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ABSTRACT

Through modeling the difference between two face images
by three components, intrinsic difference (1),
transformation difference (T), and random noise (N), we
show that the Bayesian algorithm can successfully separate
the main disturbing component T from the discriminating
component I, however at a cost of magnified noise N. To
control the noise, we apply PCA on the original image,
then carry out the Bayesian analysis in the reduced PCA
space. The new method is shown to be more effective than
the standard Bayesian algorithm in experiments using
2000+ face images from the Feret database.

1. INTRODUCTION

Face recognition has been studied extensively in recent
years. Among the existing face recognition techniques,
subspace methods are widely used to extract low
dimensional features [4]. Principle Component Analysis
(PCA) method [2] is one of the most popular subspace
methods. It uses Karhunen-Loeve Transform (KLT) to
produce a most expressive subspace for face
representation and  recognition. By PCA, the
dimensionality of image space can be dramatically
reduced, and noise encoded on the small eigenvectors can
be removed.

However, as an optimal method for face representation,
the PCA method is not optimal in terms of extracting the
most discriminating features. Recently, the Bayesian
algorithm [1] has been shown to be more effective for face
recognition. Different from other techniques, which
classify face images into M classes for M individuals, the
Bayesian algorithm casts the face recognition task as a
binary pattern classification problem with each of the two
classes, intrapersonal variation and extrapersonal
variation, modeled as a Gaussian distribution. In the
probabilistic subspace, transformation variations such as
expression and lighting variations can be effectively
reduced. However, as shown in this paper, since the
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discriminating features and noise are coupled on the small
eigenvectors, noise will be magnified when normalized by
the small eigenvalues in the probabilistic similarity
measure. In this paper, we propose an improved Bayesian
algorithm in the reduced PCA space. PCA is first used to
separate the noise from the transformation variations and
discriminating features. Then, the Bayesian analysis is
applied to the PCA subspace in order to remove the effect
of transformation variations from the final feature vectors.

2. ASHORT REVIEW OF THE BAYESAIN
ALGORITHM

The Bayesian algorithm classifies the face intensity
difference A as intrapersonal variation (Q, ) for the same

individual and extrapersonal variation (Qg) for different
individuals [1]. The MAP similarity between two images
is defined as the intrapersonal a posterior probability
S(1,1,) =P(Q, |4)
_ P(AIQ)PQ))
PAIQ)P(Q)+P(B]Qe)P(Qe)

€]

Because of the high dimensionality, P(A|Q,) and
P(A| Q) cannot be estimated directly from the training
set. So subspace estimate is used. To estimate P(A|Q,),
PCA on the set {A|ADQ,} decomposes the image

difference space into principle subspace F , called
intrapersonal eigenspace with K eigenvectors and its
orthogonal complementary space F . The likehood can be
estimated as the product of two independent marginal
Gaussian densities in F and F ,

1
. exp( EdF(A)J expl-c2(0)/120)]. o
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In Eq. (2), de(A) is a Mahalanobis distance in F
referred as “distance-in-feature-space” (DIFS),
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where y; is the principle component and A; is the

eigenvalue. £%(A) is defined as “distance-from-feature-
space” (DFFS), which is equivalent to PCA residual error
in F . o isthe average eigenvalue in F ,
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P(A|Qg) can be estimated in a similar way. The
principle subspace computed from the set {AlADQE} is

called extrapersonal eigenspace.
An alternative maximum likehood (ML) measure is
defined as

S'(B)=P(A]Q)). ®)

It is equivalent to evaluating a distance measure in the
intrapersonal subspace,

D, =d (8)+£2(2)/ p. (6)

ML measure has been shown to be simpler but almost as
effective as the MAP measure in Eq. (1).

3. IMPROVED BAYESIAN ALGORITHM

3.1 Face difference model

We model the difference A between two face images by
three  components: intrinsic  difference (1) that
discriminates  different  individuals;  transformation
difference (T) caused by such transformations as lighting
or expression changes; and random noise (N). T and N are
two  components  deteriorating  the  recognition
performance. Normally N is of small energy. Under a large
transformation, T could potentially be greater than I. A
successful subspace method should be able to reduce the
effect of T and N as much as possible without sacrificing
much of I. By analyzing the distribution of I, T and N in
|
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the PCA and Bayesian analysis, we can show how T and N
can be effectively removed.

3.2. Intrapersonal subspace

Intrapersonal subspace plays a critical role in the Bayesian
algorithm. ML measure using intrapersonal subspace alone
is almost as effective as the MAP measure. Q, is

composed of T and N, since it comes from the same
individual, and T is the principle component,

Q, =T+N. @

As shown in Figure 1, PCA on the intrapersonal variation
set arranges the axes according to the energy distribution
of T. When we project a face difference A (either
intrapersonal or extrapersonal) onto the intrapersonal
subspace, most energy of the T component will
concentrate on the first few largest eigenvectors, while the
I and N components are randomly distributed over all of
the eigenvectors. This is because | and N are independent
of T, which forms the principle vectors of the intrapersonal
subspace. In Eq. (6), the Mahalanobis distance in F
weights the feature vectors by the inverse of eigenvalues.
This effectively reduces the T component since the
principle components with large eigenvalues are

significantly diminished. €2(A) is also a distinctive
component for recognition, since it throws away most of

the component T on the largest eigenvectors, while keeps
the majority of I.

3.3. Bayesian analysis in reduced PCA space

As shown in the previous section, the Bayesian algorithm
successfully separates T from I. However, | and N are still
coupled on the small eigenvectors. Even though N is
usually of small energy, when it is normalized by the small
eigenvalues as shown in Eq. (3) and (6), the effect of N
could be significantly enlarged in the probabilistic
measure.

To solve this problem, we first apply PCA on the
original image vectors. As shown in Figure 1, in the PCA
subspace, both T and I, as structured signals embedded in
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Figure 1. Energy distribution of the three components I, T and N on eigenvectors in the intrapersonal subspace (a)
and the standard PCA subspace (b).
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the original face image, will concentrate on the small
number of principle eigenvectors. By selecting the
principle components, most noise encoded on the large
number of trailing eigenvectors is removed from T and I.
In the following Bayesian analysis, intrapersonal and
extrapersonal subspaces are derived from the reduced
PCA space to separate T from 1. Since the space
dimensionality has been dramatically reduced by PCA,
likehood can be estimated directly from DIFS,

1& y?
expl—= ) -

(Zn_)K/Z I—liK:l)l%/z '

Through such a two-step PCA and Bayesian analysis,
we can finally separate the two interfering components T
and N from the discriminating feature I.

P(AQ) =

(®)

4. EXPERIMENT

We test this method on images of 1195 individuals from
the Feret database [3], with two images for each
individual. We use images of 495 people for training, and
the remaining images of 700 people for testing. So there
are totally 990 face images in the training set, 700 face
images in the gallery, and 700 face images for probe.

(1) dp-di accuracy surface

Results of Bayesian analysis using ML measure in the
reduced PCA space is reported in Table 1. P(A|Q,) is

directly estimated using the DIFS. In Table 1, the vertical
direction is the dimensionality of the reduced PCA space
(dp) and the horizontal direction is the number of
intrapersonal eigenvectors selected for DIFS (di).

We can see that for each PCA subspace, the
recognition accuracy of the DIFS changes with the number

Table 1. Recognition results of Bayesian analysis in the reduced PCA space.

PCA DIFS (di)

dp [ Euclid | 10 20 50 100 150 200 250 300 400 490

50 | 0.773 | 0.277 | 0609 | 0937 | NA | NJA | NA | NJA | NA | NA N/A
100 | 0.807 | 0271 | 0581 | 0.854 | 0954 | NA | NJ/A | NA | N/A | NA N/A
150 | 0.817 | 0.276 | 0573 | 0.814 | 0909 | 0960 | N/A | NA | N/A | NA N/A
200 | 0.821 | 0.276 | 0580 | 0.813 | 0.893 | 0.923 | 0.953 | N/A | N/A | NIA N/A
250 | 0.827 | 0.269 | 0571 | 0.806 | 0.877 | 0.910 | 0.949 | 0944 | N/A | NIA N/A
300 | 0.831 | 0.271 | 0567 | 0.806 | 0.879 | 0.937 | 0.937 | 0.944 | 0.930 | N/A N/A
400 | 0.829 | 0.267 | 0566 | 0.803 | 0.871 | 0.910 | 0.923 | 0.929 | 0.943 | 0916 | N/A
500 | 0.836 | 0.266 | 0.563 | 0.804 | 0.871 | 0.907 | 0.916 | 0.927 | 0.931 | 0.930 | 0.670
600 | 0.839 | 0.266 | 0.561 | 0.803 | 0.869 | 0.907 | 0.919 | 0.926 | 0.923 | 0.937 | 0.897
700 | 0.840 | 0.267 | 0560 | 0.803 | 0.869 | 0.907 | 0.920 | 0.926 | 0.931 | 0.927 | 0.911
900 | 0.840 | 0.266 | 0.560 | 0.804 | 0.869 | 0.907 | 0.917 | 0.926 | 0.930 | 0.926 | 0.909
Onrawdata | 0.267 | 0559 | 0.804 | 0.869 | 0.907 | 0.919 | 0.930 | 0.930 | 0.926 | 0.906
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Figure 2. Accuracy curves for Bayesian analysis in the reduced PCA space.
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of intrapersonal eigenvectors, thus forms an accuracy
curve. The accuracy curves for different PCA subspace
then form a dp-di accuracy surface. We plot the dp-di
accuracy surface in Fig. 2. There are two benchmark
curves in the 3D space of Fig. 2. One is the accuracy curve
of the traditional PCA method as reported in the second
column in Table 1. Comparison with this curve clearly
shows the improvement of the Bayesian analysis. The
second curve is the DIFS accuracy curve of the standard
Bayesian algorithm based on raw image vectors. It is
reported in the bottom row of Table 1. We will compare it
with the accuracy curves in different PCA spaces.

The shape of dp-di accuracy surface clearly reflects the
effect of noise. When dp is small, there is little noise in the
PCA subspace. So the recognition accuracy monotonically
increases with di as more discriminating information 1 is
added, and finally reaches the highest point at the full
dimensionality of the intrapersonal subspace. However, as
dp increases, noise begins to appear in the PCA subspace
and causes a change in the accuracy curve shape. The
curve starts to decrease after reaching a peak point before
di reaches the full dimensionality. The decrease of
accuracy at the end of the curve is because noise
distributed on the small eigenvectors is magnified by the
inverse of the small eigenvalues as shown in Eq. (3).

This effect of noise is especially severe when both dp
and di are around 495, i.e. the largest possible di. In this
region, the accuracy becomes as low as 67%. Because of
the large dp, noise has become a fairly significant
problem. When di becomes the same size of dp, all the
energy in the PCA subspace, including noise, are selected
for the Bayesian analysis. Noise concentrated on the last
few very small eigenvectors will be drastically magnified
because of the very small eigenvalues.

We plot the highest accuracy of each accuracy curve of
different dp in Figure 3. The maximum point with 96%
accuracy could be found at (dp=150, di=150). In this PCA
subspace, noise has been removed and all of the
eigenvectors can be used for Bayesian recognition.

(2) Recognition performance comparison
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Figure 3. Highest accuracy of Bayes analysis in each
PCA space.

In this section we compare the improved Bayesian
algorithm in the reduced PCA space with the standard
Bayesian algorithm. Accumulative accuracies using both
ML and MAP measures are reported in Figure 4. In the
improved algorithm, face data is first projected onto the
PCA subspace with a dimension 150. ML and MAP
measures are computed using the same dimensionality
150. The performance of traditional PCA method is also
reported. The results show that the Bayesian method is
clearly better than the PCA method. By adding PCA in
front of a Bayesian analysis, the performance can be
further improved.

4. CONCLUSION

In this paper, we propose an improved Bayesian algorithm
in the reduced PCA space. Using this method, both
transformation variations and noise are separated from the
discriminating features. The new method is much less
sensitive to noise than the standard Bayes. Experiments on
the Feret database demonstrate the improvement of the
new approach.
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Figure 4. Accumulative accuracy of standard Bayes,
improved Bayes and direct correlation.
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