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ABSTRACT 

 
The low frame-rate specific challenges are illustrated by 
choosing one well-performing algorithm in high frame rate and 
applying it to low frame-rates. The performance is illustrated by 
comparing original algorithm, algorithm adapted to low frame 
rate particularities, and simple averaging. To overcome the 
particular challenges of low frame rate, two algorithms were 
developed and compared on objective and subjective basis and 
shown to provide elegant solution to the specific challenges of 
low frame-rate video interpolation. 

 

1. INTRODUCTION 
 
In recent years several frame interpolation algorithms have been 
developed ([1]-[7]). Most of them concentrate on high frame 
rate video. In this case, motion estimation can be achieved by 
simple block matching technique. Much less work has been 
done on low frame rates. In this paper, the basic concept of 
motion estimation in frame interpolation is described first, 
followed by the frame interpolation challenges in low rate video 
frames. The algorithms used for frame interpolation are then 
explained. Results, discussions and conclusion are given at the 
end part of the paper.    

Motion estimation is a process of determining the movement 
of objects within a sequence of image frames. Block matching is 
a widely used technique for translation movement estimation. In 
block matching method for frame interpolation, a block of 
pixels from the previous frame is matched to a displaced block 
of pixels in the search area in the next frame. The block that 
gives minimum matching error will be assigned a displacement 
value called motion vector, which is used to interpolate the 
missing pixel in the frame to be interpolated.  

To illustrate the challenges of interpolation at low rate video 
frames, we took a successful algorithm for high frame rate and 
applied it to low-frame-rate with and without adapting the 
parameters. Then, a new contribution is presented. 

When the frame rate is reduced by a factor of N, the search 
space has to be increased. This means SxxN and SyxN, hence 
the risk for false matches between unrelated regions in the 
search space. Therefore the block size has to be increased by N. 
This means BxxN and ByxN. With these adjustments, the 
complexity increases by N4. This large amount of computation 
has to be performed in the available time, which has increased 
by N. The increase of complexity by N4 because of the speed 

reduction by N is known as the combinatorial explosion 
problem. 
 

2. OVERVIEW OF ALGORITHMS USED  
 
Several algorithms to interpolate the low rate video frames will 
be evaluated. These algorithms are Averaging, Castagno [1] and 
Adapted Castagno. A novel approach of multi-resolution motion 
estimation (MRME) is developed and made adaptive 
(AMRME) to overcome observed artifacts. 

The simplest method to do frame interpolation is by 
Averaging. The previous frame and next frame are averaged at 
every pixel location in the image to give the interpolated frame. 

The Castagno algorithm [1] was designed for a frame rate of 
50 frames per second (fps). It performs block matching that uses 
block size of 3x5 and the search space is limited to 5x9. The 
motion vector is estimated for every pixel in the interpolated 
frame. For current pixel, the motion vector is found by 
searching around 3x3 neighborhood of the previous pixel’s 
motion vector. Hence, a total of 9 motion vectors are evaluated 
using weighted mean absolute difference (MAD). The motion 
vector that gives minimum weighted MAD is chosen to be the 
motion vector for the current pixel. This is repeated for every 
pixel. When all the pixels’ motion vectors have been estimated, 
a motion vector field is produced, which are post-processed 
using 3x3 median filter to remove inconsistent motion vectors. 
Interpolation is performed based on these motion vectors.   

The Adapted Castagno method is basically the same method 
as Castagno but with the following modifications: 1) Instead of 
evaluating only nine motion vectors, all of the motion vectors in 
the search range are evaluated. 2) The block and the search 
range are adapted to a low frame rate of 5 fps, which is ten 
times lower than the frame rate of Castagno. The search space 
is increased to 50x90, about ten times the original search space 
of Castagno. The block size to do block matching is set to 15x9 
pixels, three times the block size of Castagno, which should be 
ten times according to the explanation before. However, it was 
found that increasing the block size further than this did not 
improve the results and it is reasonable to the size of the search 
space. This setting is achieved by calculating the fastest motion 
between previous and next frame of a sequence (e.g. Suzie 
sequence). Clearly, the computational complexity for this 
method is higher than before as more motion vectors need to be 
evaluated (4641 motion vectors for every pixel). In this method, 
weighting of the MAD is not implemented. Weighting makes 
the algorithm favour vectors that are closer to (0,0). Hence, it 
will not choose the large motion vector. Favouring motion 
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vector (0,0) makes the performance of the algorithm almost 
similar to Averaging algorithm during the frame with fast 
motion.  

In the MRME algorithm that we propose, the image is 
filtered using an averaging low-pass filter and sub-sampled to 
produce successively reduced-resolution versions. Using QCIF 
images (176x144 pixels), five levels of resolution are 
considered, the lowest one having 11x9 pixels. Motion is 
estimated at the coarsest resolution first to find the global 
motion. Block size used is 9x9 and full search is used. To 
improve the consistency of the motion field, it is filtered with a 
3x3 median filter. This motion field is then used as an initial 
estimate in the next finer resolution.  

At lower levels, the search space for each pixel is set to 3x3 
around the initial estimate. The block size is maintained at 9x9 
at each level. The estimate produced at each level is again 
submitted to a 3x3 median filter before passing on to the next 
level. In this way, the motion vectors are refined through the 
pyramid levels until the highest resolution at the lowest level. 
The motion vectors are then used to interpolate the luminance 
levels. An advantage of the MRME algorithm is that while 
motion is detected at high resolution, large motion can be 
detected with small search space on low-resolution image, 
requiring only a small block size. In the high-resolution image, 
a small search space is also used around the previous estimate, 
hence also requiring only a small block size. 

Problems arise in the multi-resolution pyramid algorithm 
due to its rigid structure [8]. The same problems arise in 
MRME, and can be alleviated by making the search space 
adaptive, as illustrated in Figure 1,which illustrates an object 
sliding from left to right. To visualise the pyramid better, only 
two levels have been represented.  

On the higher level (level k+1), the movement is already 
estimated. The pixel in pattern is estimated to move by 1 unit in 
horizontal direction, (0,1). Other pixels have (0,0) motion 
vectors except the middle right pixel, which is at the boundary.  
The lower level (level k) has twice number of pixels of the 
higher level. One pixel at level k+1 is formed by four pixels at 
level k, so the initial motion vectors at level k are twice the 
motion vectors of level k+1.  

Motion estimation is performed based on the initial 
estimate. Motion vectors shown in Figure 1 for level k are the 
resulting motion vectors after the motion estimation on the 
initial estimate. For four pixels (in pattern) in the middle, the 
initial estimate is (0,2). In case of MRME, the search range is 
3x3 around this initial estimate. So, the motion vector 
candidates for the top left of this pixel group are (-1,1), (-1,2), 
(-1,3), (0,1), (0,2), (0,3), (1,1), (1,2) and (1,3). Motion vector 
(0,2) will be chosen as its match.    

The problem occurs for pixel P, who has initial motion 
vector of (0,0). The correct motion vector for pixel P is (0,2). 
The motion vector candidate range is  (–1  a  +1, –1  b  
+1). It is clear that this search range is insufficient to match the 
correct pixel in the next frame. It should be (–2  a  +2, –2  b 
 +2) for the pixel P to be matched. 

The solution to this problem that has been developed in this 
work is based on an adaptive search space, based on the 
previously used 3x3 space, but extended to encompass the 
initial motion estimates of the four neighbouring pixels.  

The initial estimate of the motion vector (a,b) has been 
influenced by its three neighbours who make up the pixel on the 
next higher level. The rigidity of the pyramid structure did not 
allow for a border between white and pixels in pattern to be 
located at any other place but at the limits between the next 
higher pixels. The problem occurs because the movement of 
pixel P is larger than the 3x3 search space. This measurement 
was well detected at lower resolution levels. However at this 
low resolution the border could not be accurately located 
because it is mis-aligned with the pyramid grid by one-pixel. 
The original 3x3 search space of pixel P made it impossible to 
match it with its matched in the next frame.  

However, now we extend the search space of pixel P to 
ensure that the initial estimates of the four neighbouring pixels 
are included. The search space for pixel P is extended to make 
it a rectangle that encompasses the initial estimate of the 
motion vector for pixel R. So, the search space for pixel P is 
extended from (–1  a  +1, –1  b  +1) to (–1  a  +1, –1  
b  +2). Hence, the correct motion vector for pixel P, (0,2), is 
included in this new search space. With this extended search 
space, it is indeed possible to find a motion vector that matches 
the pixel P with its match in the next frame. 

The difference between the MRME and the AMRME 
algorithms is that the search space for each pixel is set to 3x3, 
and then extended to encompass the initial estimates of its four 
neighbours. In this way, pixels that are located just at a (rigid) 
boundary of the pyramid structure do not get isolated in their 
movement from the pixels that are just on the other side of the 
boundary, and the rigidity of the pyramid structure is overcome. 

 
3. RESULTS AND DISCUSSION 

 
The results for the algorithms are compared objectively and 
subjectively. The 20 original image sequences at 30 fps is 
compressed using H.263+ to 10-fps. Down sampling is 
performed on this 10-fps to get the 5-fps image sequence. The 
5-fps is then interpolated to 10-fps using the algorithms 
discussed. The interpolated 10-fps is finally compared with the 
originally compressed 10-fps in terms of mean square error 
(MSE) and picture quality. Figure 2 shows the typical results of 
interpolation from 5 to 10 fps for Miss America, Susie and 
Coastguard compressed image sequences. Table I shows the 
objective and subjective evaluation for only 3 image sequences.  

The objective evaluation (MSE) reveals that the AMRME is 
the best compared to the other algorithms. Only in a few cases 
is MRME slightly better. For the Container sequence, 
Averaging is better - which can be explained by the very slow 
motion in that particular sequence. For the Stefan sequence, 
Adapted Castagno is slightly better. These results are to be 
expected, since the algorithms were gradually improved, from 
Castagno to Adapted Castagno to MRME to AMRME, using 
the MSE as measuring stick for improvement. The (nice) 
surprise comes from the fact that the algorithm development 
was consistently done with one single sequence (Suzie), but the 
results are consistent when using other sequences, and even 
other formats (SIF and CIF). 

The subjective evaluation is more mitigated, although the 
average is still in favour of the AMRME algorithm. Adapted 
Castagno never comes out as the best algorithm. Averaging and 
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Castagno are preferred in 4 cases (out 19), while all the other 
cases carry MRME or AMRME as preferences. When MRME 
is preferred, the difference is usually marginal, while when 
AMRME is preferred the difference is usually more significant.  

The reason why the subjective evaluation is less 
overwhelmingly in favour of AMRME is probably due to the 
artifacts. MSE is a kind of "average" error, which does not care 
about local big errors, as long as the global impression is good, 
while subjective evaluation is very much affected by local big 
errors like artifacts. This is illustrated in Figure 3, which shows 
two corrupted versions of an image of the Suzie sequence. In 
(a), the error is limited to 6 pixels which were put to zero, 
while in (b) the error introduced is a gaussian error over the 
whole image with average zero and variance 0.0002. The MSE 
is 7.2367 and 13.1458, respectively. Hence, the MSE is clearly 
in favor of the first image, while the subjective evaluation is 
clearly in favor of the second one. The artifacts introduced in 
the Adapted Castagno, MRME and AMRME are of a nature 
like the error in (a), while the blur introduced by the Averaging 
and Castagno algorithms are more of the nature of the error in 
(b). 

The global preference, even in the subjective evaluation, is 
still in favour of the AMRME algorithm, which shows that the 
improvement introduced compared to the other algorithms more 
than offsets the disturbing artifacts. 

AMRME computational load is much less than Adapted 
Castagno algorithm. Computational load is of the order of Nx x 
Ny x Bx x By x Sx x Sy, whereby (Nx, Ny) is the image 
dimension, (Bx, By) is the block size, and (Sx, Sy) is the search 
space. In the case of MRME, the image dimension to be taken 
into account is the sum of the image dimension at each level, 
namely: (144 x 176) + (72 x 88) + (36 x 44) + (18 x 22) + (9 x 
11), with Bx = By = 9 and Sx = Sy = 3. The resulting estimate of 
calculations to interpolate ONE image is 58,164,480 operations 
for Castagno, 15,878,903,040 for Adapted Castagno (273 times 
more than Castagno!), and 24,610,311 for MRME (42% of 
Castagno). For AMRME, the search space is not fixed and 
possibly larger than for MRME, so while the number of 
operations will be large than for MRME, no upper limit can be 
given. The ratios for the computational load are 1000:1 and 3:1 
for Adapted Castagno and AMRME compared to Castagno, 
respectively. Although AMRME is slower possibly due to the 
fact that the lower-resolution images have to be calculated 
before starting the motion estimation, it is to be remembered 
that Castagno was designed for 50-to-75 fps (hence 40 ms time 
to do the calculation in real-time). AMRME was designed for 5-
to-10 fps (hence 200 ms time to do the calculation in real-time), 
hence AMRME is still doing better than Castagno is. 

 
4. CONCLUSION 

 
Interpolation at low frame rate is a great challenge. Most 
existing algorithms interpolate at high frame rate (e.g. 
Castagno). The algorithms have to be adapted to assess fast 
motion (resulting in large frame-to-frame displacement) 
occurring at low frame rate. Classical block matching 
introduces combinatorial problems. Small block size and small 
search area cannot detect fast motion (e.g. Castagno). On the 
other hand, large block size and large search area produce 

mismatches, which lead to artifacts and speed reduction 
(Adapted Castagno). 

The MRME algorithm is proposed and implemented. It 
estimates the movement first at lower resolution (smaller search 
space), and then successively increases the resolution and 
performs search only in a subset of the search space around the 
search solution from the previous hierarchical level. It manages 
to reduce artifacts and long computation time introduced by the 
Adapted Castagno algorithm. 

An improved version of MRME algorithm, called the 
AMRME algorithm, is also proposed. The AMRME algorithm 
reduces artifacts further because of its adaptive search space, 
which is obtained by stretching the search space to include the 
search space of the current, previous, next, top and bottom 
pixels. The AMRME algorithm is superior to Averaging, 
Castagno, Adapted Castagno, and MRME algorithms 
subjectively and objectively. 
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Fig. 1. AMRME illustration 
  

          Original (ORGC)      Averaging (A)         Castagno (C)   Adapted Castagno (AC)  MRME (M)       AMRME (AM) 
 
 
Miss America 
 
 
 
Suzie 
 
 
 
Coastguard 
 
 

Fig. 2. Typical results for interpolation 
 

 

                
        (a)                                 (b) 

Fig. 3. Suzie image with (a) strong local error 
(b) small global error 

 
 
 
 
 
 
 

Table I. Objective and subjective evaluation 
 Objective 

Image ORGC A C AC M AM 
1.MAa 10.08 16.01 9.22 91.87 7.84 7.71 
2.Sza 19.63 103.40 92.58 124.51 75.45 66.69 
3.Cgda 77.67 230.20 205.22 316.28 225.33 150.00 
 Subjective 
Image ORGC A C AC M AM 
1.MAa 3.07 2.67 2.60 0.73 3.20 3.27 
2.Sza 2.67 1.80 2.00 1.13 2.67 2.33 
3.Cgda 3.07 2.67 2.60 0.87 1.87 2.53 

a 176144 – QCIF, MA-Miss America, Sz-Suzie, Cgd-Coastguard, 
ORGC–Original compressed 

Level k+1 

Frame n-1 Frame n+1 

0,0 

(0,0) (0,0) (0,0) 

(?,?) (0,1) (0,0) 

(0,0) (0,0) (0,0) 

0,0 0,0 0,0 0,0 0,0 

0,0 0,0 0,0 c,d 0,0 

0,0 e,f 0,2 0,2 ?,? ?,? 

?,? ?,? 0,2 0,2 0,0 0,0 

0,0 0,0 0,0 0,0 0,0 0,0 

0,0 0,0 0,0 0,0 0,0 0,0 

a,b 

Level k 

Motion vectors 

P R P R
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