
A GENERAL FRAMEWORK FOR THE SECOND-LEVEL ADAPTIVE PREDICTION

Guang Deng and Hua Ye

Department of Electronic Engineering
La Trobe University, Bundoora, Victoria 3083, Australia

{d.deng, h.ye}@ee.latrobe.edu.au

ABSTRACT

In this paper we present a study of a general framework for second-
level adaptive prediction which is formed from a group of pre-
dictors. It is a natural extension to that of the first-level which
is formed directly from a group of pixels. The proposed frame-
work offers a greater degree of freedom for adaptation and ad-
dresses some of the tough problems such as model uncertainty
that is inherent to the first-level prediction methods. We show that
the proposed methods of taking weighted average (WAVE) and
weighted median (WMED) of a group of predictions are alterna-
tive and competitive adaptive image prediction methods. We have

achieved better compression performance than that of TMW����

by combining a group of linear predictors.

1. INTRODUCTION

Adaptive prediction is a key component in lossless image cod-
ing. Adaptive prediction can be made either directly from a group
of neighbouring pixels or from a group of component predictors.
Therefore, we can regard adaptive prediction as having two levels.
At the first level, the structure of the predictor is usually given and
the parameters can be fixed or adaptively changed. The prediction
is directly made from the pixels. There are well established the-
ories [3] and algorithms, such as least squares (LS) [13] [5] and
least mean square (LMS)[7], for first-level adaptive predictions.
There are also some heuristics based methods to determine first-
level predictors. For example, we can use one of a group of simple
predictors shown in Table 1.

At the second level, we are given a group of � predictors,
denoted by ���� (� � � � ��. We would like to find out the most
probable value for the current pixel x. In recent years, a number of
methods that are related to the second-level prediction have been
published. These methods employ the basic structures of either
model selection or model combination. A representative method
of model selection is the well known median adaptive prediction
(MAP) used in the JPEG-LS standard [11]. The output of MAP is
given by

���� � 	
� ���� ��� ��� (1)

which selects the median value of the three predictions (as shown
in Table 1) as the final prediction. Another representative method
is the gradient adjusted prediction (GAP) [12] which uses the local
gradient and a set of thresholds to select a predictor from a group
of simple predictors.

On the other hand, several researchers have proposed adaptive
prediction techniques based on model combination. For example,
Seemman [9] proposed combination scheme that penalizes “bad”
predictors and the HBB (history-based blending) [10] algorithm

�� � ��
� � � ��
�� � ��
� �� ��
�� � ��
� �� �� � ��
� � � ��� ��
� �� � � ��
�� � ��
� �� � � ��
�� � ���
� � � �� � ��
� �� �����
�� � ��
� �� � � ��
�� � ���
� �� �� � ��
� �� � � �����

Table 1. List of fixed predictors. The current pixel is represented
by ��
� �� where i is the row index and j is the column index.

which uses the LS approach to determine the combination coeffi-
cients. Deng [1, 2] proposed a combination scheme based on the
variance of the predictor. Lee [4] proposed a predictor combina-
tion algorithm based on the Bayesian principle.

While there are abundant research results on the first-level of
prediction, techniques based on the second-level have just emerged
as powerful tools for lossless image compression problems. The
motivation for our study is to develop a general framework for the
second-level adaptive prediction such that it covers both model se-
lection and model combination. We formulate the second level
prediction problem as a parameter estimation problem. Based on
the maximum likelihood principle, we propose two methods us-
ing weighted average and weighted median for model combina-
tion and model selection, respectively. These two methods are di-
rect results of using a Gaussian and a Laplacian distribution in the
optimization process. We carried out experiments using a group
of simple predictors (shown in Table 1) to demonstrate the excel-
lent predictive performance of the proposed second-level predic-
tors. We also show that by combining a group of weighted-LS
based linear predictors [14], compression performance better than
that of TMWLego [6] can be achieved. TMWLego produced ar-
guably the best (in terms of bit rate) lossless image compression
results.

2. A GENERAL FRAMEWORK FOR THE
SECOND-LEVEL PREDICTION

2.1. The main algorithm

We formulate the problem of the second-level prediction as the
following:

�	
���
�

���������� ��
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where I represents the prior information. Using Bayes’ rule, we
have

���������� �� � ���������� ��������� (2)

where ������� is prior probability of x. To solve this optimization
problem, we make two assumptions for the probability models (1)
each prediction is statistically independent and (2) the prior dis-
tribution is flat for the whole range of possible values of x. A
discussion of another setting for the prior is given in Section 2.2.
We consider two types of models: Gaussian and Laplacian.

Using a Gaussian model, we have the probability density func-
tion (pdf)

�� ������ �� � ��
����

�
�

�������

���� (3)

where the mean is � and the variance is ���. The maximum likeli-
hood (ML) solution to this problem is given by

�� � ���

��
���

��
���

(4)

where �
��
�

�
��

���
�
���

. This is a weighted average of the com-

ponent predictions.
Using a Laplacian model, we have

�� ������ �� � �

���
�
�

������
�� (5)

where as in the Gaussian model case, the quantity � is regarded
as the mean and the variance is ����. The ML estimate for x is
given by a weighted median filter output of the predictions using
the respective ���� as the weight. This is represented as

�	 � �	 ����� ��������	� � (6)

The weighted median filter can be implemented in the following
way. First the predictions are sorted such that

�
�� � �
�� � ��� � �
�� (7)

where �
�� represents the nth largest prediction and its correspond-
ing variance is represented by ��
��. Then output of the weighted
median filter is �	 � �
	� where L is the minimum index such
that

	�
���

�

�
��
� �

�

��

��

�

�

�
(8)

2.2. Prior probability and a sequential Bayesian solution

It is possible to set the prior to a distribution other than the flat
one. For example, one possible setting is to regard the pdf of the
random variable x as a Gaussian with the mean and variance being
one of the prediction �� and the corresponding ���, respectively.
This is because it is reasonable to assume a particular model as
the default model (prior) for an image. However, making such a
setting does not change the solution to the problem.

For a particular choice of the prior, a sequential Bayesian solu-
tion can also be found. For example, if the first predictor in Table
1 is uses as the prior model, then its prediction value serves as the
mean for the distribution, i.e., ������� 	 ����� �

�
�� . The mean

is also the minimum mean square error (MMSE) estimate of � (de-
noted by �� � ��). Next, when another prediction ���� is known,
the posterior probability is given by

WAVE WMED MED MIN WMAP MAP

baloon 2.87 2.92 3.12 3.05 3.12 3.12
barb2 4.94 4.98 5.26 5.02 5.12 5.18
barb 4.88 4.91 5.31 4.94 5.15 5.20

board 3.70 3.71 4.18 3.80 3.93 3.95
boats 4.13 4.16 4.54 4.22 4.29 4.31
girl 3.86 3.90 4.26 3.98 4.19 4.21
gold 4.62 4.64 4.91 4.75 4.74 4.72
hotel 4.53 4.56 4.94 4.66 4.73 4.73
zelda 3.80 3.86 4.01 3.97 4.08 4.11

AE 4.15 4.18 4.50 4.27 4.37 4.39

Table 2. The entropy (bits/pixel) of several prediction methods for
the test images. AE represents the average entropy

�������� �� � ��������������� (9)

The updated MMSE estimate is given by

�� �
�

��
�
��
���

�
��
���

� (10)

where �� is defined as �
��

� �
��
�

� �
��
�

. In the same way, when

the (N-1)th prediction �� is known, then the estimate is updated
as:

���� �
�

����
�
����
����

�
��
���

� (11)

where ���� is defined as: �
����

� �
����

� �
��
�

.

It can be shown that ���� � ��. Comparing the ML solution
(equation 4) to the sequential Bayesian solution (equation 11), we
can see that the latter permits additional flexibility that we can stop
the calculation at an index � (� � � )and use �
 as the final output.

2.3. Estimation of the variance

A vital task in the proposed framework is to estimate the variance
of each prediction. Since images are usually regarded as non-
stationary signals, the estimation must be robust and localized for
each pixel. We have proposed a simple algorithm for this purpose
[2]. We assume that the current pixel is the mth pixel at location
index �
� �� of the image. We denote the estimate of the variance
for the �th predictor for the current pixel as ������, which is cal-
culated by the following equation:

������ �
�

�

�
������ �� �

�




����

�
(12)

where ����� � �� is the estimate of the variance of the previous
pixel for the nth predictor, and 
���� is an estimate of the “local”
mean square error for the nth predictor. Let �� �
� �� represent the
prediction error of the nth predictor for the pixel at location �
� ��.

���� is given by


���� � ����
� ���������
��� ���������
��� �������
��� �����
(13)

Equation (12) is a simple recursive filter to smooth out noise in the
estimate.
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3. EXPERIMENTAL RESULTS

To evaluate the performance of the proposed method, we have per-
formed experiments using a set of JPEG test images which are
���
���, 8 bits/pixel. The proposed adaptive prediction methods
using weighted average and weighted median are represented by
WAVE and WMED, and are defined by equations 4 and 6, respec-
tively. The method denoted by MED is a special case of WMED
where the weights are regarded as equal. The method denoted by
MIN selects the prediction with the minimum variance as the final
prediction. An extension to MAP, denoted by WMAP, is given by

����� � �	 ����� ������	�� (14)

The performance of each method is measured by the entropy
of the prediction errors of each image. For comparison reason,
we use MAP as a benchmark. The results are listed in Table 2.
From this table, we can see that the performance of the proposed
adaptive prediction methods (WAVE and WMED) is consistently
better than that of MAP for all test images. The average entropy is
improved by more than 0.2 bit/pixel. The MIN method is actually
a performance based prediction selection method that selects the
best performing predictor output as the final prediction. It also out-
performs MAP, although its performance is a bit inferior to those
of WAVE and WMED. It is also interesting to note that extending
MAP to WMAP results in slight improvement in performance.

The MED predictor can be regarded as a direct extension to
MAP by having more predictions. However, this simple extension
does not work well. This can be explained by the proposed general
framework. Taking the median value as the final prediction is an
optimal choice only if all of the predictions follow the same Lapla-
cian model (with same mean and variance). However, for a group
of predictors such as those defined in Table 1, different predictors
have different variances for an area of the image. Thus, with the
Laplacian model, the weighted median is the proper method for
prediction selection and is a natural extension to MAP.

In a lossless image coding algorithm, the prediction error is
coded by using an entropy coding algorithm. Context-based adap-
tive coding is aimed at capturing the remaining redundancy and
nonlinear relationship among prediction errors. In other words, the
relatively poor performance of a predictor can be compensated by
context-based adaptive coding. Therefore, it is necessary to com-
pare the performance of different prediction methods when they
are used with a context-based coding method.

To perform such a comparison, we used a context-based arith-
metic coder [1] to encode the prediction errors. The bit rate for
each image is shown in Table 3. The difference between the av-
erage entropy of the prediction errors and the average bit rate of
the entropy coding results for each prediction method is shown in
Table 4. From these two tables we can see that while the entropy
coding method does help improve the compression performance
for each prediction method, the relatively poorly performing pre-
diction methods gain more. However, the ranking of the prediction
methods remains the same. A better performing prediction method
results in a lower bit rate. For example, the average bit rate for
WAVE is about 0.1 bit/pixel better than that of MAP. These results
highlight the importance of using a good predictor in a lossless
image coding system.

Although there is no restriction as to what type of prediction
method should be included in the proposed adaptive prediction
method, we have selected a group of relatively simple predictors
to keep the computational complexity comparable to that of MAP.

WAVE WMED MED MIN WMAP MAP

baloon 2.75 2.78 2.84 2.82 2.84 2.84
barb2 4.45 4.51 4.60 4.51 4.55 4.58
barb 4.27 4.32 4.50 4.34 4.40 4.46

board 3.49 3.50 3.65 3.52 3.55 3.57
boats 3.76 4.79 3.92 3.81 3.83 3.85
girl 3.67 3.71 3.86 3.73 3.82 3.84
gold 4.33 4.35 4.45 4.38 4.38 4.39
hotel 4.19 4.21 4.35 4.23 4.26 4.27
zelda 3.67 3.71 3.78 3.73 3.77 3.80

ABR 3.84 3.88 3.99 3.90 3.93 3.95

Table 3. The entropy coding results (bits/pixel) of several predic-
tion methods for the test images. ABR represents the average bit
rate

WAVE WMED MED MIN WMAP MAP

0.31 0.30 0.51 0.37 0.44 0.44

Table 4. The difference between the average entropy of the pre-
diction errors and the average bit rate of the coding results for each
prediction method.

TMWLego WAVE-WLS

baloon 2.60 2.60
barb2 3.84 3.75
barb 4.24 4.18
board 3.27 3.27
boats 3.53 3.53
girl 3.47 3.45
gold 4.22 4.20
hotel 4.01 4.01
zelda 3.50 3.51

Average bit rate 3.63 3.61

Table 5. The compression results (bits/pixel) using a combination
of weighted-LS based linear predictors and TMWLego algorithm
.

It should be noted that if computational complexity is not a major
concern, then it is possible to improve the predictive performance
of the proposed method by using better predictors. The limited
performance of predictors listed in Table 1 is mainly because only
four causal neighbouring pixels are used. Therefore, a more pow-
erful prediction should involve more pixels. For example, by com-
bining a group of weighted-LS based linear predictors [14], we
have demonstrated algorithms with compression performance bet-

ter than that of TMWLego which has achieved arguably the best
compression performance. The comparison results are shown in
Table 5.

At the end of this section, we discuss two reasons for the supe-
rior performance of the second-level prediction. One reason is its
greater ability for adaptation. Methods of the first-level prediction
usually assumes a fixed model structure. For a linear predictor, it
is difficult to adaptively change both the order and the coefficients
at the same time. Model averaging provides a mechanism to solve
this problem. For example, one can combine a group of linear pre-
dictors of different orders. These predictors can be either fixed or
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adaptive. A combination of these predictors results in a predictor
that can adjust its structure and parameters simultaneously.

The other reason is that WAVE provides a mechanism to tackle
the problem of model uncertainty that is inherent to almost all first-
level predictors. For example, how do we determine and justify
the order of a linear model for an image? In an extreme case, there
may be a different optimal order for each pixel. In addition to this
problem, when using the least squares (LS) method to design a
linear predictor for each pixel the size and the shape of the training
window are also uncertain [13] [5]. These problems are seldom
addressed in the first-level prediction.

Model uncertainty can be expressed as the posterior proba-
bility of the model being the correct model for the current pixel,
or more generally, as an estimate of the predictive performance
of the predictor for the current pixel. According to the theory of
Bayesian model averaging[8], given the data D and a group of N
models 	�, the posterior distribution is determined by:

� ����� �

��
���

� �����	��� �	���� (15)

The MMSE estimate of x is given by

� � 
 ����� �

��
���

��� �	���� (16)

where �� � 
 �����	�� is MMSE estimate of x using the nth
model and can be regarded as the prediction output for the nth
model. The quantity � �	���� is the probability that the nth
model makes a correct prediction. This probability can be regarded
as a measure of the degree of belief that the nth model is the true
model that generates the sample �. One way to express our de-
gree of belief is to use a localized estimate of the variance of the
prediction errors of the nth model and let

���	���� � �

���
(17)

Therefore, the combination coefficient can be regarded as a rep-
resentation of the uncertainty of each model. By averaging over
a group of models, the uncertainty is reduced and the predictive
performance is improved.

4. CONCLUSION

In this paper we have presented a general framework for the second-
level adaptive prediction which is based on the principle of max-
imum likelihood. The second-level prediction is a natural exten-
sion to that of the first-level. It offers a greater degree of freedom
for adaptation and addresses some of the tough problems such as
model uncertainty that is inherent to the first-level prediction meth-
ods.

The proposed methods of taking weighted average (WAVE)
and weighted median (WMED) of a group of predictions are alter-
native and competitive adaptive image prediction methods. Com-
pared to some published methods which are designed based on
heuristics and have some parameters that require fine-tuning for
particular images, the proposed methods are based on well devel-
oped principles. In addition, the proposed WAVE and WMED
methods permit a trade-off between the predictive performance
and the computational complexity. This is accomplished by care-
fully selecting a group of predictors. We have shown that by using

a group of weighted-LS based predictors, better compression re-

sults than those of TMWLego can be obtained.
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