GENERAL ILLUMINATION CORRECTION AND
ITS APPLICATION TO FACE NORMALIZATION

Juhua Zhu, Bede Liu, Stuart C. Schwartz

Dept. of Electrical Engineering, Princeton University
E-Quad, Olden St., Princeton 08544, U.S.A.
E-mail: {juhuazhu, liu, stuart}@ee.princeton.edu

ABSTRACT

The appearance of an object can be severely affected by
illumination. Thus, illumination correction is necessary
both for human perception and machine recognition. This
paper reports on a general approach for fast illumination
correction. The approach has been tested for application
in face normalization as a preprocessing step in face
recognition. The basic idea of the algorithm is to locally
normalize the image contrast using an affine
transformation lighting model based on local estimation of
background and gain. The background is estimated via an
efficient multi-resolution low-pass filter and the gain is
estimated via homomorphic filtering. This is followed by
normalizing the data with the help of a clipped histogram.
Experiments on images with different lighting conditions
produce results that are better than those from using
several popular illumination correction methods.

1. INTRODUCTION

For many vision algorithms, an illumination change in a
scene such as a shadow will typically cause the algorithm
to perform poorly. This usually occurs because the
algorithm cannot distinguish by pixel value alone between
the effect due to background light and that due to
foreground object, thereby treating the lighting effect as
part of the object.

Many well known enhancement algorithms such as
histogram equalization are global in nature and are
intended to view an image more clearly as a whole. They
produce results that may not be satisfactory over some
local regions. More effective approaches for
enhancement are performed on a local neighborhood of
each pixel rather than relying on an operation determined
by the results of a global operation. Adaptive Histogram
Equalization (AHE) [1] computes the histogram of a local
window centered at a given pixel to determine the
mapping for that pixel, which provides a local contrast
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enhancement. However, it often leads to noise
amplification in “flat” regions of the image and “ring”
artifacts at strong edges. It is also computationally
intensive.  Similar problems occur with Local Range
Modification (LRM) [2], although it works faster. In
addition, the LRM result is apparently blocky. LRM finds
interpolated minimum and maximum pixel values in the
context region and stretches them to the desired range via
the equation

Y(5,9) = —————(X(x,)) ~min) ()
(max— min)
where the constant C depends on the data storage or
display device.

Our objective for the algorithm in this paper is to
take an image and process it while retaining a natural look
so that any planned subsequent algorithm such as object
detection or matching is still likely to work well under a
lighting change.

2. GENERAL ILLUMINATION CORRECTION
2.1. Lighting Model

A traditional method of removing or reducing an
unwanted shadow effect in an image is to subtract off a
low-passed version of the image with a large kernel size.
This serves to remove the slowly varying lighting
condition, which is often associated with shadow or
background lighting. However, a lighting change in an
image often cannot be modeled well as a simple additive
effect. Often what happens in practice is the range of dark
to bright in an image gets amplified as the illumination
increases, much like someone increasing the gain of the
camera. This is a multiplicative effect in addition to the
additive one. This also is often a local change rather than
a global one, so that gain controls in the camera are not
enough to compensate for the lighting change. In our
algorithm, we attempt to adjust and to compensate to
some degree for this type of effect on an image.
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Mathematically, we model the lighting change as a
local affine transformation of the pixel value.

G (x,)) = A, ) G,y +B(xy) @
where G(x, y) is the original image and G (x, ) is the

modified image as a result of the local lighting. This
means the lighting change has both an additive and a
multiplicative effect on the result. The proposed
normalization algorithm attempts to remove these affects

by first subtracting off a low-passed estimate l}(x,y)

and then normalizing with respect to a gain

estimate ﬁ(x, ¥) . Explicitly, this means:

Gx,y) = ﬁ 06 (x, )= B(x,y) )

If the estimates /Al(x, ¥) and é(x,y) are perfectly

correct, then this algorithm will reconstruct the original
image. However, since they must be estimated from the

image itself, processing the modified image, G (X, ), is

clearly not able to replicate the original image.
In our current algorithm, we have chosen to estimate

the additive effect B(x,)) by a multiresolution-based

low-pass filter, which approximates a large kernel low-
pass filter. We deal with the multiplicative effect

A(x,y) by means of homomorphic filtering. After

obtaining these two estimates, the clipped histogram is
used to help normalize the image.

2.2. Background Estimation

The low-pass filter needed to estimate the background
lighting should have a very large kernel size. This is to
eliminate the DC and typical shadow in later processing.
However, this can be rather computationally time
consuming: a separable 7 X 71 Gaussian blur would cost
over 2n multiplications per pixel. For 7 = 64 or more,
this could take much too long for practical purposes.
Instead we present a fast approximate low-pass filter
based on multi-resolution. The idea is fairly simple: a
coarse estimate of a low-pass filter would be to take non-
overlapping block average in the image which provides a
low resolution image representation. A simple rescaling
of this image to the original resolution would display very
apparent blockiness. We instead “rescale” the low
resolution image in stages, each intermediary resolution
approaching step by step closer to the original resolution.
One enlargement step goes though steps as is shown in
figure 1. What this does is to create a multi-resolution
spline interpolation of the reduced image.

In our actual implementation, each intermediary
resolution is a size doubling and we choose the low-pass

kernel of a separable 5X5 for each resolution. If the
reduced image was obtained from the original one using a

neighborhood size of 2" X2" | the average number of
multiplications per original image pixel is approximately:

1
10y — (4)
= 4

If the neighborhood size is 32 (17 =5), we have on
average about 3.3 multiplications per original image pixel.
However, the 5X5 kernel on the lowest scale
corresponds approximately to 160 X160 kernel size in
the original scale. A roughly equivalent separable low-
pass filter would take 320 multiplications! So even
though the multiresolution low-pass filter is only
approximate, the savings in multiplications is
considerable.

Since each stage doubles the image width and height
in our implementation in a particular way
( 2% height =1 and 2Xwidth—1) , it is rather
unlikely that repeated operations on the reduced image
will return to an image the same pixel width and height as
the original. We simply overshoot the image size and
then resize the overshot image to the appropriate size
using nearest neighbor resampling.

Fig.1. One step in the enlargement

2.3. Gain Estimation

We now turn to estimating the gain A(x, ) and remove
it. If we change the model (2) into the following form:

G (x,y) = B(x,y) = A(x,y) [G(x, ) )
Since the disturbance is multiplicative, we are naturally
led to homomorphic filtering. A(X, y) is expected to
vary slowly across the image, while the image
G(x,y) usually varies rapidly. As suggested by

homomorphic filtering, estimating the gain can be
accomplished in the log domain.
We define:
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f(x,y) =In(G (x,y) = B(x,))

(6)
=lnA(x,y) +InG(x,y)
Then low pass filtering f'(x, ) will isolate In A(x, y) .
LPF(f(x,y))=InA(x,y) (7

Finally, exponentiation is necessary to bring the quantity
into the normal spatial domain.

A(x, y) = exp(LPF(f (x,y))) ®)
Traditionally, homomorphic filtering does a high-

pass filtering in the frequency domain so as to preserve
the high frequency part and to suppress the low frequency
part, G(x,y) and A(x,y), respectively, in our case.

When it deals with large images, the implementation
becomes quite slow.

Recall we have a very fast multiresolution low-pass
filter for background estimation. Similarly, it can be used
here to estimate the gain. We do not simply subtract

In A(x,y) from f(x,y) to get InG(x,y), because

we want to improve the estimate of A(x, )) as described
below.

2.4. Image Normalization

Up to this point, we may simply substitute all estimates
into (3) to recover the image, with the additional step of
rescaling the data to the allowable range of values for the
storage device, [0, 255] for most computers. Since this
step can move any data to any range, the selection of K is
not crucial. Anything making the data some reasonable
quantity can be used.

However, we observed that there are often some
noisy pixels located at the two extremes in the histogram.
These pixels are sparse and do not represent the important
features of the image. But they impede the image to make
full use of the dynamic display range. In order to avoid
reducing contrast, we propose to establish high and low
thresholds based on the frequency of the pixel values. In
the histogram, the gray level is searched from two ends,
until the first gray level with high histogram frequency is

found. The respective gray levels are set to 7, and 7).

Mathematically, we have

~

s G(x,y)<T,
G(x,y)= 8> G(x, )21, )
i ~ 8o

=2 =2 Ax, -T )+g else
T -T (G(x, ) =T,) + g,

where g, and g,. are the lower and upper limit of

storage medium, respectively.

2.5. Discussion

Since this is a general purpose algorithm, comparisons
and performance will largely be a subjective matter.
Generally speaking, our goal is to have a more natural
look and more readable details than the original image.
Implicit in the algorithm are the neighborhood sizes
of two low-pass filters, one for background estimation and
the other for gain estimation. Clearly, large neighborhood
sizes lead to smooth results, but the illumination effect
may not be corrected as much as needed, while small sizes
probably will generate some discontinuities of lighting
effect. In our experiments, when both neighborhood sizes
are set as MIN (0.2 % shortedge,32), good results can

be achieved for most images under slowly varying
lighting conditions. However, for those images with too
strong a contrast, which is often caused by light incidence
with the angle of nearly 180° it is better for us to use
some smaller neighborhood sizes to balance the
illumination.

In addition, as may be noticed, during the correction
process, we keep subtracting low frequency components
off from the original image. This will eventually make the
high frequency prominent.  In addition, in some cases
when the original image has noise or has abrupt local
lighting change, the gain does not necessarily vary very
slowly. One easy way to compensate for this is to modify
the gain estimate as:

A (x,y) = A(x, y) @n(G (x, ) (10)
where A(x,y) is the result of former gain estimation,

and m([)) is some modification function for

compensation. In our experiments, we set it as:

m(x) =x (1)

What this modification does is to add some high
frequency components to the gain estimate. As a result,
the corrected image will have less high frequency
components. The fourth root is employed based on
experimental results. So, finally, we have the illumination
correction function as:

Gx, y) = N(=

K
A, »)FG (x,)

where N (D)) means data normalization with the help of

(G (x,3)=B(x, ))(12)

histogram clipping.

A Dbetter way to deal with different lighting
conditions, slow variations or sharp changes, is to
estimate the properties of the image and then
automatically choose parameters. The difficulty with this
approach is that it is often difficult to identify from the
image itself if the change of grayscale value is due to the
lighting effects or color effects.
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3. ILLUMINATION IN FACE RECOGNITION

As stated by Moses et al. [3], “the variations between the
images of the same face due to illumination and viewing
direction are almost always larger than image variations
due to change in face identity”. Different illumination
condition is a large impediment for face recognition.

The above method is we think a good choice to
normalize face data. However, a slight change of the
algorithm should be made to better serve the goal of face
recognition. In face recognition, in addition to making it
easier to recognize each face, it is also necessary to make
the overall illumination of each face image to be the same
for purposes of comparison. Thus, instead of rescaling
the data to the range of [0, 255] for the benefit of the
viewer, here, we need to normalize the data for the benefit
of machine recognition. One alternative is to normalize
the data by a certain mean value and standard deviation.

Experiments show that our method of illumination
correction can achieve satisfactory results in removing
annoying effects of shadowing and varied lighting for
most face images. We compared the results with
histogram equalization and histogram matching with the
“perfect” histogram of the face [4].

However, since no geometric face-model is used, our
method cannot recover those face signals with too many
saturated points in the original images. Neither is it able
to do a good job for those faces with very strong shadows.

4. EXPERIMENTAL RESULTS

We have evaluated the proposed method on images with
different lighting conditions and different objects. We
compared the results with those of Histogram
Equalization (HE), Adaptive HE, Histogram Matching
and Local Range Modification. Based on our preliminary
experiments, the results indicate better performance in
visualization while still maintaining fast computation.

Fig.2. shows the result of the proposed algorithm on
an image with slowly varying illumination. Fig.3. includes
three groups of face images, each corresponding to
different lighting variability. The first row has one
lighting source from the right, the second has one stronger
source from left, and the last has one weak source from
left. It is seen that the processed faces by our method tend
to be more homogeneous and normalized than the other
results, even for the image with a patch of saturated
points. That will definitely help sample clustering and
pattern classification.

However, for very extreme illumination (like some
face samples in the Harvard database), the algorithm does
not appear to correct very much for illumination.

For more detailed results, please refer to:

http://www.ee.princeton.edu/~juhuazhu/Acad/illum.htm
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Fig.2. (a)Original image, (b)HE result, (c)LRM result
(neighborhood=32x32), and (d)result by proposed method
(neighborhood=32x32). (Larger images online.)

Fig.3. Original images (from Purdue face database) with
different lighting in left most column, HE results in the
second, followed by Histogram Matching results, and the
right most are results of the proposed algorithm.
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