LINEAR AND REGULARIZED SOLUTIONSFOR MULTIPLE MOTIONS

Cicero Mota, Erhardt Barth*
Ingo Stuke, Til Aach
Institute for Applied Physics

Institute for Signal Processing J. W. Goethe-University Frankfurt
University of Lilbeck *Institute for Neuro- and Bioinformatics
Ratzeburger Allee 160, 23538Ibeck, Germany University of Libeck
ABSTRACT 2. THE CASE OF ONLY ONE MOTION

We extend a novel framework for the estimation of multi- e start by recalling a classical optical-flow method. We
ple transparent motions to include regularization. We useconsider image sequences defined by intengity, y, t).

mixed-motion parameters to obtain linear Euler-Lagrange The classical constant-brightness constraint for the motion
equations with a regularization term. The equations arevectorv = (v, v,) is

solved iteratively for the mixed-motion parameters based on
an update rule that is similar to the case of only one motion. a(v)f=0 (D]
The motion parameters are then obtained as the roots of a
complex polynomial of a degree that is equal to the num- Wherea(v) = v, 2 + Uya% + 2 is the derivative operator
ber of overlaid motions. An experimental error analysis is alongV = (v, v,,1). The usefulness of this notation will
performed and reported. become clear later on.

We thus have only one equation for two unknown com-
ponents of the motion vector. To solve this problem, in [7] a
regularization term was used that should minimize changes

) S . over space in the maotion vector. This leads to the following
This paper addresses the problem of estimating multiple,nctional. which needs to be minimized:

transparent motions that can occur in computer-vision ap-

1. INTRODUCTION

plications, e.g. in case of semi-transparencies and occlu- 9 9 9 9
sions, and also in medical x-ray projections imaging, when (@) )"+ A(Orva)” + (Gyva) @
different layers of tissue move independently. An overview F (Bavy)? + (9y0,)2)dQ

of the problem of multiple motions has been given in [1].
To our knowledge, the problem of two motions has been () is the support region, here the whole image plane, and
first solved in [2] by the use of spatio-temporal Gabor filters )\ the regularization parameter. Based on the calculus of

and fourth-order moments derived from these filters. An variations the following two Euler-Lagrange equations are
alternative solution that is also based on the frequency do-obtained:

main is given in [3], where a nonlinear system of four equa-

tions is solved to estimate the phase change and from there FRvg + fofyvy + foft = NAvu, 3)

two transparent mothns. A recent analy3|s of the spectral fufyve + ny'Uy + fyf: A2 Ay,

properties of two motions can be found in [4]. In general,

frequency-based methods suffer from requiring large local whereA is the Laplace operator.

windows. Others have introduced the useful and intuitive Note that the above system is linear in the motion com-
notion of 'layers’ [5]. As an important extension of the ponentsv, andv,. UsingAv = & — v, whered is the
methods mentioned above, we have provided analytic so-weighted average over the eight direct neighbours, aihd
lutions for up to four transparent motions [6]. Our approach solving the system (3) far,, andv, we obtain

also delivers numerical solutions for more than four mo-

tions. Here we extend the solution to include regularization. I+1 N P 4
Vg Uy — f:v D ( )
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with 3.2. Regularization

P = fil+ fyf)?l, T (5) As with one motion we still _haye only one equation but now
) ) ) the number of unknowns is five. We therefore need four
D = NM+fi+], more equations. We employ again the calculus of variation

. . n fine, in anal to the meth in [7], the follow-
wherel denotes the iteration step. %gdrceigulaerizat?o:t(;?r)r/ro e method used in [7], the follo

Due to the large size and the sparseness of the matrix

involved, the system needs to be solved iteratively for ex- N = (9scon)? + (0yca)?
ample by using the Gauss-Seidel method. 9 ! 9
+  (Oucyy)” + (Oycyy)
OuCay)® + (OyCay)? 10
3. THE CASE OF TWO MOTIONS T Oucy) o+ (Oyay) (10)
+ (8@-(31-,5) + (8ycxt)
Here we extend the above method to the case of two trans- + (Opcyt)® + (Oycyr)

parent motions. We shall see that the resulting update rule is _ o
very similar to the case of one motion, the difference being We thus obtain the parameteras the values that minimize

that we have to deal with a higher number of equations. the above term together with the squared optical-flow term
(6), i.e.:

3.1. Basicequations 5 o
//(a(u)a(v)f) + A°N dQ.
An image sequencg(z, y, t) with two transparent motions ‘

v andu is described as: )\ is the regularization parameter afidthe whole image

plane over which we integrate. Note that, at this stage, we

flyt) = hle—vty—vy) work on finding thec’s and not the motion vector compo-
+  fa(m — uat,y — uyt). nents. This has the great advantage that we obtain an Euler-

Lagrange system of differential equations that is linear! As
we shall see, this would not be the case, when working di-
rectly on the motion vectors themselves. Note that if the
velocitiesu andv are smooth, the parameterwiill also be
smooth. The five Euler-Lagrange equations that we obtain

The task is to determine = (v,,v,)” andu = (ug, u,)T
given f. To do so, we use the optical-flow equation intro-
duced by Shizawa and Mase [2]:

a(wa(v)f =0 ®  arethe following:
Note that the equation involves the concatenated directional .
q 32‘;(1;011) + fa:xfyycyy + fmzfmycxy + fmmfmtcrt

derivatives alongr andv. After expanding the above equa-

_ 12
tion we obtain the following expression: + frafytcyt + foafro = N Az
fyyfwwcwa: + fg?ycyy + fyufxycwy + fyyfztczzt
a(Wa(v)f = feolzve + fyyuyvy +  fyySytCye + fyyfre = )\QAcyy
7

+ fay (uzvy + uyvy) (7) foyfoaCon +  FoyFyyCoy + F2yCoy + Foy FotCat

T Sar(tta 0]+ fyr(ty +0y) + fur =0 t fopfueo + Fopfu = NDew, (1)
As in [6] we use the following notation: fotfoaCow  +  JorfyyCyy + fotfayCay + forCat

+  fatfytCyt + fotfoe = N Acy
C = U,V C = Uy
ra . rre o WY yjr/ ®) fytfaaCaz  +  fytfyyCyy + fytfayCay + fyt fatCar
Copy = UgV UyVp 5, Copp = Uy +V
Ty Ty yYx xt T x _|_ fstcyt + fytftt _ )\QACyt-
Cyt = Uy + 0y, Cp=1 ‘

Eq. (6) then becomes: 3.3. Linear and nonlinear formulations of the problem

As noted above, the system (11) is linear in tfee Let us

a(a)f = feccos + fyyCyy + foyCay consider the following example to illustrate that this would
+  fatCaot + fytCyt + frecu ) not be the case with the motion parameters themselves. To
= 0. obtain the Euler-Lagrange differential equations, one must

differentiate the functional to be minimized with respect to
As we shall see, this notation leads to a linear formulation the unknown variables. If we differentiate only the expres-
of the problem. sion of the squared optical-flow equation with respeat,to
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we obtain [6]). Thus the main steps are (i) solve the linear system for
the ¢’s (ii) find the roots of the complex polynomié}(z),

9 2
oy (@(@)a(v)f) and (jii) take the real parts of thés asx and the imaginary
= 2(fraUsUs + fyyUyUy + fay(Uzvy + uyvy) parts agy components of the motion vectors.
+ fat(ua +ve) + fye(uy +vy) + fer) (12)
(Featin + foytiy + fut) 3.5. Boundary treatment

We have chosen to extend the image by copying the bound-
ary pixels into an extended margin of size one. Such, the
first-order derivatives will be zero outside the boundary of
the original image thus minimizing boundary effects.

i.e., we obtain an equation that is nonlineavinv,, u, and
uy. Therefore we note that it is indeed the introduction of
the mixed motion parameterdhat leads to a linear formu-
lation of the problem.

3.4. Updaterule 4. GENERALIZATION TO MORE THAN TWO
MOTIONS
In analogy to the case of one motion we obtain the following
update rules for the system (11): In this section we will show that similar update rules can be
obtained for the case of more than two motions. In case of

0?;21 = éim — fmx% n transparent motions, the optical-flow equation is given by
A, P LIRS = =
= Ay —fup a(vi)---a(va)f ij crfr =0 (16)
. P
I . fovp (13)  withthe notation = I, -, I,,,m = (n+1)(n+2)/2. I,
p are ordered sequences with eleméntg, ¢). For example
drt = &, — fug in Eq. (8)I; = zx, I = xt, andls = tt. The functional to
P be minimized is
C;tl = élyt - fytﬁ
[ [(Sent 2 S @y + @00t
with 1 NI,
P = fméér + fyyélyy + fmyéfvy and the Euler-Lagrange differential equations are
+  falh, + fytéi/t + fu )
B 2 2 2 2 2 2 crfr | fr, =XAlcr,, i=1,--- ,m—1 (18)

The iteration will deliver the values of the mixed motion piscretization WithAc; = é; — ¢;. leads to
parameters. From these parameters we still need to extract ' ’ ‘
the velocity vectora1 andv. We accomplish this by using

the novel method described in [6]. The velocity vectors are Z crfr | f1, + Ny,
thereby treated as complex numbers: NI,

Nér, — fr. fr,, (19)

. . ¢ = 1,---,m—1
u=u; + tug, v=1v1+ 10s.

These complex numbers are related to the mixed motion pa-lt is now straightforward to show that equation (19) leads to

: : the following update rule:
rameters: by the following equations: gup

. P
uv = Aozcww—cyy—"—icmy Cl[j_lzclfl_fjfﬁ Z:17--. ,m—l (20)
ut+v = A;=cu+ icyt (14) with
Note thatd, and A, are homogeneous symmetric functions p — Z A 1)
in u andv and, by Vieta’s theorem, the coefficients of the N - il
complex polynomial
D = N+ ff
Qz) = (z—u)(z—v)=22—A1z+ 4, (15) NI

that has the complex rootsandv. These roots can be ob- Since the system is positive definite, we know that even for
tained analytically (even for the case of up to four motions more than two motions equation (20) is the only possible
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solution of the system (19). For up to four motions, the mo- solution of a linear system of equations. The system is ob-
tion parameters can be obtained from the mixed-motion pa-tained by introducing a regularization term for the mixed-
rameters analytically as described above since the increasethotion parameters. The motion-vector components are then
number of motions will just increase the order of the poli- obtained from the mixed-motion parameters by solving for
nomial. For more than four motions, the roots of the poly- the roots of a complex polynomial. Alternative regulariza-

nomial Q(z) can be found by numerical methods. tion procedures could be used, since we have succeeded to
linearize the problem of determining multiple overlaid mo-
5 RESULTS tions. By doing so we can easily incorporate regularization
and deal with more that two motions. We have obtained
5.1. Derivativesand filters good simulation results on synthetic sequences. However,

o o the way we have computed the partial derivatives still needs
The derivatives were computed by multiplication in the fre- {5 phe optimized and filters other than derivatives could be
quency domain with a filter function that corresponds to sed, as outlined in [6], to increase robustness. Possible ex-

blurred second order derivatives, e.g-w? exp(—(w; +  tensions to cope with occluded motions have been proposed
wz+w?)/(2x0.3?)) for estimating the derivativg, ., with in [8].

w beeing the transform variables, such that, e.g.corre-
sponds toe. The value of).3 for the scale parameterhas
been found to be optimal for minimizing the errors reported
below. Obviously, this parameter can and should be used tom Michael J Black and P Anandan,
approach the problem on multiple scales.
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