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ABSTRACT strategy allowing the transition from soft to crisp decisions. How-

A new unsuperviseBuzzy Reinforcement Learning Vector Quant- €Ver, these FKM-group algorithms do not result in a better code-
ization (FRLVQ) algorithm for image compression based on the P00k than the original FKM. - . ,
combination of fuzzy K-means clustering algorithm and topology _ N recent years, conventional competitive learning algorithms
knowledge is proposed. In each iteratiorRefinforcement Learn- fo_r unsupervised learning in art!f|0|al neural networks r_]ave been
ing (RL), the size and direction of the movement of a codevector Widely used for vector quantization tasks [3] - [6]. The first study
is decided by the overall pair-wise competition between the at- Of Léaming Vector QuantizatiofLVQ) in clustering algorithm
traction of each training vector and the repellent force of the cor- Was done by Kohonen [4], which is a supervised learning strategy.
responding winning codevector. While each training vector only This LVQ does have a strong connection with the K-means al-
affects the winning codevector in ti&eneralised Lloyd Algorithm ~ 90rithm. In each iteration, LVQ updates a winner node in the clus-
(GLA) [1] strategy, and only the attraction of training vectors are tering set for each input training vector. Similarly to FKM, a fuzzy
considered in th&uzzy K-mean§FKM) [1] strategy. The com-  learning VQ updates all the nodes for each input training vector re-
petition is measured by the membership function. Simulation res- 9arding the uncertainty degree of clustering. Some related works
ults are presented to compare the proposed FRLVQ with GLA and includeDifferential Competmye LearningDCL) algorithm |nt_ro-
FKM algorithms. It is apparent that FRLVQ has the better quality duced by Kong [5], an@entroid Neural NetworkéCNN) learning
of codebook design, is very insensitive to the selection of the ini- &/gorithm introduced by Park [6]. Both of DCL and CNN intro-
tial codebook, and relatively insensitive to the choice of learning duced a strategy of reward and punishment of learning coefficients
rate sequences. for winner nodes and loser nodes.

At this stage, it seems that none of the algorithms mentioned
above have achieved a better resulting codebook than FKM. The
main reason is that these methods still suffer from the problem

Vector Quantizatior(VQ) techniques have been widely used in of becoming trapped in local minimum of the average distortion
measure. Nevertheless, fuzzy clustering algorithms offer an ap-

the past decade as a powerful data compression technique for use .
in transmission and storage systems. Design of a vector quantizerproaCh to reduce the dependence of the resulting codebook on the

is accomplished by generating a codebook from the training dataselectl_on of the initial codebook. . . .
based on the minimisation of an average distortion measure. GLA Th's paper presents a strategy of relnforcem_ent Iearn_lng, which
is the most popular minimization technique using a gradient des- exploits the advantages offered by fuzzy clustering algorithms and

cent algorithm. It is simple to implement but it strongly depends competitive learning algorithms. The general idea is that not only

on the selection of the initial codebook. Several studies have beenthe Euclidean distances between the present codevectors with each

carried out to attempt a globally optimum codebook design. The input tr_aining_ vector are considered, b.Ut also their topology in
classical approaches to this problem incl@echastic Relaxa- multi-dimensional Euclidean space. This strategy enables updat-

: : . - ing codevectors to map accurately the density distribution of the
tsli?]éi;)stgcsr;rm?gdlgégg E;e\((:iaﬁy[lz]eger [1], @aft Competition training vectors to their own. It is noteworthy that RL is a time-

onsuming process. Thus it is considered as a pre-processing stage
;Eefore applying other fast FKM algorithms.

1. INTRODUCTION

However, all these techniques mentioned above are based o
crisp decisions in the sense that each training vector is assigned t
a single cluster according to some pre-specified criterion, ignoring
the possibility that this training vector may belong to a different 2. VECTOR QUANTIZATION
cluster. Based on the idea of fuzzy sets, the FKM algorithm was
firstly proposed by Dunn [1]. FKM assigns each training vector Let X be a training vectors set of size M and dimension |, i.e
to multiple clusters with some degree of certainty measured by the X = {z1,z2,...,zm}, z; € R'.Yi=1,2,...,M, where Ris an
membership function. Thus, the partition of training vector space |-dimensional Euclidean space. Let Y be a codewords set of size
is based on soft decisions. Although FKM produces better res-N and dimension |, i.eY = {y1,y2,..,un},y; € R,Vj =
ult in codebook design, it is typically a time consuming process. 1,2,..., N. A vector quantiser is designed by assigning the M
To overcome this problem, Karayiannis developdelazy Vector training vectors to N clusters. Each training vector is represented
Quantization(FVQ) algorithm [2], which is based on a flexible by a codeword. The quality of the codebook design is often meas-
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ured by the average of the absolute distortion between the original
and reconstructed vectors, which is often representefd.by

M

M
1 1 . Yj Yi Yj
D = M Z d%mm(ﬂfi) = M mlr}l} d?(m, yj) 1) X ]x X X >\><> ].kxﬁ
m=1 m=1 Vi€ \ /
where Euclidean distane& (x;,y;) =|| z: — yi ||- Xio < %wi Xi O «— (i)
2.1. GLA Algorithm Va ~ :
X X X x x *
The strategy of GLA [1] is from the K-means clustering algorithm. /
In each iteration, the GLA algorithm assigns each training vector ] )
to a certain cluster based on the nearest neighbour condition, which A:GLA B: FKM C'_ RL
can be defined as a membership function as following: repulsion of ¢
N 1 if dy (331', yj) = dlmin (331)
Ha (i) = { 0 otherwise @)

Fig. 1. lllustration of strategies of CKM, FKM and RL depicting the
Then the codebook vectors can be evaluated by the function definedhovement of the winning codevectar; () and other codevectogs; (x )

below: around the training vectat; (o).
S pg(w) "
Yi= "M 3)
_ i 13 (1) _ 2.3. Fuzzy Learning Vector Quantization

wherem is a parameter that controls the “fuzziness” of the mem-

bership function0 < m < oo, normallyl < m < 2. In this FVQ is an example of a fast-FKM algorithm. The detail of FVQ

paper,m is chosen to be 1 for all VQ algorithms. The GLA al- can be found in reference [2]. FLVQ is a combination of FVQ and

gorithm is summarised in Table 1. LVQ, whose codebook update equation is grafted from the LVQ
algorithm. The benefit is that then we can apply the VQ algorithm

Begin as an on-line adaptive algorithm. The update equation is define as:

Select a threshold
Select an initial codebooK = {y1,y2,...,yn}

(v+1) (v) (v) Z?il pg (i)™ (s — yj(-”))
EvaluateD according to (1) Yj =y; ta M ™ ®)
1 Dyg=D D im M)
1 =0
2 i+l wherea(®) is the learning rate sequence (Irsjt vth iteration.
Evaluatey, (z;) using (2)¥j = 1,2, .., N Whena = 1/v, FLVQ has the same resulting performance

as FVQ. Note that eq (3) for GLA and FKM can be replaced by eq

If « < M, then go to step 2
' g P (5) whena ™) = 1/v.

3 Evaluatey; using (3)Yj =1,2,..., N
4 EvaluateD according to (1)

If (Dota — D)/Doia > €, then go to step 1 3. STRATEGY FOR REINFORCEMENT LEARNING
End

To date, VQ techniques in image compression may be separated
into two groups: GLA algorithms and FKM algorithms.

Table 1. GLA algorithm. For GLA, each training vectat; is only assigned to one win-
ning codevectorw;. To be simple, a 2-dimensional illustration
shown in Fig. 1(A). Onlyw; will be moved towards:;, asw; is

2.2. Fuzzy K-means algorithm the nearest neighbour 9.

. . - For FKM, z; attracts all the codevectors. The more codevectors
The FKM [1] algorithm assigns each training vector a member- 5.,,hq  the higher the likelihood of; being represented well.

ship value between zero and one that indicates the possibility of 115 is shown in Fig. 1(B). The size of the movement of each

belonglnght_o ? certain clus;[_er of the codebook. The most popular oo gevector is inversely proportional to its Euclidean distance from
membership function is defined as: the training vectorz;, i.e. the winning vector moves the most to-

N A7 -1 wardsz;.
(i) = Z di (i, y;) (4) Fig. 1(C) shows a third core. When a codevector becomes the
’ « di(zi,yp) winning codevectotw; for z;, it repels all other codevectors while
p—

itself moving towardse;. This new idea is nameReinforcement
where)\ is a parameter that controls the “fuzziness” of the distor- Learning(RL) in this paper. The size of the movement of each
tion, normally0 < X\ < oo. In this way, a fuzzy partition of the  codevector affected by the winning codeveetgiis inversely pro-
training vectors specifies the degree of membership of each vectomportional to its Euclidean distance froms.

in each of the N clusters. The algorithm strategy is very similar to As a further stage, FKM and RL are combined to create a new
GLA shown in Table 1. The only difference is that the membership approach shown in Fig. 2. For an input the resulting movement
function eq (2) is replaced by eq (4). of a certain codevectay; is decided by the competition between
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Fig. 2. lllustration of resulting movement of codevectors affected by a
certainz; and its corresponding; in a RL iteration.

the attraction of:; and the repellent force af;. The measurement

of the attraction and the repellent force are defined in the form of
membership functions; (z;) andn, (w;) in eq (7) and eq (8), re-
spectively. Thus, any codevectgy in Zone 1 moves towards;,
becausey; (z;) > n;(w;), i.e. the attraction is greater than the re-

Begin

Select iteration times V (normally V=3)

Select an initial codebook ) = {y1, 2, ..., yn'}
v=20

ve—v+1

i=0

71— 1i+1

Find w; based on the nearest neighbour condition
Evaluatey, (z;) using (7)Yj = 1,2, ..., N
Evaluaten; (w;) using 8)Y;j = 1,2,..., N

if « < M, then go to step 2

Evaluatey; using (6)Yj =1,2,..., N

Adjusty; to be inside the numerical range required
for the codebookyj = 1,2,..., N

1w=0

1 «— 11+ 1

Evaluateu; (z;) using (4)Yj =1,2,..., N

if i4 < M, then go to step 5

EvaluateY ) = {y1, 2, ..., yn } Using (3)

If v < V,thengotostepl

Apply FVQ [2], usingY (V) as the initial codebook
End

Table 2. FRLVQ algorithm. RL loop:step 2-4; FKM loop: step 5-6. Note

pellent force. In contrast, all the codevectors in Zone 2 move away ¢ FvQ in step 7 can be replaced by other FKM algorithms.

from x;. Specially, the winning codevectar; and the codevectors
right at the edge between Zone 1 and Zone 2 are kept stationary.
Following this strategy, a new codebook update equation is
introduced as follows
v (i) +n; (w;i)

Z?il ’Y]'(xi)m( )
Zivi1 Vi (xl)m
(6)

Here~;(z;) andn; (w;) are defined as the membership functions
of x; andw;, respectively.

vj (@) —nj(w;)

oD = ) (i — yg('v)

(v) (v)
J yj ta

_ N di(xs,y5) A = di (i, y;) g
v () = ; [dl(:cl,yp)} + ; {dl(wi,yp)]
71(7)
_ = di(wi, yj) RS dr (wi, y;) ’
n;(w;) = > |:d1(xi7yp):| +z::1 [dl(wi,yp)}
(8)

wherew; is the winning codevector af;. Note that whery, =
w;, d1(ws, yp) is replaced byds (z;,yp) in eq (7) and eq (8). In
this case, since; (z;) = n;(w;), RL does not affect the winning
codevector.

Whenn; (w;) = 0, i.e. RL process is not considered, eq (6) is
the same as eq (5). Thus FRLVQ transforms to FKM.

4. FUZZY REINFORCEMENT LEARNING VQ

In each FRLVQ iteration, a RL loop and a FKM loop are ap-
plied in order. The reason for step 4 is to avoid over-spreading
of codevectors, during an update, in the multi-dimensional Euc-
lidean space caused by using a high value of learningratehe

RL loop. The FRLVQ algorithm is summarised in Table 2.

5. EXPERIMENTAL RESULTS

The standard Lenna image of si2&6 x 256 was used as an ex-
perimental training vector set. The pixels of this image take values
between 0 to 255. The training vectors were obtained by divid-
ing the Lenna image into 4096 blocks of sizex 4. Let X be

the Lenna image set, which contains 4096 vectorRif. Let Y

be the codebook, which contains 256 codevectorgif. Then

the compression rate was (b8s per pixel (bpp) The resulting
images were evaluated by tpeak signal to noise ratiPSNR),
which is defined as

2552
M
Tz iy @ —wi |2

The overall performance of FRLVQ algorithm proposed in this pa-
per was compared with that of GLA, FKM and FVQ algorithms on
the basis of a criterion comprising their computational efficiency
and the quality of codebook design.

Fig. 3 shows the PSNR as a function of the number of iter-
ationsv, when the same initial codebook was applied to the dif-
ferent VQ algorithms.a(*) is an essential parameter in FRLVQ.
Note that only 3 iterations are used in FRLVQ, ilé.= 3, before
applying step 6 in Table 2.

To investigate the impact of codebook design quality on the
selection of the initial codebook, two alternative approaches were
tested, firstly selecting first 256 vectors from the training vectors
set, and secondly selecting vectors at random. These were then
applied to the VQ algorithms. Results were shown in the first
and second half of Table 3, respectively. All simulations were run
on Sun Blade1000, CPU:600MHz, ULTRASPARC lIl using code
written in MATLAB.

PSNR = 10log,, 9)
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Fig. 3. Codebook design performances of GLA, FVQ, FKM and

FRLVQ.applied to the Lenna image. The initial codebook selected by the
first 256 training vectors. Parameters defined as: M=4096, N=256, L=16,
m=1,e = 10—3, A = 10 for all VQs; e’ = 10~2 for FVQ (see reference
[2]); V=3, a(¥) = 199 for FRLVQ.

Fig. 4. Lenna image reconstructed from the codebook designed by using

FRLVQ algorithm. (M=4096, N=25@)pp=0.5, PSNR=30.820B)

Algorithm | Iter. D2 | PSNR] Time Initial
(dB) | (min) | Codebook
GLA 21 | 36.4| 28.96 | 16 the first
FVQ[2] 21 | 33.1| 29.75 | 27 256
FKM 49 | 32.1| 30.05| 520 training
FRLVQ 17 | 29.6 | 30.74 | 84 vectors
GLA 13 | 33.1| 29.75 10 random
FVQ [2] 20 | 32.0| 30.08 25 selection of
FKM 35 | 32.1| 30.05| 435 | 256 training
FRLVQ 17 | 29.4 | 30.82 84 vectors

Table 3. Performance comparison of different VQ algorithms applied to
the Lenna image. Parameters values same as in Fig. 3.

Irs lter. | D2 PSNR(dB) | Time(min)
20/v 20 | 30.7 30.42 87
50 /v 15 | 29.4 30.82 84
100/v | 18 | 29.4 30.82 85

Table 4. Performance of FRLVQ with differenlts. The 256 initial
codevectors selected at random.

Table 3 shows two important results. Firstly, FRLVQ achieved
the best quality of codebook design compared to the other VQ al-
gorithms considered. Based on the selection of a random initial
codebook, i.e. in the 2nd half of Table 3, a 0.77dB improvement
of PSNR at 0.5bpp compression rate from FKM to FRLVQ is very
significant, while 0.30dB improvement from GLA to FKM. This
showed that FRLVQ is a new powerful approach to the globally
optimum solution for VQ. Secondly, FRLVQ is insensitive to the
randomness of the selection of the initial codebook. There was
only 0.08dB difference between two selections of initial codebook
for FRLVQ, while 0.79dB for GLA. There is, in addition, one fur-
ther point to make. With regard to training time, FRLVQ requires
only 84 minutes to converge, much shorter than the 435 minutes re-
quired for FKM. The finest reconstructed Lenna image was shown
in Fig. 4.

The effect of the selection af on the performance is shown
in Table 4. It is clear that the algorithm is relatively robust with
regard to the value af. Performance of FRLVQ still exceeds that
of FKM, the next best performer. Note thais the only additional
parameter introduced by FRLVQ.

The FRLVQ algorithm has been tested and found to work suc-
cessfully with other standard images.

6. CONCLUSION

This letter has presented a new FRLVQ algorithm, which uses RL
as a pre-processor before applying an FKM algorithm, for image
compression and other applications. The simulation results have
shown that a significant improvement in the quality of the result-
ing codebook is achieved by FRLVQ. Further investigations have
indicated that FRLVQ is insensitive to the selection of the initial
codebook and is relatively insensitive to the choice of the selec-
tion of the learning rate control parameter. It is now intended to
develop and test FRLVQ as a general clustering algorithm.
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