulting codebook than FKM. The
main reason is that these methods still suffer from the problem
of becoming trapped in local minimum of the average distortion
measure. Nevertheless, fuzzy clustering algorithms offer an ap-
proach to reduce the dependence of the resulting codebook on the
selection of the initial codebook.

This paper presents a strategy of reinforcement learning, which
exploits the advantages offered by fuzzy clustering algorithms and
competitive learning algorithms. The general idea is that not only
the Euclidean distances between the present codevectors with each
input training vector are considered, but also their topology in
multi-dimensional Euclidean space. This strategy enables updat-
ing codevectors to map accurately the density distribution of the
training vectors to their own. It is noteworthy that RL is a time-
consuming process. Thus it is considered as a pre-processing stage
before applying other fast FKM algorithms.

2. VECTOR QUANTIZATION

Let X be a training vectors set of size M and dimension l, i.e
X = {x1, x2, ..., xM}, xi ∈ Rl,∀i = 1, 2, ..., M , where R is an
l-dimensional Euclidean space. Let Y be a codewords set of size
N and dimension l, i.e.Y = {y1, y2, ..., yN}, yj ∈ Rl,∀j =
1, 2, ..., N . A vector quantiser is designed by assigning the M
training vectors to N clusters. Each training vector is represented
by a codeword. The quality of the codebook design is often meas-
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ured by the average of the absolute distortion between the original
and reconstructed vectors, which is often represented byD:

D =
1

M

M∑
m=1

d2
1min(xi) =

1

M

M∑
m=1

min
yj∈Y

d2
1(xi, yj) (1)

where Euclidean distanced1(xi, yj) =‖ xi − yi ‖.

2.1. GLA Algorithm

The strategy of GLA [1] is from the K-means clustering algorithm.
In each iteration, the GLA algorithm assigns each training vector
to a certain cluster based on the nearest neighbour condition, which
can be defined as a membership function as following:

µj(xi) =

{
1 if d1(xi, yj) = d1min(xi)
0 otherwise

(2)

Then the codebook vectors can be evaluated by the function defined
below:

yj =

∑M

i=1
µj(xi)

mxi∑M

i=1
µj(xi)m

(3)

wherem is a parameter that controls the “fuzziness” of the mem-
bership function,0 < m < ∞, normally1 ≤ m ≤ 2. In this
paper,m is chosen to be 1 for all VQ algorithms. The GLA al-
gorithm is summarised in Table 1.

Begin
Select a thresholdε
Select an initial codebookY = {y1, y2, ..., yN}
EvaluateD according to (1)

1 Dold = D
i = 0

2 i← i + 1
Evaluateµj(xi) using (2),∀j = 1, 2, ..., N
If i < M , then go to step 2

3 Evaluateyj using (3),∀j = 1, 2, ..., N
4 EvaluateD according to (1)

If (Dold −D)/Dold > ε, then go to step 1
End

Table 1. GLA algorithm.

2.2. Fuzzy K-means algorithm

The FKM [1] algorithm assigns each training vector a member-
ship value between zero and one that indicates the possibility of
belonging to a certain cluster of the codebook. The most popular
membership function is defined as:

µj(xi) =

[
N∑

p=1

(
d1(xi, yj)

d1(xi, yp)

)λ
]−1

(4)

whereλ is a parameter that controls the “fuzziness” of the distor-
tion, normally0 < λ < ∞. In this way, a fuzzy partition of the
training vectors specifies the degree of membership of each vector
in each of the N clusters. The algorithm strategy is very similar to
GLA shown in Table 1. The only difference is that the membership
function eq (2) is replaced by eq (4).

Fig. 1. Illustration of strategies of CKM, FKM and RL depicting the
movement of the winning codevectorwi(∗) and other codevectorsyj(×)

around the training vectorxi(◦).

2.3. Fuzzy Learning Vector Quantization

FVQ is an example of a fast-FKM algorithm. The detail of FVQ
can be found in reference [2]. FLVQ is a combination of FVQ and
LVQ, whose codebook update equation is grafted from the LVQ
algorithm. The benefit is that then we can apply the VQ algorithm
as an on-line adaptive algorithm. The update equation is define as:

y
(v+1)
j = y

(v)
j + α(v)

∑M

i=1
µj(xi)

m(xi − y
(v)
j )∑M

i=1
µj(xi)m

(5)

whereα(v) is the learning rate sequence (lrs)at vth iteration.
When α(v) = 1/v, FLVQ has the same resulting performance
as FVQ. Note that eq (3) for GLA and FKM can be replaced by eq
(5) whenα(v) = 1/v.

3. STRATEGY FOR REINFORCEMENT LEARNING

To date, VQ techniques in image compression may be separated
into two groups: GLA algorithms and FKM algorithms.

For GLA, each training vectorxi is only assigned to one win-
ning codevectorwi. To be simple, a 2-dimensional illustration
shown in Fig. 1(A). Onlywi will be moved towardsxi, aswi is
the nearest neighbour toxi.

For FKM,xi attracts all the codevectors. The more codevectors
around, the higher the likelihood ofxi being represented well.
This is shown in Fig. 1(B). The size of the movement of each
codevector is inversely proportional to its Euclidean distance from
the training vectorxi, i.e. the winning vector moves the most to-
wardsxi.

Fig. 1(C) shows a third core. When a codevector becomes the
winning codevectorwi for xi, it repels all other codevectors while
itself moving towardsxi. This new idea is namedReinforcement
Learning (RL) in this paper. The size of the movement of each
codevector affected by the winning codevectorwi is inversely pro-
portional to its Euclidean distance fromwi.

As a further stage, FKM and RL are combined to create a new
approach shown in Fig. 2. For an inputxi, the resulting movement
of a certain codevectoryj is decided by the competition between
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Fig. 2. Illustration of resulting movement of codevectors affected by a
certainxi and its correspondingwi in a RL iteration.

the attraction ofxi and the repellent force ofwi. The measurement
of the attraction and the repellent force are defined in the form of
membership functionsγj(xi) andηj(wi) in eq (7) and eq (8), re-
spectively. Thus, any codevectoryj in Zone 1 moves towardsxi,
becauseγj(xi) > ηj(wi), i.e. the attraction is greater than the re-
pellent force. In contrast, all the codevectors in Zone 2 move away
from xi. Specially, the winning codevectorwi and the codevectors
right at the edge between Zone 1 and Zone 2 are kept stationary.

Following this strategy, a new codebook update equation is
introduced as follows

y
(v+1)
j = y

(v)
j +α(v)

∑M

i=1
γj(xi)

m
( γj(xi)−ηj(wi)

γj(xi)+ηj(wi)

)(
xi − y

(v)
j

)∑M

i=1
γj(xi)m

(6)
Hereγj(xi) andηj(wi) are defined as the membership functions
of xi andwi, respectively.

γj(xi) =

{
N∑

p=1

[
d1(xi, yj)

d1(xi, yp)

]λ

+

N∑
p=1

[
d1(xi, yj)

d1(wi, yp)

]λ
}−1

(7)

ηj(wi) =

{
N∑

p=1

[
d1(wi, yj)

d1(xi, yp)

]λ

+

N∑
p=1

[
d1(wi, yj)

d1(wi, yp)

]λ
}−1

(8)
wherewi is the winning codevector ofxi. Note that whenyp =
wi, d1(wi, yp) is replaced byd1(xi, yp) in eq (7) and eq (8). In
this case, sinceγj(xi) = ηj(wi), RL does not affect the winning
codevector.

Whenηj(wi) = 0, i.e. RL process is not considered, eq (6) is
the same as eq (5). Thus FRLVQ transforms to FKM.

4. FUZZY REINFORCEMENT LEARNING VQ

In each FRLVQ iteration, a RL loop and a FKM loop are ap-
plied in order. The reason for step 4 is to avoid over-spreading
of codevectors, during an update, in the multi-dimensional Euc-
lidean space caused by using a high value of learning rateα in the
RL loop. The FRLVQ algorithm is summarised in Table 2.

Begin
Select iteration times V (normally V=3)
Select an initial codebookY (0) = {y1, y2, ..., yN}
v = 0

1 v ← v + 1
i = 0

2 i← i + 1
Findwi based on the nearest neighbour condition
Evaluateγj(xi) using (7),∀j = 1, 2, ..., N
Evaluateηj(wi) using (8),∀j = 1, 2, ..., N
if i < M , then go to step 2

3 Evaluateyj using (6),∀j = 1, 2, ..., N
4 Adjustyj to be inside the numerical range required

for the codebook,∀j = 1, 2, ..., N
ii = 0

5 ii← ii + 1
Evaluateµj(xi) using (4),∀j = 1, 2, ..., N
if ii < M , then go to step 5

6 EvaluateY (v) = {y1, y2, ..., yN} using (3)
If v < V , then go to step 1

7 Apply FVQ [2], usingY (V ) as the initial codebook
End

Table 2. FRLVQ algorithm. RL loop:step 2-4; FKM loop: step 5-6. Note
that FVQ in step 7 can be replaced by other FKM algorithms.

5. EXPERIMENTAL RESULTS

The standard Lenna image of size256 × 256 was used as an ex-
perimental training vector set. The pixels of this image take values
between 0 to 255. The training vectors were obtained by divid-
ing the Lenna image into 4096 blocks of size4 × 4. Let X be
the Lenna image set, which contains 4096 vectors inR16. Let Y
be the codebook, which contains 256 codevectors inR16. Then
the compression rate was 0.5bits per pixel (bpp). The resulting
images were evaluated by thepeak signal to noise ratio(PSNR),
which is defined as

PSNR = 10 log10

2552

1
M2

∑M

i=1
‖ xi − wi ‖2

(9)

The overall performance of FRLVQ algorithm proposed in this pa-
per was compared with that of GLA, FKM and FVQ algorithms on
the basis of a criterion comprising their computational efficiency
and the quality of codebook design.

Fig. 3 shows the PSNR as a function of the number of iter-
ationsv, when the same initial codebook was applied to the dif-
ferent VQ algorithms.α(v) is an essential parameter in FRLVQ.
Note that only 3 iterations are used in FRLVQ, i.e.V = 3, before
applying step 6 in Table 2.

To investigate the impact of codebook design quality on the
selection of the initial codebook, two alternative approaches were
tested, firstly selecting first 256 vectors from the training vectors
set, and secondly selecting vectors at random. These were then
applied to the VQ algorithms. Results were shown in the first
and second half of Table 3, respectively. All simulations were run
on Sun Blade1000, CPU:600MHz, ULTRASPARC III using code
written in MATLAB.
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Fig. 3. Codebook design performances of GLA, FVQ, FKM and
FRLVQ.applied to the Lenna image. The initial codebook selected by the
first 256 training vectors. Parameters defined as: M=4096, N=256, L=16,
m=1,ε = 10−3, λ = 10 for all VQs; ε′ = 10−2 for FVQ (see reference
[2]); V=3, α(v) = 100

v
for FRLVQ.

Fig. 4. Lenna image reconstructed from the codebook designed by using
FRLVQ algorithm. (M=4096, N=256,bpp=0.5, PSNR=30.82dB)

Algorithm Iter. D
1
2 PSNR Time Initial

(dB) (min) Codebook
GLA 21 36.4 28.96 16 the first

FVQ [2] 21 33.1 29.75 27 256
FKM 49 32.1 30.05 520 training

FRLVQ 17 29.6 30.74 84 vectors

GLA 13 33.1 29.75 10 random
FVQ [2] 20 32.0 30.08 25 selection of
FKM 35 32.1 30.05 435 256 training

FRLVQ 17 29.4 30.82 84 vectors

Table 3. Performance comparison of different VQ algorithms applied to
the Lenna image. Parameters values same as in Fig. 3.

lrs Iter. D
1
2 PSNR(dB) Time(min)

20/v 20 30.7 30.42 87
50/v 15 29.4 30.82 84
100/v 18 29.4 30.82 85

Table 4. Performance of FRLVQ with differentlrs. The 256 initial
codevectors selected at random.

Table 3 shows two important results. Firstly, FRLVQ achieved
the best quality of codebook design compared to the other VQ al-
gorithms considered. Based on the selection of a random initial
codebook, i.e. in the 2nd half of Table 3, a 0.77dB improvement
of PSNR at 0.5bpp compression rate from FKM to FRLVQ is very
significant, while 0.30dB improvement from GLA to FKM. This
showed that FRLVQ is a new powerful approach to the globally
optimum solution for VQ. Secondly, FRLVQ is insensitive to the
randomness of the selection of the initial codebook. There was
only 0.08dB difference between two selections of initial codebook
for FRLVQ, while 0.79dB for GLA. There is, in addition, one fur-
ther point to make. With regard to training time, FRLVQ requires
only 84 minutes to converge, much shorter than the 435 minutes re-
quired for FKM. The finest reconstructed Lenna image was shown
in Fig. 4.

The effect of the selection ofα on the performance is shown
in Table 4. It is clear that the algorithm is relatively robust with
regard to the value ofα. Performance of FRLVQ still exceeds that
of FKM, the next best performer. Note thatα is the only additional
parameter introduced by FRLVQ.

The FRLVQ algorithm has been tested and found to work suc-
cessfully with other standard images.

6. CONCLUSION

This letter has presented a new FRLVQ algorithm, which uses RL
as a pre-processor before applying an FKM algorithm, for image
compression and other applications. The simulation results have
shown that a significant improvement in the quality of the result-
ing codebook is achieved by FRLVQ. Further investigations have
indicated that FRLVQ is insensitive to the selection of the initial
codebook and is relatively insensitive to the choice of the selec-
tion of the learning rate control parameter. It is now intended to
develop and test FRLVQ as a general clustering algorithm.
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