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ABSTRACT 

 
Through modeling the difference between two face images 
by three components, intrinsic difference (I), 
transformation difference (T), and random noise (N), we 
show that the Bayesian algorithm can successfully separate 
the main disturbing component T from the discriminating 
component I, however at a cost of magnified noise N.  To 
control the noise, we apply PCA on the original image, 
then carry out the Bayesian analysis in the reduced PCA 
space. The new method is shown to be more effective than 
the standard Bayesian algorithm in experiments using 
2000+ face images from the Feret database. 

 

1. INTRODUCTION 
 
Face recognition has been studied extensively in recent 
years. Among the existing face recognition techniques, 
subspace methods are widely used to extract low 
dimensional features [4]. Principle Component Analysis 
(PCA) method [2] is one of the most popular subspace 
methods. It uses Karhunen-Loeve Transform (KLT) to 
produce a most expressive subspace for face 
representation and recognition. By PCA, the 
dimensionality of image space can be dramatically 
reduced, and noise encoded on the small eigenvectors can 
be removed. 

However, as an optimal method for face representation, 
the PCA method is not optimal in terms of extracting the 
most discriminating features.  Recently, the Bayesian 
algorithm [1] has been shown to be more effective for face 
recognition. Different from other techniques, which 
classify face images into M classes for M individuals, the 
Bayesian algorithm casts the face recognition task as a 
binary pattern classification problem with each of the two 
classes, intrapersonal variation and extrapersonal 
variation, modeled as a Gaussian distribution. In the 
probabilistic subspace, transformation variations such as 
expression and lighting variations can be effectively 
reduced. However, as shown in this paper, since the 

discriminating features and noise are coupled on the small 
eigenvectors, noise will be magnified when normalized by 
the small eigenvalues in the probabilistic similarity 
measure. In this paper, we propose an improved Bayesian 
algorithm in the reduced PCA space. PCA is first used to 
separate the noise from the transformation variations and 
discriminating features. Then, the Bayesian analysis is 
applied to the PCA subspace in order to remove the effect 
of transformation variations from the final feature vectors. 
 

2. A SHORT REVIEW OF THE BAYESAIN 
ALGORITHM 

 
The Bayesian algorithm classifies the face intensity 
difference ∆  as intrapersonal variation ( IΩ ) for the same 
individual and extrapersonal variation ( EΩ ) for different 
individuals [1]. The MAP similarity between two images 
is defined as the intrapersonal a posterior probability 
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Because of the high dimensionality, )|( IP Ω∆  and 
)|( EP Ω∆  cannot be estimated directly from the training 

set. So subspace estimate is used. To estimate )|( IP Ω∆ , 
PCA on the set { }IΩ∈∆∆ |  decomposes the image 
difference space into principle subspace F , called 
intrapersonal eigenspace with K eigenvectors and its 
orthogonal complementary space F . The likehood can be 
estimated as the product of two independent marginal 
Gaussian densities in F  and F , 
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In Eq. (2), )(∆Fd  is a Mahalanobis distance in F , 
referred as “distance-in-feature-space” (DIFS), 
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where iy  is the principle component and iλ  is the 

eigenvalue. )(2 ∆ε  is defined as “distance-from-feature-
space” (DFFS), which is equivalent to PCA residual error 
in F . ρ  is the average eigenvalue in F , 
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)|( EP Ω∆  can be estimated in a similar way. The 
principle subspace computed from the set { }EΩ∈∆∆ |  is 
called extrapersonal eigenspace.  

An alternative maximum likehood (ML) measure is 
defined as 

)|()(' IPS Ω∆=∆ .   (5) 

It is equivalent to evaluating a distance measure in the 
intrapersonal subspace, 

ρε /)()( 2 ∆+∆= FI dD .   (6) 

ML measure has been shown to be simpler but almost as 
effective as the MAP measure in Eq. (1). 

 
3. IMPROVED BAYESIAN ALGORITHM 

 
3.1 Face difference model 

We model the difference ∆  between two face images by 
three components: intrinsic difference (I) that 
discriminates different individuals; transformation 
difference (T) caused by such transformations as lighting 
or expression changes; and random noise (N). T and N are 
two components deteriorating the recognition 
performance. Normally N is of small energy. Under a large 
transformation, T could potentially be greater than I. A 
successful subspace method should be able to reduce the 
effect of T and N as much as possible without sacrificing 
much of I. By analyzing the distribution of I, T and N in 

the PCA and Bayesian analysis, we can show how T and N 
can be effectively removed. 
 
3.2. Intrapersonal subspace 

Intrapersonal subspace plays a critical role in the Bayesian 
algorithm. ML measure using intrapersonal subspace alone 
is almost as effective as the MAP measure. IΩ  is 
composed of T and N, since it comes from the same 
individual, and T is the principle component, 

NTI +=Ω .    (7) 

As shown in Figure 1, PCA on the intrapersonal variation 
set arranges the axes according to the energy distribution 
of T. When we project a face difference ∆  (either 
intrapersonal or extrapersonal) onto the intrapersonal 
subspace, most energy of the T component will 
concentrate on the first few largest eigenvectors, while the 
I and N components are randomly distributed over all of 
the eigenvectors. This is because I and N are independent 
of T, which forms the principle vectors of the intrapersonal 
subspace. In Eq. (6), the Mahalanobis distance in F  
weights the feature vectors by the inverse of eigenvalues. 
This effectively reduces the T component since the 
principle components with large eigenvalues are 
significantly diminished. )(2 ∆ε  is also a distinctive 
component for recognition, since it throws away most of 
the component T on the largest eigenvectors, while keeps 
the majority of I. 
 
3.3. Bayesian analysis in reduced PCA space 

As shown in the previous section, the Bayesian algorithm 
successfully separates T from I. However, I and N are still 
coupled on the small eigenvectors. Even though N is 
usually of small energy, when it is normalized by the small 
eigenvalues as shown in Eq. (3) and (6), the effect of N 
could be significantly enlarged in the probabilistic 
measure.  

To solve this problem, we first apply PCA on the 
original image vectors. As shown in Figure 1, in the PCA 
subspace, both T and I, as structured signals embedded in 

Figure 1. Energy distribution of the three components I, T and N on eigenvectors in the intrapersonal subspace (a) 
and the standard PCA subspace (b). 

T 

N 
I

Eigenvectors

Principle 
subspace 

Complementary 
subspace 

(a) Intrapersonal subspace 

T & I 

N 

Eigenvectors

Principle 
subspace 

Complementary 
subspace 

(b) PCA subspace 

III - 130

➡ ➡



the original face image, will concentrate on the small 
number of principle eigenvectors. By selecting the 
principle components, most noise encoded on the large 
number of trailing eigenvectors is removed from T and I. 
In the following Bayesian analysis, intrapersonal and 
extrapersonal subspaces are derived from the reduced 
PCA space to separate T from I. Since the space 
dimensionality has been dramatically reduced by PCA, 
likehood can be estimated directly from DIFS, 
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Through such a two-step PCA and Bayesian analysis, 
we can finally separate the two interfering components T 
and N from the discriminating feature I. 

4. EXPERIMENT 
 
We test this method on images of 1195 individuals from 
the Feret database [3], with two images for each 
individual. We use images of 495 people for training, and 
the remaining images of 700 people for testing. So there 
are totally 990 face images in the training set, 700 face 
images in the gallery, and 700 face images for probe. 
 
(1) dp-di accuracy surface 

Results of Bayesian analysis using ML measure in the 
reduced PCA space is reported in Table 1. )|( IP Ω∆  is 
directly estimated using the DIFS. In Table 1, the vertical 
direction is the dimensionality of the reduced PCA space 
(dp) and the horizontal direction is the number of 
intrapersonal eigenvectors selected for DIFS (di).  

We can see that for each PCA subspace, the 
recognition accuracy of the DIFS changes with the number 

Table 1. Recognition results of Bayesian analysis in the reduced PCA space. 
 

PCA DIFS (di) 
dp Euclid 10 20 50 100 150 200 250 300 400 490 
50 0.773 0.277 0.609 0.937 N/A N/A N/A N/A N/A N/A N/A 

100 0.807 0.271 0.581 0.854 0.954 N/A N/A N/A N/A N/A N/A 
150 0.817 0.276 0.573 0.814 0.909 0.960 N/A N/A N/A N/A N/A 
200 0.821 0.276 0.580 0.813 0.893 0.923 0.953 N/A N/A N/A N/A 
250 0.827 0.269 0.571 0.806 0.877 0.910 0.949 0.944 N/A N/A N/A 
300 0.831 0.271 0.567 0.806 0.879 0.937 0.937 0.944 0.930 N/A N/A 
400 0.829 0.267 0.566 0.803 0.871 0.910 0.923 0.929 0.943 0.916 N/A 
500 0.836 0.266 0.563 0.804 0.871 0.907 0.916 0.927 0.931 0.930 0.670 
600 0.839 0.266 0.561 0.803 0.869 0.907 0.919 0.926 0.923 0.937 0.897 
700 0.840 0.267 0.560 0.803 0.869 0.907 0.920 0.926 0.931 0.927 0.911 
900 0.840 0.266 0.560 0.804 0.869 0.907 0.917 0.926 0.930 0.926 0.909 
On raw data 0.267 0.559 0.804 0.869 0.907 0.919 0.930 0.930 0.926 0.906 
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Figure 2. Accuracy curves for Bayesian analysis in the reduced PCA space. 

III - 131

➡ ➡



of intrapersonal eigenvectors, thus forms an accuracy 
curve. The accuracy curves for different PCA subspace 
then form a dp-di accuracy surface. We plot the dp-di 
accuracy surface in Fig. 2. There are two benchmark 
curves in the 3D space of Fig. 2. One is the accuracy curve 
of the traditional PCA method as reported in the second 
column in Table 1. Comparison with this curve clearly 
shows the improvement of the Bayesian analysis. The 
second curve is the DIFS accuracy curve of the standard 
Bayesian algorithm based on raw image vectors. It is 
reported in the bottom row of Table 1. We will compare it 
with the accuracy curves in different PCA spaces. 

The shape of dp-di accuracy surface clearly reflects the 
effect of noise. When dp is small, there is little noise in the 
PCA subspace. So the recognition accuracy monotonically 
increases with di as more discriminating information I is 
added, and finally reaches the highest point at the full 
dimensionality of the intrapersonal subspace. However, as 
dp increases, noise begins to appear in the PCA subspace 
and causes a change in the accuracy curve shape. The 
curve starts to decrease after reaching a peak point before 
di reaches the full dimensionality. The decrease of 
accuracy at the end of the curve is because noise 
distributed on the small eigenvectors is magnified by the 
inverse of the small eigenvalues as shown in Eq. (3).   

This effect of noise is especially severe when both dp 
and di are around 495, i.e. the largest possible di. In this 
region, the accuracy becomes as low as 67%. Because of 
the large dp, noise has become a fairly significant 
problem. When di becomes the same size of dp, all the 
energy in the PCA subspace, including noise, are selected 
for the Bayesian analysis. Noise concentrated on the last 
few very small eigenvectors will be drastically magnified 
because of the very small eigenvalues. 

We plot the highest accuracy of each accuracy curve of 
different dp in Figure 3. The maximum point with 96% 
accuracy could be found at (dp=150, di=150). In this PCA 
subspace, noise has been removed and all of the 
eigenvectors can be used for Bayesian recognition. 

 
(2) Recognition performance comparison 

In this section we compare the improved Bayesian 
algorithm in the reduced PCA space with the standard 
Bayesian algorithm. Accumulative accuracies using both 
ML and MAP measures are reported in Figure 4. In the 
improved algorithm, face data is first projected onto the 
PCA subspace with a dimension 150. ML and MAP 
measures are computed using the same dimensionality 
150. The performance of traditional PCA method is also 
reported. The results show that the Bayesian method is 
clearly better than the PCA method. By adding PCA in 
front of a Bayesian analysis, the performance can be 
further improved. 
 

4. CONCLUSION 
 
In this paper, we propose an improved Bayesian algorithm 
in the reduced PCA space. Using this method, both 
transformation variations and noise are separated from the 
discriminating features. The new method is much less 
sensitive to noise than the standard Bayes. Experiments on 
the Feret database demonstrate the improvement of the 
new approach. 
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Figure 3. Highest accuracy of Bayes analysis in each 

PCA space. 
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Figure 4. Accumulative accuracy of standard Bayes, 

improved Bayes and direct correlation. 

III - 132

➡ ➠


