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ABSTRACT

We report the results of a comparative study on sub-
space analysis methods for face recognition. In particular,
we have studied four different subspace representations and
their ‘kernelized’ versions if available. They include both
unsupervised methods such as Principal Component Analy-
sis (PCA) and Independent Component Analysis (ICA), and
supervised methods such as Fisher Discriminant Analysis
(FDA) and probabilistic PCA (PPCA) used in a discrim-
inative manner. The ‘kernelized’ versions of these meth-
ods provide subspaces of high-dimensional feature spaces
induced by non-linear mappings. To test the effectiveness
of these subspace representations, we experiment on two
databases with three typical variations of face images, i.e,
pose, illumination and facial expression changes. The com-
parison of these methods applied to different variations in
face images offers a comprehensive view of all the subspace
methods currently used in face recognition.

1. INTRODUCTION

Subspace analysis is often used in signal processing and
computer vision problem as an efficient method for both
dimension reduction and finding the direction of the pro-
jection with certain properties. Usually, the vector con-
structed by raster-scanning the face image is considered to
lie in a high-dimensional vector space. In the context of
face recognition [1], we attempt to find some basis vectors
in that space serving as directions of projection, and hope-
fully the projected data are clustered according to their class
labels. Traditional linear subspace representations, namely
Principal Component Analysis (PCA) [2], Fisher Discrim-
inant Analysis (FDA) [3, 4], and Independent Component
Analysis (ICA) [5, 6] have been implemented, where PCA
and ICA are unsupervised methods and FDA is supervised.
However, all these methods are linear, which limits their
applicability. Recently, their ‘kernelized’ versions, namely
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Kernel PCA (KPCA) [7], Kernel FDA (KFDA) [8] and Ker-
nel ICA (KICA) [9], have appeared in the literature where
the limitation of linearity is overcome by construction of
a high-dimensional feature space induced by a nonlinear
mapping. Probabilistic PCA (PPCA) can be regarded as
a revised PCA with some probabilistic flavor incorporated.
Even though PPCA in its original form is an unsupervised
approach, we implement it in a supervised manner by in-
troducing inter-personal space [10]. While all of the above
methods are commonly found in the face recognition liter-
ature [2, 3, 4, 6, 10, 11], they have not been discussed in a
framework of subspace analysis for comparison. This paper
attempts to accomplish this task in both theory and applica-
tion.

The rest of the paper is as follows. Section 2 reviews
the underlying theories of each subspace analysis technique
and Section 3 describes the ’kernelized’ subspace methods.
Section 4 gives the experimental methodology. Section 5
presents the experimental results using two different databases
with three variations, namely pose, illumination and facial
variations. Section 6 concludes the paper.

2. SUBSPACE METHODS

The basic framework of subspace analysis is as follows.
Suppose we have n d-dimensional training vectors, forming
a matrix X = [x1, · · · , xn]. Later we will see that in most
cases, these training vectors are formed by raster-scanning
the training face images, but in PPCA, the concept of intra-
personal space is introduced, and the vectors are formed
from the difference of face images belonging to one person.
These vectors are preprocessed to have zero-mean and unit-
variance. Since original vector dimension d is usually very
large, we attempt to find m basis vectors (m < d) form-
ing a matrix W = [w1, · · · , wm] in Rd, such that the new
representation,

Y = WT X, (1)

satisfies certain properties. And different properties give
rise to different kinds of analysis methods such as PCA,
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ICA, FDA and PPCA.
Since the ‘eigenface’ approach was proposed by Turk

and Pentland [2], PCA has emerged as a popular technique
in the computer vision community. Variants of PCA tech-
niques have been studied and used [7, 11, 13]. Linear PCA
is the simplest version. It decomposes the available data into
uncorrelated directions, along which there exist the maxi-
mum variations. In other words, it tries to minimize the
representation error ‖WY − X‖. Towards this goal, a total
scatter matrix S = XXT is defined and the optimal matrix
W is formed by the eigenvectors corresponding to the m

largest eigenvalues of S.
In contrast to PCA which makes a decomposition into

uncorrelated components, ICA [5, 6] decomposes the data
into statistically independent components. Usually a con-
trast function measuring the statistical dependence of the
new representation y1, · · · , ym is defined and minimized.
ICA turns out to be a non-linear minimization problem which
requires a lot of computations.

While component analysis is oriented towards represent-
ing the data, discriminant analysis keeps in mind the clas-
sification task. It attempts to maximize the between-class
scatter while minimizing the within-class scatter. In FDA
[4, 3], two scatter matrices are defined: between-class scat-
ter matrix SB and within-class scatter matrix SW [12]. In
linear FDA, we want to maximize

J(W) =
|WT SBW|

|WT SW W|
. (2)

And the optimal W formed by generalized eigenvectors that
correspond to the largest eigenvalues in

SBwi = µiSW wi, i = 1, ..., C − 1, (3)

where C is the number of classes.
As a variant of PCA, PPCA has some probabilistic fla-

vor. It assumes there is some latent variable y related to
sample vector x through

x = u + Wy + e, (4)

where u is sample mean, W is the loading matrix, the latent
variable y ∼ N(0, I), and e ∼ N(0, σ2I) is measurement
noise vector. This model is a special case of Factor Analysis
(FA) [12]. The unknown W and σ2 are estimated using the
Maximum Likelihood principle [13]. The resulting estimate
of W and σ2 obey the coupled equations:

W = Um(Dm − σ2I)1/2R, (5)

σ2 =
1

d − q

d∑

i=q+1

λi, (6)

where R is any orthogonal matrix, Dm = diag[λ1, ..., λm]
is a diagonal matrix whose diagonal elements are the m

largest eigenvalues of the total scatter matrix S. The Um

matrix is formed by the eigenvectors corresponding to those
eigenvalues. A suboptimal approach [10] is to set σ2 = 0
and R = I in Eq. (5). Also in this approach, if for certain
x its principal component is x̃ = WT x = [x̃1, · · · , x̃m]T , it
can be shown that,

−2 log(P (x)) ∝

m∑

i=1

x̃2
i

λi
+

ε2

σ2
, (7)

where ε2 is the MSE of using x̃ to represent x and λi is the
i-th largest eigenvalue of the scatter matrix. So in PPCA,
PCA is used to find the optimal load matrix, and P (x) will
be used for classification. We have seen clearly that FDA is
a supervised method because it incorporates the class infor-
mation. PPCA can be operated in a supervised fashion by
introducing the concept of intra-personal space (IPS) [10],
which is constructed by collecting all pixel-wise difference
of face images belonging to the same person. The PPCA
density is then fitted on top of the IPS. So given a probe im-
age, we can first calculate the difference images between the
probe image and the gallery images, then P (x)’s are com-
puted for all difference images as in Eq. (7), and finally the
classifier associates the identity with the one yielding the
largest P (x).

3. KERNELIZED SUBSPACE METHODS

Kernel-based methods utilize the fact that the cost func-
tions mentioned in section 2 can be expressed in terms of
dot product (xi · xj) = xT

i ∗ xj , and by replacing the dot
product with kernel function K(xi, xj), the original data is
mapped non-linearly into a high-dimensional or infinite di-
mensional features space. However, explicit knowledge on
the non-linear mapping is not required because it is embed-
ded in the kernel function. In our experiment, we use the
Gaussian kernel function

K(x, y) = exp(−
‖x − y‖2

2σ2
). (8)

The detailed description of KPCA [12], KICA [9], KFDA
[8] can be found in references.

4. EXPERIMENTAL SETTING

Our experiments are carried out on two face databases: AT&T
and FERET, with a special emphasis on testing the effects of
various changes in face images, such as variations of pose,
illumination and facial expressions. We also test the gen-
erality of different methods by making training and testing
sets non-overlapping.

For the AT&T database, instead of using the ‘leave-one-
out method’ for testing the effectiveness of the subspace
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Fig. 1. Examples of AT&T database. Downsampled to
28x23. The database contains 40 classes, 10 images per
class.

methods, we randomly take 5 images from each class as the
training data and leave the rest 5 images as the probe. Such
test is run five times and we take the average of the results
for comparison. Example images are shown in Fig. 1.

For the FERET database, two experiments are done, one
for facial expression and one for illumination. Examples
images are shown in Fig. 2. To avoid the overlap between
training and probe sets, we randomly divide the 600 images
into 2 sets, each with 300 images belonging to 100 classes.
Two different IPS’s are constructed separately for facial ex-
pression and illumination. Classification is then performed
according to the procedure described in the end of Section
2.

Fig. 2. Examples of FERET database. Downsampled to
24x21. The database contains 200 classes, 3 images per
class. First row are images of neutral face, followed by a
row of images with expression variations. The last row are
images with illumination changes.

5. EXPERIMENTAL RESULTS

5.1. Performance Comparison

We use the cumulative match score (CMS) curve and the
recognition rate within the top one match as criteria in com-
parison. Recognition rate is shown in Fig. 3. CMC curves
of these subspace methods under three different variations
are shown in the Fig. 4.

Fig. 3. Recognition rate under each condition.

In pose variation case, the results are much better than
the other two cases because the class which the probe image

belongs to has five training samples in stead of one in the
other two cases. In this case, it can be seen in performance
PCA > FDA > ICA > PPCA, and for the kernel methods,
KFDA > KPCA > KICA. PCA outperforms FDA since in
pose variation case, the within class scatter is hard to mini-
mize. PPCA does well in the situation that variations similar
to those in the probe images are learned in the training pro-
cess. However, it is outperformed here partly because pose
variations may take very different forms for every image.

For facial expression changes, the CMS curves for all
linear methods almost overlap, though their top one matches
are slightly different. For the kernel method, KFDA > KPCA
> KICA.

As to illumination changes, the CMS curves show that
FDA > PPCA > PCA > ICA and KFDA ≥ KICA > KPCA.
PPCA does well in this case, since during training, illumi-
nation variation has been learned from the first half of the
database. Here supervised methods exhibits its advantage
when the number of samples for each class is small.

The recognition rates of the four subspace methods, av-
eraging the kernel/nonkernel versions, are compared in Fig.
5. The average recognition rates for the overall kernel-based
methods versus non-kernel methods are also shown in Fig.
5. We can observe that kernel-based methods produce sim-
ilar results as non-kernel ones.

To sum up, overall method-wise comparison shows ICA
< PCA < PPCA < FDA. PPCA and FDA are better partly
because of their discriminative power embedded in training
stage. We also observe that kernel-based methods are not
necessarily better than non-kernel methods, which might
imply that second-order statistics are enough in a face recog-
nition problem. A final note is that since our experiment is
set to test the generality of different methods, our recogni-
tion rates are not as high as those obtained by other methods
such as ‘leave-one-out’.

5.2. Comparison of Computational Load

This concerns training time and testing time. For most meth-
ods, although training might be time-consuming, such as
in ICA because of non-linear optimization involved, testing
time is rather short since it only requires simple matrix cal-
culations.

For training time, PCA < LDA < PPCA < ICA and
KPCA < KLDA � KICA. Testing time: PCA = LDA =
ICA = PPCA and KPCA = KLDA = KICA.

6. CONCLUSION

We have compared several subspace methods commonly
used in the face recognition literature. Their performances
under different variations are also shown. The concept of
intra-personal space is introduced during the application of
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PPCA. Currently most subspace methods are done over the
original space of face images, instead of over intra-personal
space. Subspace methods over intra-personal or inter-personal
spaces need to be studied.
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Fig. 4. CMS curves for pose (left column), facial expression
(middle column) and illumination (right column) variations.

1st row: PCA and KPCA. 2nd row: ICA and KICA. 3rd
row: FDA and KFDA. 4th row: PPCA.

Fig. 5. Average recognition rate of (left) different
subspace methods and (right) nonkernel/kernel, super-
vised/unsupervised methods, under different variations.
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