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ABSTRACT

Optical flow estimation algorithms such as the Lukas-
Kanade method and Horn and Schunk method require
selection of a tuning parameter. In the former case a
neighbourhood size, in the latter, a penalty parame-
ter. Selection of these tuning parameters is difficult
in general but has a profound effect on the results.
So automatic methods of selection are of great inter-
est. In previous work we have developed such methods
based on white noise assumptions and here we show
how to adjust for the effect of spatially correlated er-
rors. These always occur in practice and can degrade
the performance of white noise based procedures.

1. INTRODUCTION

There is by now, a considerable literature on optical
flow estimation e.g. [1],[2],[3],[4]. The question is how
to estimate motion (i.e. velocities) from a sequence of
image intensities I = I(t,z1,22). A basic approach
is based on the brightness constraint equation (BCE)
which assumes brightness does not change with time so
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where I, I, , I, are image intensity gradients; u, v are
the x1, x> components of optical flow. The image gra-
dients can be estimated (as I, fml , fxz— from image in-
tensities by temporal and spatial differencing ) so the
BCE provides one constraint on the two velocities u, v.
To estimate the two velocities then, further informa-
tion is needed and this is provided by assuming spatial
continuity of u,v.
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Such constraint information can be manifested ei-
ther as in [5](HS) by Tikhonov regularization or as in
[6](LK) by local estimation. We deal only with the
LK method here. Our approach can handle the HS
approach but will be pursued elsewhere. More recent
approaches to optical flow estimation have emphasized
the necessity to take account of outliers due e.g. to
occlusion; thus the above methods are modified [4],[2].
Since we are emphasizing automatic choice of neigh-
bourhood size here we study initially the simpler algo-
rithm of [6]. Our approach can be extended to handle
the more recent more complex algorithms but again
this will be pursued elsewhere.

Optical flow estimation is of course an ill-conditioned
inverse problem [7] and the problem of estimating tun-
ing parameters in ill-conditioned inverse problems has
alarge literature e.g.[8]. There are two approaches: de-
terministic, based on minimising a surrogate for a mean
squared error quality measure e.g.[9]; stochastic based
on a(n) (empirical) Bayesian approach e.g[10],[11].

As discussed in [12] the Bayesian approach is usu-
ally computationally very demanding and approximate
solutions have to be sought. We pursue the determinis-
tic approach here; its computational demands are usu-
ally modest by comparison. The Bayesian approach
has been mentioned in the computer vision literature
[13] but not applied to optical flow.

While there has been some work on tuning parame-
ter selection in image processing e.g.[14] there has been
only a little on optical flow [15],[16],[17]. In these works
the error signal I, -i—ufgc1 —H}IAQU2 is treated as white noise;
but it is clearly correlated due to estimation of the im-
age gradients by filtering.

In the much simpler problem of signal estimation
it is well understood in the statistics literature that
the correlation can severely affect the choice of tuning
parameter and hence the quality of signal estimation
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[18]. That is also true here and our aim is then to
show how to adjust for correlation in the error signal.
In section 2 we formulate the BCE with noise. In
section 3 we develop our new selection criterion. Sec-
tion 4 contains results and conclusions in section 5.

2. NOISY BCE

The BCE is an ideal. Noise in the image capture pro-
cess; noise in estimating the temporal and spatial gra-
dients; violation of the assumptions behind the BCE
(e.g. due to variations in ambient illumination) mean
that the BCE does not hold exactly. This phenomenon
can be modeled by introducing a noise term

—I; =ul,, +vl,, +e¢

This view was discussed e.g. by [19] but he did not deal
with spatial correlation in e which is what we pursue
here. Again [16] covered only the white noise case. Our
approach follows the general method of [12]. That dis-
cussion covered only white noise but the development
is easily modified to handle coloured noise c.f.[20].

We rewrite the model as
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Here y represents a lexicograhically ordered image of
M x M pixels as do u, v, I, , Iy, (so e.g. yisan M?x1
vector). For the moment we allow an arbitary noise
covariance cov(ep,eq) = I'p g (where e.g. P = (21, 2)
is a point on the plane). We can thus write var(e) =T’
where I is M2 x M?>.

3. AUTOMATIC NEIGHBOURHOOD
SELECTION

We need to measure the quality of the optical flow es-
timator. In [21],[22] is proposed a criterion which mea-
sures angle between velocity vectors. Unfortunately
this measure does not account for magnitude differ-
ences and partly for that reason is not a metric. If esti-
mating speed matters as it often does then this measure
is inadequate.

Mean squared error (mse) for flow velocities is a
simple measure that is a metric and measures both
speed and direction. However the development of a
tuning paramter selector based on such a measure is not
straight forward and will be pursued elsewhere. Here

we use mse based on the BCE. So our quality measure
or statistical 'risk’ is

R = E|ji-nl?
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where || z ||2= 27z and f is the optical flow estimator
from the algorithm of interest; in our case an overlaped
version of [6]. Ideally we would choose the neighbour-
hood size to minimize R. Now R cannot be calculated
since f is unknown so the idea is to find an empirically
computable surrogate for R and minimize that instead.
It can be shown (modifying [12]) that an unbiassed es-
timator of R (known as Stein’s unbiassed risk estimator
SURE) is (with e = y — i = residual)

T
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Dropping terms not dependent on the neighbourhood
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Now substitute the (overlapped) LK estimator

fp = Mp'Sygoqur—q
Mp = Ygoghwr-q

Here wp is a hump shaped kernel (e.g. a Gaussian or
a triangle) whose region of support defines the neigh-
bourhood of pixels used to calculate fp. As long as
the kernel is continuous its use eliminates Gibbs ring-
ing and ’zigzagging’ in R. Continuing, we obtain after
some algebra, and now assuming the noise is spatially
stationary

R = X(=2fpyp + i} + 29095 Mp'hp)
hp = XI'p_qwp-@gq
where I'p is the spatial autocorrelation function (ACF)
and 7 the variance. These are estimated from the
residuals ep = yp—jip. We call our criterion SURE¢ .
For a white noise process I'p = 0, P # 0 then hp =
gpwo and the criterion collapses to that of [16] (which
we call SUREw ).

4. RESULTS

We illustrate our new results with a well known exam-
ple; the rotating Rubik cube sequence used in [22]. The
ACF (and variance) is estimated from residuals from a
preliminary optical flow estimation (which could use
the neighbourhood size that minimizes the SUREw v
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Figure 1: ACF of Rubik Cube Sequence.
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Figure 2: SUREw n for Rubik Cube Sequence

criterion). We have found that, over a number of dif-
ferent image sequences ,the neighbourhood size used
to estimate the ACF is not critical (i.e. does not af-
fect the shape of the resulting SUREcy) unless it is
very small (e.g. 3x3) or very large (e.g. 21 x 21).
Next the SUREcn criterion is calculated according to
the expression at the end of section 3. Results are
shown in Figs.1-5. The ACF is shown is Fig.1. The
unusual structure is clearly bias due to the edges in
the image sequence. But the ACF does not need to
be well estimated for the criterion to function success-
fully. In Figs.2,3 we see the minimizing neighbourhood
with SURE¢n is smaller than for SUREw Ny . This
phenomenon seems to be typical over several image se-
quences. It is a positive feature of the new criterion
since it ensures the optical flow estimator is more sen-
sitive to local features. Also the SUREw n criterion
is relatively flat near its minimum and so points to a
range of reasonable neighbourhood sizes, say 9-15. The
SURE¢n criterion has a more pronounced minimum
(at 7). Again this phenomenon seems to be typical.
In Figs.4,5 the optical flow corresponding to the
minimizing neighbourhood sizes are shown. The op-
tical flow based on the SUREw x neighbourhood has
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Figure 3: SURE¢y for Rubik Cube Sequence

WN-Optical Flow

Figure 4: Optical Flow for Rubik Cube Sequence -
White Noise based Neighbourhood Size

CN-Optical Flow

Figure 5: Optical Flow for Rubik Cube Sequence -
Coloured Noise based Neighbourhood Size
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smoothed out the velocity a little too much; the opti-
cal flow based on SURE¢ N shows more structure but
is perhaps just a little too noisy. Indeed we found the
result with neighbourhood size of 9 (not shown), vi-
sually more pleasing. However as we have pointed out
elsewhere tuning parameter values near the minimizing
one should in general also be looked at.

5. CONCLUSION

We have shown how to adjust, for correlated noise,
a previously developed criterion for automatic selec-
tion of neighbourhood size for the LK method of op-
tical flow estimation. The new criterion tends to yield
smaller neighbourhood sizes, an encouraging result which
allows the optical flow estimator to be more sensitive to
local variation. In function estimation [18],[20] WN cri-
teria sometimes fail altogether in the presence of corre-
lation. We have so far not seen that phenomenon here.
In future work we will modify our method to apply to
robust optical flow estimators.
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