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ABSTRACT

This paper investigates the interaction between tracking and recog-
nition of human faces from video under the framework proposed
earlier [1, 2], where atime series model is used to resolve the un-
certainties in both tracking and recognition. However, our ear-
lier efforts employed only a simple likelihood measurement in the
form of a Laplacian density to deal with appearance changes be-
tween the frames and between the observation and the gallery im-
ages, yielding poor accuracies in both tracking and recognition
when confronted by pose and illumination variations. The inter-
action between tracking and recognition was not well understood.
We address the interdependence between tracking and recognition
using a series of experiments and quantify the interacting nature of
tracking and recognition.

1. INTRODUCTION

Recognition of human faces from video requires resolving the un-
certainties in both tracking and recognition. While conventional
approaches [3] resolve both uncertainties separately, i.e. after track-
ing isaccomplished, recognition isthen applied, we have proposed
[1, 2] aframework to model both uncertainties in a unified way.

However, our earlier efforts employed only asimplelikelihood
measurement in the form of a Laplacian density to deal with ap-
pearance changes between the frames and between the observation
and the gallery images. As a consequence, thisyielded unsatisfac-
tory results in both tracking and recognition when confronted by
pose and illumination variations. Also, the interaction between
tracking and recognition was unclear.

In this paper, we attempt to address these issues by asking
the following questions: What is the relationship between track-
ing and recognition in face recognition from video problem? Is
a good recognition metric modeling the appearance changes be-
tween the observation and the gallery imagesis good for tracking?
How good is our approach in terms of recognition rate compared
to the still-image-based recognition system? To find the answers,
we conducted a series of experiments by bringing in face mod-
eling techniques and study the interdependence between tracking
and recognition.

The rest of the paper is structured as follows. After a brief
review of the literature on face modeling and recognition in Sec.
2, and arecapitulation of our previous time series mode for recog-
nition in Sec. 3, we present our experimental results in Sec. 4,
where five cases are presented to mainly address the interacting
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effects between tracking and recognition. Sec. 5 concludes the
paper.

2. FACE MODELING AND RECOGNITION

Statistical approaches to face modeling have been very popular
since Turk and Pentland’s work on eigenface in 1991 [4]. In the
statistical approach, the two-dimensional appearance of face im-
age istreated as a vector by scanning the image in lexicographical
order, with the vector dimension being the number of pixelsin the
image. In the eigenface approach [4], al face images consists of
a digtinctive face subspace. This subspace is linear and spanned
by the eigenvectors of the covariance matrix found using PCA.
Typicaly we keep the number of eigenvectors much less than the
true dimension of the vector space. The task of face recognition
isthen to find the closest matches in this face subspace. However,
PCA might not be efficient in terms of recognition accuracy since
the construction of the face subspace does not capture discrimi-
nation between humans. This motivates the use of LDA [5, 6]
and its variants. In LDA, the linear subspace is constructed [7] in
such a manner that the within-class scatter is minimized and the
between-class scatter is maximized. Thisideais further general-
ized in the approach called Bayesian face recognition [8], where
intra-personal space (IPS) and extra-personal space (EPS) are used
in lieu of within-class scatter and between-class scatter measures.
The IPS models the variations in the appearance of the same in-
dividua and the EPS models the variations in the appearance due
to a difference in the identity. Probabilistic subspace density is
then fitted on each space. A Bayesian decision is taken using a
maximum a posteriori (MAP) rule to determine the identity.

Neural-networks have a so been commonly used for face recog-
nition. In the famous EGM [9] algorithm, the face is represented
as a labeled graph. The nodes of the graph are located at facial
landmarks, e.g., the pupils, the tip of nose, etc. Also, each nodeis
labeled with jets derived from responses obtained by convolving
the image with a family of Gabor functions. The edge character-
izes the geometric distance between two nodes. Face recognition
isthen formalized as a graph matching problem.

All the above approaches are based on 2-D appearance and
perform poorly when significant pose and illumination variations
are present [10]. To completely resolve such challenges, 3-D face
modeling [3] is necessary. However, building a 3-D face model is
avery difficult and complicated task in the literature even though
structure from motion has been studied for several decades.
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3. TIME SERIES STATE SPACE MODEL FOR
RECOGNITION

In this section, we briefly present the propagation model for recog-
nition, consisting of the following three components, and define
the recognition task as a statistical inference problem.

M otion equation

In its most genera form, the motion model can be written as
O = g(Or-1,w); t>1, ]

where u; is noise in the motion model, whose distribution de-
termines the motion state transition probability p(6:|6:—1). The
function g(.,.) characterizes the evolving motion and it could be
a function learned offline or given a priori. One of the simplest
choiceisan additive function, i.e., §; = 6:_1 + u¢, which leadsto
afirst-order Markov chain.

Choice of 4, is application dependent. Affine motion parame-
tersare often used when there is no significant pose variation avail-
able in the video sequence. However, if a 3-D face model is used,
3-D motion parameters should be used accordingly.

Identity equation

g =mg1; t>1, 7
assuming that the identity does not change as time proceeds.

Observation equation

By assuming that the transformed observation is a noise-corrupted
version of some still template in the gallery, the observation equa-
tion can be written as

To{zi} = Iny +vi; £ 21, ©)

where v, is observation noise at time ¢, whose distribution de-
termines the observation likelihood p(2¢|n:,8:), and T, {2+} is
atransformed version of the observation z;. This transformation
could be either geometric or photometric or both. However, when
confronting sophisticated scenarios, this model is far from suffi-
cient. One should seek for complicated likelihood measurement
as shown in Section 5.

We assume statistical independence between al noise vari-

ables and prior knowledge on the distributions p(6o|z0) and p(no|zo).

Using the overall state vector z; = (n¢,6:), Eq. (1) and (2) can
be combined into one state equation (in a normal sense) which is
completely described by the overall state transition probability

p(ze|zi-1) = p(nelne—1)p(0:|0:-1) - 4

Given this model, our goa is to compute the posterior prob-
ability p(n¢|zo.¢). Itisin fact a probability mass function (PMF)
since n; only takes values from A" = {1,2,..., N}, aswell asa
marginal probability of p(n:, 6¢|z0:¢), which is a mixed distribu-
tion. Therefore, the problem isreduced to computing the posterior
probability.

In [1], we invoked the Condensation algorithm, a special case
of Sequential Monte Carlo (SMC) methods [11], to provide nu-
merica approximations to the posterior distribution p(n:, 6| 2o0:¢ ).
In [2], we greatly improved the computational load by judiciously

Fig. 1. Database-1. The 1st row: the face gallery with image size
being 30x26. The 2nd and 3rd rows. 4 example frames in one
probe video with image size being 720x480 while the actual face
size ranges approximately from 20x20 in the first frame to 60x60
in the last frame. Notice the significant illumination variations
between the probe and the gallery. The tracking results obtained
has been illustrated by the superimposed bounding box.

utilizing the discrete nature of the identity variable. We [2] aso
theoretically justified the evolving behavior of the recognition den-
sity p(n¢|zo:¢) under one weak assumption.

4. EXPERIMENTAL RESULTS

In this section we describe the still-to-video scenarios used in our
experiments and their practical model choices, followed by a dis-
cussion of experimental results.

In Database-1, we have video sequences with subjects walk-
ing in adant path towards the camera. There are 30 subjects, each
having one face template. There are one face gallery and one probe
set. The face gallery is shown in Fig. 1. The probe contains 30
video sequences, one for each subject. Fig. 1 gives some example
frames extracted from one probe video. As far asimaging condi-
tions are concerned, the galery is very different from the probe,
especialy in lighting. Thisis similar to the'FC' test protocol of
the FERET test [10]. These images/videos were collected, as part
of the HumanID project, by Nationa Institute of Standards and
Technology and University of South Florida researchers.

4.1. Model Choices

We consider affinetransformation. Specifically, the motionischar-
acterized by 6 = (a1, a2,as,as,tz,ty) where {a1,a2,as,as}
are deformation parameters and {t.,t,} are 2-D trandation pa
rameters. It isareasonable approximation since thereis no signifi-
cant out-of-plane motion as the subjects walk towards the camera.
Regarding the photometric transformation, only zero-mean-unit-
variance operator is performed to partially compensate for con-
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trast variations. The complete transformation 7¢{z} is processed
as follows: affine transform z using {a1, a2, as, a4}, crop out the
interested region at position {¢., t, } with the same size as the still
template in the gallery, and perform zero-mean-unit-variance op-
eration.

Prior distribution p(6o|z0) is assumed to be Gaussian, whose
mean comes from the initial detector and whose covariance matrix
is manually specified.

A time-invariant first-order Markov Gaussian model with con-
stant velocity is used for modeling motion transition. Given the
scenario that the subject is walking towards the camera, the scale
increases with time. However, under perspective projection, this
increaseisno longer linear, causing the constant-vel ocity model to
be not optimal. However, experimental results show that as long
as the samples of 6 can cover the motion, this model is sufficient.

4.2. Resultson Database-1

Case 1: Tracking and Recognition using L aplacian Density

Wefirst investigate the performance when the likelihood measure-
ment issimply set as a’truncated’ Laplacian:

p1(ze|ne, 0t) = LAP(||To, {2t} — In;|l; 01,71) (5

where, ||.|| is sum of absolute distance, o1 and A\; are manually
specified, and
o lexp(—z/o) if x <10
LAP(z;0,7) = { o texp(—71) otherwise ©)

Gaussian distribution is widely used as a noise model, account-
ing for sensor noise, digitization noise, etc. However, given the
observation equation: v¢ = Te, {2t} — I, the dominant part of
v becomes the high-frequency residual if 8, is not proper, and it
is well known that the high-frequency residual of natural images
is more Laplacian-like. The 'truncated’ Laplacian is used to give
a’surviving' chance for samples to accommodate abrupt motion
changes.

Table 1 shows that the recognition rateis very poor, only 13%
are correctly identified using top match. The main reason is that
the "truncated’ Laplacian density is far from sufficient to capture
the appearance difference between the probe and the gall ery, thereby
indicating a need for a different appearance modeling. Neverthe-
less, the tracking accuracy ! is reasonable with 83% successfully
tracked because we are using multiple face templatesin the gallery
to track the specific face in the probe video. After dl, facesin both
the gallery and the probe belong to the same class of human face
and it seems that the appearance change is captured by the class
model.

Case 2: Pure Tracking using Laplacian Density

In Case 2, we measure the appearance change within the probe
video as well as the noise in the background. To this end, we
introduce a dummy template Ty, a cut version in the first frame of
the video. Define the observation likelihood for tracking as

q(2t|60:) = LAP(|[Ts, {2t} — Toll; 02, 2), )

1We manually inspect the tracking resuilts by imposing the MM SE mo-
tion estimate on the final frame as shown in Fig. 1 and determine if track-
ing is successful or not for this sequence. This is done for all sequences
and tracking accuracy is defined as the ratio of the number of sequences
successfully tracked to the total number of all sequences.

where o3 and 7> are set manually. The other setting, such as mo-
tion parameter and model, is the same asin Case 1. We till can
run the CONDENSATION algorithm to perform pure tracking.

Table 1 shows that 87% are successfully tracked by thissimple
tracking model, which impliesthat the appearance within the video

remains similar.

Accuracy Casel | Case2 | Case3 | Case4 | Caseb

Tracking 83% 87% 93% 100% NA
Recognition (top 1) 13% NA 83% 93% 57%
Recognition (top 3) | 43% NA 97% 100% 83%

Table 1. Performances of agorithms when applied to Database-1.

Case 3: Tracking and Recognition using Probabilistic Sub-
space Density

As mentioned in Case 1, we need a new appearance model to im-
prove the recognition accuracy. As mentioned in Section 2, vari-
ous approaches have been proposed in the literature. We decided
to use the approach suggested by Moghaddam et. al. [8] dueto its
computational efficiency and high recognition accuracy. However,
in our implementation, we model only intra-personal variationsin-
stead of both intra/extra-personal variations for simplicity.

We need at | east two facial images for one identity to construct
the intra-persona space (IPS). Apart from the available gallery,
we crop out the second image from the video ensuring no overlap
with the frames actually used in probe videos. Fig. 2 (top row)
shows allist of such images. Compare with Fig. 1 to see how the
illumination varies between the gallery and the probe.

We then fit a probabilistic subspace density [12] on top of the
IPS. It proceeds as follows: aregular PCA is performed for the
IPS. Suppose the eigensystem for the IPSis { (A, e; }&,, where d
is the number of pixelsand A1 > ... > A4. Only top s principal
components corresponding to top s elgenvalues are then kept while
the residual components are considered as isotropic. We refer the
reader to the original paper [12] for full details. Fig. 2 (middle
row) show the eigenvectors for the IPS. The density is written as
follows:

1 s yiz &2
exp(—5 D, 5),, eap(—%5;)

P8 =4 e tampeont - O

wherey; = el'z fori = 1,...,s isthe i** principal component
of z, e® = |lz||> — Y ;_, yi isthe reconstruction error, and p =

(Z‘::Hl Ai)/(d—q). Itiseasy to writethelikelihood asfollows:

p2(zt|ne, 01) = PS(To, {2t} — In,)- 9)

Table 1 lists the performance by using this new likelihood
measurement. It turns out that the performance is significantly
better than in Case 1, with 93% tracked successfully and 83% rec-
ognized withintop 1 match. If we consider thetop 3 matches, 97%
are correctly identified.

Case 4: Tracking and Recognition using Combined Density

In Case 2, we have studied appearance changes within a video
sequence. In Case 3, we have studied the appearance change be-
tween the gallery and the probe. In Case 4, we attempt to take
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Fig. 2. Database-1. Top row: the second facial images for training
probabilistic density. Middle row: top 10 eigenvectors for the IPS.
Bottom row: the facial images cropped out from the largest frontal
view.

advantage of both cases by introducing a combined likelihood de-
fined as follows:

p3(2t|ne, 0:) = pa(ze|ne, 0¢)q(2:0:) (109
Again, all other setting is the same asin Case 1. We now obtain
the best performance so far: no tracking error, 93% are correctly

recognized as thefirst match, and no error in recognition when top
3 matches are considered.

Case 5: Still-to-still Face Recognition

To make a comparison, we also performed an experiment on still-
to-still face recognition. We selected the probe video frames with
the best frontal face view (i.e. biggest frontal view) and cropped
out the facial region by normalizing with respect to the eye co-
ordinates manually specified. This collection of images is shown
in Fig. 2 (bottom row) and it is fed as probes into a still-to-still
face recognition system with the learned probabilistic subspace as
in Case 3. It turns out that the recognition result is 57% correct
for the top one match, and 83% for the top 3 matches. The cu-
mulative match curves for Case 1 and Cases 3-5 are presented in
Fig. 3. Clearly, Case 4 is the best among all. We also imple-
mented the origina algorithm by Moghaddam et. d. [12], i.e,
both intra/extra-personal variations are considered, the recognition
rate is similar to that obtained in Case 5. One reason for the su-
periority of still-to-video approach is that we essentially compute
the recognition score based on all video frames and, in each frame,
al kinds of transformed versions of the face part corresponding to
the sample configurations that are considered, while still-to-still
approach derives its decision based some isolated shots.

5. CONCLUSION

We have studied the interaction between tracking and recognition
inaframework proposed earlier. It has been found that (i) an effec-
tive recognition metric is effective for tracking as well, (ii) com-
bining both contribution from tracking and recognition yields best

—v— Casel
—o— Case 3 |
—*— Case4d | |
—— Case 5

0.7

o
iy

cumulative match score
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Fig. 3. Cumulative match score curves for Database-1.

performance in both tracking and recognition; and (iii) the still-to-
video approach is superior to the till-to-still counterpart in terms
of recognition rate.
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