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ABSTRACT 
 
A novel design for a vector quantizer that uses multiple 
codebooks of variable dimensionality is proposed. High 
dimensional source vectors are first partitioned into two or 
more subvectors of (possibly) different length and then, 
each subvector is individually encoded with an appropriate 
codebook. Further redundancy is exploited by conditional 
entropy coding of the subvectors indices. This scheme 
allows practical quantization of high dimensional vectors 
in which each vector component is allowed to have 
different alphabet and distribution. This is typically the 
case of the pixels representing a hyperspectral image. We 
present experimental results in the lossless and near–
lossless encoding of such images. The method can be 
easily adapted to lossy coding. 
 
 

1. INTRODUCTION 
 
In the last two decades, space borne and air borne remote 
acquisition of high definition images has been increasingly 
used in military and civilian applications to recognize 
objects and classify materials on the earth surface. In 
hyperspectral photography pixels cover a specified area 
and record the reflected light spectrum decomposed into 
many bands. For example, images acquired with the 
NASA Airborne Visible/Infrared Imaging Spectrometer 
(AVIRIS [1, 5]), have each pixel covering an area of 
approximately 20m x 20m and the reflected light is 
decomposed into 224 bands. Since every material reflects 
sun light in its own peculiar way, the analysis of its 
reflected light spectrum can be used to recognize it. The 
acquisition of hyperspectral images produces large 
amounts of highly correlated data in the form of a two 
dimensional image matrix in which every pixel consists of 
a vector having hundreds of components, one for each 
spectral band. Increasing the number of bands, i.e. the 
spectral resolution, allows for more sophisticated analyses.  
Augmenting the spectral resolution is advantageous with 
respect, for example, to the increase in spatial resolution 
since it only increases the data rate by a linear amount. 

Traditional approaches to the compression of 
hyperspectral imagery are based on differential prediction 
via DPCM [2] or on dimensionality reduction with 
methods that use the Principal Component Analysis. PCA 
is used to compact the representation by isolating the 
smallest number of independent components in a vector. 
In practice however, DPCM–based methods are too simple 
to exploit properly the multidimensional nature of the data 
and PCA–based lossless compressors do not achieve very 
good results because the transformed signal is harder to 
entropy code. The use of PCA in lossy algorithms is also 
restricted to the use of squared error as distortion measure.  
Since hyperspectral imagery is acquired at great cost and 
mostly used in critical tasks like classification (assignment 
of a label to every pixel) or target detection (identification 
of a somewhat rare instance) the use of squared error can 
be sometimes too restrictive. 
 

2. SOURCE CHARACTERIZATION 
 
In the following, we will assume that a hyperspectral 
image is a discrete time, discrete values bi dimensional 
random source ( , )x yI  that emits D–dimensional vectors 

( , )x yI . Each vector component ( , )iI x y , 0 ≤ i ≤ D −1 is 

drawn from the alphabet iχ  and is distributed according to 

a space variant probability distribution that may depend on 
the other components. The vector quantizer that we wish 
to design operates on one vector at the time so, in order to 
simplify the problem, we assume at first that source 
realizations are independent. The quantizer only removes 
correlation existing among components of the same vector. 
The spatial correlation is later exploited with the use of an 
entropy encoder. 

 
3. PARTITIONED VECTOR QUANTIZER 

 
The complexity of building a vector quantizer (VQ) 
codebook is known to be computationally prohibitive [3] 
when the vector dimensionality is large, as it is in 
hyperspectral imagery. A solution to this problem is the 
design of a partitioned VQ, i.e. the design of a VQ in 
which input vectors are partitioned into a number of 

III - 2410-7803-7663-3/03/$17.00 ©2003 IEEE ICASSP 2003

➠ ➡



consecutive segments (blocks or subvectors) that are 
independently quantized. While this leads to a sub–
optimal solution in terms of Mean Squared Error (or MSE) 
because the scheme does not exploit correlation among 
subvectors, the resulting design turns out to be practical 
and coding and decoding present a number of advantages 
in terms of speed, memory requirements and exploitable 
parallelism. 

In our method we divide input vectors into N  
subvectors and quantize each of them with an L–levels 
exhaustive search VQ. Since the components of ( , )x yI  

are drawn from different alphabets, their distributions may 
be significantly different and partitioning the D  
components into N  blocks of (approximately) equal size 
may not be optimal. We wish to determine the size of the 
N  sub vectors adaptively, while minimizing the 
quantization error, measured for example in terms of 
MSE. Once the N  codebooks are designed, input vectors 
are encoded by partitioning them into N  subvectors of 
appropriate length, each of which is quantized 
independently with the corresponding VQ. The index of 
the partitioned codevector is given by the concatenation of 
the indices of the N  subvectors (Figure 1). 

Formally, the Partitioned Vector Quantizer (or PVQ) 
is an N –tuple ( )1 2, , , NQ Q Q= …Q  of N , L–levels, id –

dimensional Exhaustive Search Vector Quantizers 
( , , )i i i iQ A F P= , such that 

1
i

i N

d D
≤ ≤

=∑  and: 

• 1 2{ , ,..., }i i i
i LA = c c c  is a finite indexed subset of 

idR called codebook. Its elements i
jc  are the code 

vectors; 
 

• 1 2{ , ,..., }i i i
i LP S S S=  is a partition of idR and its 

equivalence classes (or cells) i
jS  satisfy: 

1

i

L
di

j
j

S
=

=∪ R and i i
h kS S∩ = ∅ for h k≠ ; 

 

• : id
i iF A→R  is a function defining the relation 

between the codebook and the partition as 
( ) i

i jF =x c  if and only if i
jS∈x . 

And the index j  of the centroid i
jc  is the result of the 

quantization of the id –dimensional subvector x , i.e. 

the information that is sent to the decoder. 
 
The design of this vector quantizer aims at the joint 
determination of the 1N +  partition boundaries 

0 10 Nb b b D= ≤ ≤ ≤ =…  and to the design of the N  

vector quantizers having dimension 1i i id b b −= − , 

1 i N≤ ≤ . 
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 Figure 1: Partitioned Vector Quantizer. 
 
Given a source vector ( , )x yI , we indicate the i –th 

subvector of boundaries bi−1  and 1ib −  with the symbol 

1

1i

i

b
b −

−I  (for simplicity, the x  and y  spatial coordinates are 

omitted when clear from the context). The mean squared 
quantization error between the vector I  and its quantized 

representation Î , is given by: 
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Where ( ),0 , 1, ,
i i i i

i i i
j j j dc c −=c …  is the centroid of the i –th 

codebook that minimizes the reconstruction error on 
1

1i

i

b
b −

−I : 

( )
1

1

1
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b i
i b l

l L

j MSE c
−

−

≤ ≤
= I . 

 
4. PVQ DESIGN 

 
The design of a PVQ is derived from a variation of the 
Generalized Lloyd Algorithm (or GLA) described in [4]. 
Unconstrained vector quantization can be seen as the joint 
optimization of an encoder (the function : dF A→R  
described before) and a decoder (the determination of the 
centroids for the equivalence classes of the partition 

1 2{ , ,..., }LP S S S= ). GLA is an iterative algorithm that, 

starting from the source sample vectors chooses a set of 
centroids and optimizes in turns encoder and decoder until 
the improvements on a predefined distortion measure are 
negligible. To define our PVQ, the boundaries of the 
vector partition 0 10 Nb b b D= ≤ ≤ ≤ =…  need to be 

determined as well. The proposed design follows the same 
spirit of the GLA. The key observation is that once the 
partition boundaries are kept fixed, the MSE is minimized 
independently for each partition by applying the well–
known optimality conditions on the centroids and on the 
cells. 
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1iε −1iβ −1iδ − 1iα −
...

Partition i
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Figure 2: Error contributions for two adjacent partitions. 
 

iM  = min( 1i iβ α− + , 1 1i iβ ε− −+ , i iδ α+ ); 

if ( iM = i iδ α+ ) 

1 1 1i ib b− −= − ; 

else if ( iM = 1 1i iβ ε− −+ ) 

1 1 1i ib b− −= + ; 

Figure 3: Partition changes in modified GLA. 
 
Vice versa, when the centroids and the cells are held fixed, 
the (locally optimal) partitions boundaries can be 
determined in a greedy fashion. The GLA step is applied 
on each partition independently. The determination of the 
equivalence classes is performed as usual, but when 
computing the new centroids, the error for two extra 
components (one to the left and the other to the right of the 
boundaries of the current partition) is computed as well. 
The only exceptions are obviously the leftmost and the 
rightmost partitions for which only one extra component 
will be available. 

In the iteration involving the i –th partition 
( 2 1i N≤ ≤ − ), we indicate with 

( )
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the contribution to the quantization error of its leftmost 
and rightmost components (see also Figure 2). The two 
extra components mentioned before are indicated by: 

( )
( )

1 1
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The reconstruction values used in the expressions for iδ  

and iε  are determined by the classification performed on 

the components 1,...,i ib b− . 

The boundary 1ib −  between the partitions 1i −  and i  

is changed according to the criteria expressed by the 
pseudocode in Figure 3. 
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 Figure 4: PVQ–based lossless encoder. 
 

5. LOSSLESS CODING 
 
PVQ can be used to perform lossless and near–lossless 
coding of the source vectors. In this configuration, the 
quantization is used as a tool to implement dimensionality 
reduction on the source. Partitioned VQ is combined with 
inter and intra subvector entropy coding. The quantization 
residual is entropy coded conditioned on the subvector 
indices. Figure 4 depicts the encoder that we have used in 
our experiments. 

The partition boundaries and the N  unconstrained 
VQs are determined off–line by the design described 
earlier. The encoding consists in partitioning the input 
vector, quantizing the subvectors in order to determine the 
vector of indices ( , )x yJ , then computing the quantization 

error: 

( )1 2

0 1 1

11 1( , ) ( , ), ( , ),..., ( , )N

N

bb b
b b bx y x y x y x y

−

−− −=E E E E  

where, for each 1 i N≤ ≤ : 

1 1 1

1 1 1ˆ( , ) ( , ) ( , )i i i

i i i

b b b
b b bx y x y x y

− − −

− − −= −E I I . 

Since the unconstrained quantizers work independently 
from each other and independently on each source vector, 
an entropy encoder is used to exploit this residual 
redundancy. In particular, each VQ index ( , )ij x y  is 

encoded conditioning its probability with respect to a set 
of causal indices spatially and spectrally adjacent. The 

components of the residual vector 
1

1( , )i

i

b
b x y

−

−E  are also 

entropy coded with their probability conditioned on the 
VQ index ( , )ij x y . 

 
6. EXPERIMENTS 

 
The partitioned VQ has been tested on a set of five 
AVIRIS images downloaded from the NASA web site [5]. 
AVIRIS images are 614 pixels wide and several thousand 
pixels high, obtained by flying the spectrometer over the 
target area. Each pixel represents the light reflected by a 
20m x 20m area (high altitude) or 4m x 4m area (low 
altitude). The spectral response of the reflected light is 
decomposed into 224 contiguous channels, approximately 
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10nm wide and spanning from visible to near infrared light 
(400 to 2500nm). Spectral components are represented 
with a 16 bits precision.  

Several experiments have been performed for various 
numbers of partitions and for different codebook sizes. 
The results that we describe here were obtained for 

16N =  partitions and 256L =  codebook levels. The 
choice of the number of levels makes also practical the use 
of off–the–shelf image compression tools that are fine–
tuned for 8 bit data.  
 

7. RESULTS 
 

Table I shows PVQ performances in terms of compression 
ratio. PVQ achieves on the images we considered an 
average compression of 3:1, 38.25% better than bzip2 
(applied on the plane–interleaved images). The table also 
shows the compression ratio in the near–lossless scenario, 
i.e., when a small quantization error is allowed. In this 
setup it is possible to reach 4:1, 4.77:1 and 5.46:1 for an 
error 1K = ± , 2±  and 3±  respectively. In the last column 
we report, as a reference, the compression ratio when only 
the indices are encoded and the quantization error is 
discarded. Table II shows, for the same parameters, the 
Signal to Quantization Noise Ratio:  

2

2

1

10
0

10
 ( ) log Ii

Ei

D

i

SQNR dB
D

σ

σ

−

=

 =  
 ∑ . 

The partition boundaries for each of the five hyperspectral 
images are depicted in Figure 5. While similarities exist, 
the algorithm converges to different optimal boundaries on 
different input images. This is evidence that PVQ adapts 
the partitions to input statistics. Experimentally we have 
found that adaptation is fairly quick and boundaries 
converge to their definitive values in less than one hundred 
iterations. 
 

8. CONCLUSIONS 
 
We presented an extension of the GLA algorithm to the 
design of a Partitioned Vector Quantizer. The proposed 
algorithm is intended for the encoding of source vectors 
drawn from a high dimensional source on DR . PVQ 
breaks down the input space into N D�  independent 
subspaces and for each subspace designs a minimal 
distortion vector quantizer. The partition is adaptively 
determined while building the quantizers in order to 
minimize the total distortion. Experimental results on 
lossless and near–lossless compression of hyperspectral 
imagery are presented and discussed. Aside from 
competitive compression figures and progressive 
decoding, PVQ has a natural parallel implementation and 
it can also be used to implement search, analysis and 
classification in the compressed data stream. 
 

 
Bzip2 Partitioned VQ 

Near–Lossless 
Compression 

Ratio Lossless 
K=1 K=2 K=3 

Indices 
only 

Cuprite 2.25 3.13 4.23 5.08 5.85 40.44 
Low Altitude 2.13 2.89 3.88 4.66 5.34 39.10 
Lunar Lake 2.30 3.23 4.22 5.03 5.78 47.03 
Moffett Field 2.10 2.94 3.97 4.74 5.40 40.92 
Jasper Ridge 2.05 2.82 3.70 4.36 4.92 35.02 
Average 2.17 3.00 4.00 4.77 5.46 40.50 

Table I: Lossless and near–lossless compression ratio. 
 

Bzip2 Partitioned VQ 
Near–Lossless SQNR (in dB) Lossless 

K=1 K=2 K=3 
Indices 

only 
Cuprite NA NA 44.83 40.08 37.15 23.91 
Low Altitude NA NA 47.94 43.18 40.19 25.48 
Lunar Lake NA NA 48.53 43.75 40.79 27.15 
Moffett Field NA NA 49.36 44.64 41.75 25.74 
Jasper Ridge NA NA 46.94 42.19 39.24 20.37 
Average NA NA 47.52 42.77 39.82 24.53 

Table II: Near–lossless signal to quantization noise ratio. 
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P L A N E  N U M B E R

Figure 5: Partition sizes and alignment. 
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