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ABSTRACT

A novel design for a vector quantizer that uses multiple
codebooks of variable dimensionality is proposed. High
dimensional source vectors are first partitioned into two or
more subvectors of (possibly) different length and then,
each subvector isindividually encoded with an appropriate
codebook. Further redundancy is exploited by conditional
entropy coding of the subvectors indices. This scheme
allows practical quantization of high dimensional vectors
in which each vector component is allowed to have
different aphabet and distribution. This is typically the
case of the pixels representing a hyperspectral image. We
present experimental results in the lossess and near—
lossless encoding of such images. The method can be
easily adapted to lossy coding.

1. INTRODUCTION

In the last two decades, space borne and air borne remote
acquisition of high definition images has been increasingly
used in military and civilian applications to recognize
objects and classify materials on the earth surface. In
hyperspectral photography pixels cover a specified area
and record the reflected light spectrum decomposed into
many bands. For example, images acquired with the
NASA Airborne Visible/Infrared Imaging Spectrometer
(AVIRIS [1, 5]), have each pixel covering an area of
approximately 20m x 20m and the reflected light is
decomposed into 224 bands. Since every material reflects
sun light in its own peculiar way, the analysis of its
reflected light spectrum can be used to recognize it. The
acquisition of hyperspectra images produces large
amounts of highly correlated data in the form of a two
dimensional image matrix in which every pixel consists of
a vector having hundreds of components, one for each
spectral band. Increasing the number of bands, i.e. the
spectral resolution, alows for more sophisticated analyses.
Augmenting the spectral resolution is advantageous with
respect, for example, to the increase in spatia resolution
sinceit only increases the data rate by alinear amount.
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Traditional approaches to the compression of
hyperspectral imagery are based on differential prediction
via DPCM [2] or on dimensionality reduction with
methods that use the Principal Component Analysis. PCA
is used to compact the representation by isolating the
smallest number of independent components in a vector.
In practice however, DPCM—based methods are too simple
to exploit properly the multidimensional nature of the data
and PCA-based lossless compressors do not achieve very
good results because the transformed signal is harder to
entropy code. The use of PCA in lossy algorithms is also
restricted to the use of squared error as distortion measure.
Since hyperspectral imagery is acquired at great cost and
mostly used in critical tasks like classification (assignment
of alabel to every pixel) or target detection (identification
of a somewhat rare instance) the use of sguared error can
be sometimes too restrictive.

2. SOURCE CHARACTERIZATION

In the following, we will assume that a hyperspectral
image is a discrete time, discrete values bi dimensional
random source I(x,y) that emits D—dimensional vectors

[ (x,y) . Each vector component I,(x,y), 0<i<D-1is
drawn from the alphabet y, and isdistributed according to

a space variant probability distribution that may depend on
the other components. The vector quantizer that we wish
to design operates on one vector at the time so, in order to
simplify the problem, we assume at first that source
realizations are independent. The quantizer only removes
correlation existing among components of the same vector.
The spatial correlation is later exploited with the use of an
entropy encoder.

3. PARTITIONED VECTOR QUANTIZER

The complexity of building a vector quantizer (VQ)
codebook is known to be computationally prohibitive [3]
when the vector dimensionality is large, as it is in
hyperspectral imagery. A solution to this problem is the
design of a partitioned VQ, i.e. the design of a VQ in
which input vectors are partitioned into a number of
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consecutive segments (blocks or subvectors) that are
independently quantized. While this leads to a sub—
optimal solution in terms of Mean Squared Error (or MSE)
because the scheme does not exploit correlation among
subvectors, the resulting design turns out to be practica
and coding and decoding present a number of advantages
in terms of speed, memory requirements and exploitable
parallelism.

In our method we divide input vectors into N
subvectors and quantize each of them with an L-evels
exhaustive search VQ. Since the components of (X, Y)
are drawn from different alphabets, their distributions may
be significantly different and partitioning the D
components into N blocks of (approximately) equal size
may not be optimal. We wish to determine the size of the
N sub vectors adaptively, while minimizing the
guantization error, measured for example in terms of
MSE. Once the N codebooks are designed, input vectors
are encoded by partitioning them into N subvectors of
appropriate length, each of which is quantized
independently with the corresponding VQ. The index of
the partitioned codevector is given by the concatenation of
theindices of the N subvectors (Figure 1).

Formally, the Partitioned Vector Quantizer (or PVQ)

isan N-tuple Q=(Q,,Q,....,Q) of N, L-evels, d -
dimensional Exhaustive Search Vector Quantizers
Q =(A,F,R),suchthat > d =D and:

1<i<N
e A={d,c,..,c} is a finite indexed subset of
R called codebook. Its elements ¢, are the code
vectors;

is a partition of R%and its

 PR={s.S,..8}
equivalence classes (or cells) S} satisfy:

Uls,. =R%and § NS =D for h=k;
Pt

e F:R* > A is a function defining the relation
between the codebook and the partition as
F(x)=c; ifandonlyif xe S; .
And theindex j of the centroid c‘j is the result of the
quantization of the d, —dimensional subvector x, i.e.
the information that is sent to the decoder.

The design of this vector quantizer aims at the joint
determination of the N+1 partition boundaries
b,=0<hb <...<b,=D and to the design of the N
vector quantizers having dimenson d =b-b,,
1<i<N.

2%, ) (. y)
VQ,

1(x.y) J(xy)
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Figure 1. Partitioned Vector Quantizer.

Given a source vector 1(x,y), we indicate the i-th
subvector of boundaries b_;, and b —1 with the symbol

IE‘;1 (for simplicity, the x and y spatia coordinates are

omitted when clear from the context). The mean squared
quantization error between the vector | and its quantized

representation M, isgiven by:

(-1 = Xy

( lh =G} ha, )2

Where ¢, =(C| o.....C] 4 1) is the centroid of the i—th

-2

N
i=1 h=h_;

codebook that minimizes the reconstruction error on | Ej :
j =agminMSE(13 %, ).

I<I<L

4. PVQ DESIGN

The design of a PVQ is derived from a variation of the
Generalized Lloyd Algorithm (or GLA) described in [4].
Unconstrained vector quantization can be seen as the joint
optimization of an encoder (the function F:R® — A
described before) and a decoder (the determination of the
centroids for the equivalence classes of the partition
P={S.,S,....S}). GLA is an iterative agorithm that,

starting from the source sample vectors chooses a set of
centroids and optimizes in turns encoder and decoder until
the improvements on a predefined distortion measure are
negligible. To define our PVQ, the boundaries of the
vector partition b,=0<b <...<b,=D need to be
determined as well. The proposed design follows the same
spirit of the GLA. The key observation is that once the
partition boundaries are kept fixed, the MSE is minimized
independently for each partition by applying the well—
known optimality conditions on the centroids and on the
cdlls.
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Figure 2: Error contributions for two adjacent partitions.

M, = min(f,+a, .+, 6+a);
if (M,=6+0o;)

b,=b,-1;
else if (M,=8,+¢,)

b,=b,+1;

Figure 3: Partition changesin modified GLA.

Vice versa, when the centroids and the cells are held fixed,
the (localy optimal) partitions boundaries can be
determined in a greedy fashion. The GLA step is applied
on each partition independently. The determination of the
equivalence classes is performed as usual, but when
computing the new centroids, the error for two extra
components (one to the left and the other to the right of the
boundaries of the current partition) is computed as well.
The only exceptions are obviously the leftmost and the
rightmost partitions for which only one extra component
will be available.

In the iteration involving the
(2<i<N-1), weindicate with

g = 3l x)-Ty (9]

X,y

i —th partition

(W) =Ty 2 )

X,y

B

the contribution to the quantization error of its leftmost
and rightmost components (see also Figure 2). The two
extra components mentioned before are indicated by:

6 = Z('u,rl(x'y)"Au,rl(x'y))z

Xy

= ()i ()

197

™
Il

The reconstruction values used in the expressions for &,
and & are determined by the classification performed on
the components b ,,...,h .

The boundary b_, between the partitions i —1 and i

is changed according to the criteria expressed by the
pseudocode in Figure 3.
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Figure 4: PVQ-based |ossless encoder.
5. LOSSLESS CODING

PVQ can be used to perform lossless and near—{ossless
coding of the source vectors. In this configuration, the
quantization is used as a tool to implement dimensionality
reduction on the source. Partitioned VQ is combined with
inter and intra subvector entropy coding. The quantization
residual is entropy coded conditioned on the subvector
indices. Figure 4 depicts the encoder that we have used in
our experiments.

The partition boundaries and the N unconstrained
VQs are determined off-line by the design described
earlier. The encoding consists in partitioning the input
vector, quantizing the subvectors in order to determine the
vector of indices J(X,Y) , then computing the quantization

error;
E(%Y) = (B2 (% Y).EZ (X V), ER (X V)
where, for each 1<i <N :
Ea o0 =1 e ) =10 y)

Since the unconstrained quantizers work independently
from each other and independently on each source vector,
an entropy encoder is used to exploit this residual
redundancy. In particular, each VQ index j(x,y) is
encoded conditioning its probability with respect to a set
of causal indices spatially and spectrally adjacent. The
components of the residual vector E}7'(x,y) are also

entropy coded with their probability conditioned on the
VQindex ji(xY) .

6. EXPERIMENTS

The partitioned VQ has been tested on a set of five
AVIRIS images downloaded from the NASA web site [5].
AVIRIS images are 614 pixels wide and several thousand
pixels high, obtained by flying the spectrometer over the
target area. Each pixel represents the light reflected by a
20m x 20m area (high altitude) or 4m x 4m area (low
dtitude). The spectral response of the reflected light is
decomposed into 224 contiguous channels, approximately
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10nm wide and spanning from visible to near infrared light
(400 to 2500nm). Spectral components are represented
with a 16 bits precision.

Several experiments have been performed for various
numbers of partitions and for different codebook sizes.
The results that we describe here were obtained for
N =16 partitions and L =256 codebook levels. The
choice of the number of levels makes also practical the use
of off-the—shelf image compression tools that are fine—
tuned for 8 bit data.

7.RESULTS

Table | shows PVQ performances in terms of compression
ratio. PVQ achieves on the images we considered an
average compression of 3:1, 38.25% better than bzip2
(applied on the plane-interleaved images). The table also
shows the compression ratio in the near—{ossless scenario,
i.e, when a small quantization error is alowed. In this
setup it is possible to reach 4:1, 4.77:1 and 5.46:1 for an
error K =+1,+2 and 3 respectively. In the last column
we report, as a reference, the compression ratio when only
the indices are encoded and the quantization error is
discarded. Table Il shows, for the same parameters, the
Signal to Quantization Noise Ratio:

10 D-1 P
SONR (dB) = — > log,, (—J; j .
D i=0 E

The partition boundaries for each of the five hyperspectral
images are depicted in Figure 5. While similarities exist,
the algorithm converges to different optimal boundaries on
different input images. This is evidence that PVQ adapts
the partitions to input statistics. Experimentally we have
found that adaptation is fairly quick and boundaries
converge to their definitive valuesin less than one hundred
iterations.

8. CONCLUSIONS

We presented an extension of the GLA algorithm to the
design of a Partitioned Vector Quantizer. The proposed
agorithm is intended for the encoding of source vectors
drawn from a high dimensional source on R°. PVQ
bresks down the input space into N <« D independent
subspaces and for each subspace designs a minimal
distortion vector quantizer. The partition is adaptively
determined while building the quantizers in order to
minimize the total distortion. Experimental results on
lossless and near—ossless compression of hyperspectral
imagery are presented and discussed. Aside from
competitive compression figures and progressive
decoding, PVQ has a natural parallel implementation and
it can also be used to implement search, analysis and
classification in the compressed data stream.

Compression Bzip2| Partitioned VQ _
Ratio Lossless Near—Lossless Indices
K=1 | K=2 | K=3 only
Cuprite 2.25]3.13| 423 | 5.08 | 5.85 | 40.44
Low Altitude 2131289 | 3.88 | 466 | 5.34 | 39.10
Lunar Lake 2.30 | 3.23 | 4.22 | 5.03 | 5.78 | 47.03
Moffett Field 2101294 | 3.97 | 4.74 | 540 | 40.92
Jasper Ridge | 2.05|2.82| 3.70 | 4.36 | 4.92 | 35.02
Average 2.1713.00| 400 | 477 | 5.46 | 40.50

Tablel: Lossless and near—{ossless compression ratio.

Bzip2| Partitioned VQ

SQNR (in dB) Near—Lossless Indices

Lossless =1 [ k=2 | k=3 | only
Cuprite NA NA |44.83 | 40.08 | 37.15 | 23.91
Low Altitude NA | NA |47.94 |43.18 | 40.19 | 25.48
Lunar Lake NA NA | 48.53 | 43.75 | 40.79 | 27.15
Moffett Field NA | NA |49.36 | 44.64 | 41.75| 25.74
Jasper Ridge NA | NA [46.94|42.19|39.24 | 20.37
Average NA | NA |47.52 | 42.77 | 39.82 | 24.53

Tablell: Near—osdess signal to quantization noise ratio.

Low Altitude

Jasper Ridge

Moffet Field

Cuprite .
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Figure5: Partition sizes and aignment.
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