
LOW RATE VIDEO FRAME INTERPOLATION – CHALLENGES AND
SOLUTION

Hezerul Abdul Karim, Michel Bister, M. U. Siddiqi

Faculty of Engineering, Multimedia University, 63100 Cyberjaya, Selangor, Malaysia

ABSTRACT

The low frame-rate specific challenges are illustrated by
choosing one well-performing algorithm in high frame rate and
applying it to low frame-rates. The performance is illustrated by
comparing original algorithm, algorithm adapted to low frame
rate particularities, and simple averaging. To overcome the
particular challenges of low frame rate, two algorithms were
developed and compared on objective and subjective basis and
shown to provide elegant solution to the specific challenges of
low frame-rate video interpolation.

1. INTRODUCTION

In recent years several frame interpolation algorithms have been
developed ([1]-[7]). Most of them concentrate on high frame
rate video. In this case, motion estimation can be achieved by
simple block matching technique. Much less work has been
done on low frame rates. In this paper, the basic concept of
motion estimation in frame interpolation is described first,
followed by the frame interpolation challenges in low rate video
frames. The algorithms used for frame interpolation are then
explained. Results, discussions and conclusion are given at the
end part of the paper.

Motion estimation is a process of determining the movement
of objects within a sequence of image frames. Block matching is
a widely used technique for translation movement estimation. In
block matching method for frame interpolation, a block of
pixels from the previous frame is matched to a displaced block
of pixels in the search area in the next frame. The block that
gives minimum matching error will be assigned a displacement
value called motion vector, which is used to interpolate the
missing pixel in the frame to be interpolated.

To illustrate the challenges of interpolation at low rate video
frames, we took a successful algorithm for high frame rate and
applied it to low-frame-rate with and without adapting the
parameters. Then, a new contribution is presented.

When the frame rate is reduced by a factor of N, the search
space has to be increased. This means SxxN and SyxN, hence
the risk for false matches between unrelated regions in the
search space. Therefore the block size has to be increased by N.
This means BxxN and ByxN. With these adjustments, the
complexity increases by N4. This large amount of computation
has to be performed in the available time, which has increased
by N. The increase of complexity by N4 because of the speed

reduction by N is known as the combinatorial explosion
problem.

2. OVERVIEW OF ALGORITHMS USED

Several algorithms to interpolate the low rate video frames will
be evaluated. These algorithms are Averaging, Castagno [1] and
Adapted Castagno. A novel approach of multi-resolution motion
estimation (MRME) is developed and made adaptive
(AMRME) to overcome observed artifacts.

The simplest method to do frame interpolation is by
Averaging. The previous frame and next frame are averaged at
every pixel location in the image to give the interpolated frame.

The Castagno algorithm [1] was designed for a frame rate of
50 frames per second (fps). It performs block matching that uses
block size of 3x5 and the search space is limited to 5x9. The
motion vector is estimated for every pixel in the interpolated
frame. For current pixel, the motion vector is found by
searching around 3x3 neighborhood of the previous pixel’s
motion vector. Hence, a total of 9 motion vectors are evaluated
using weighted mean absolute difference (MAD). The motion
vector that gives minimum weighted MAD is chosen to be the
motion vector for the current pixel. This is repeated for every
pixel. When all the pixels’ motion vectors have been estimated,
a motion vector field is produced, which are post-processed
using 3x3 median filter to remove inconsistent motion vectors.
Interpolation is performed based on these motion vectors.

The Adapted Castagno method is basically the same method
as Castagno but with the following modifications: 1) Instead of
evaluating only nine motion vectors, all of the motion vectors in
the search range are evaluated. 2) The block and the search
range are adapted to a low frame rate of 5 fps, which is ten
times lower than the frame rate of Castagno. The search space
is increased to 50x90, about ten times the original search space
of Castagno. The block size to do block matching is set to 15x9
pixels, three times the block size of Castagno, which should be
ten times according to the explanation before. However, it was
found that increasing the block size further than this did not
improve the results and it is reasonable to the size of the search
space. This setting is achieved by calculating the fastest motion
between previous and next frame of a sequence (e.g. Suzie
sequence). Clearly, the computational complexity for this
method is higher than before as more motion vectors need to be
evaluated (4641 motion vectors for every pixel). In this method,
weighting of the MAD is not implemented. Weighting makes
the algorithm favour vectors that are closer to (0,0). Hence, it
will not choose the large motion vector. Favouring motion

III - 1170-7803-7663-3/03/$17.00 ©2003 IEEE ICASSP 2003

➠ ➡

vector (0,0) makes the performance of the algorithm almost
similar to Averaging algorithm during the frame with fast
motion.

In the MRME algorithm that we propose, the image is
filtered using an averaging low-pass filter and sub-sampled to
produce successively reduced-resolution versions. Using QCIF
images (176x144 pixels), five levels of resolution are
considered, the lowest one having 11x9 pixels. Motion is
estimated at the coarsest resolution first to find the global
motion. Block size used is 9x9 and full search is used. To
improve the consistency of the motion field, it is filtered with a
3x3 median filter. This motion field is then used as an initial
estimate in the next finer resolution.

At lower levels, the search space for each pixel is set to 3x3
around the initial estimate. The block size is maintained at 9x9
at each level. The estimate produced at each level is again
submitted to a 3x3 median filter before passing on to the next
level. In this way, the motion vectors are refined through the
pyramid levels until the highest resolution at the lowest level.
The motion vectors are then used to interpolate the luminance
levels. An advantage of the MRME algorithm is that while
motion is detected at high resolution, large motion can be
detected with small search space on low-resolution image,
requiring only a small block size. In the high-resolution image,
a small search space is also used around the previous estimate,
hence also requiring only a small block size.

Problems arise in the multi-resolution pyramid algorithm
due to its rigid structure [8]. The same problems arise in
MRME, and can be alleviated by making the search space
adaptive, as illustrated in Figure 1,which illustrates an object
sliding from left to right. To visualise the pyramid better, only
two levels have been represented.

On the higher level (level k+1), the movement is already
estimated. The pixel in pattern is estimated to move by 1 unit in
horizontal direction, (0,1). Other pixels have (0,0) motion
vectors except the middle right pixel, which is at the boundary.
The lower level (level k) has twice number of pixels of the
higher level. One pixel at level k+1 is formed by four pixels at
level k, so the initial motion vectors at level k are twice the
motion vectors of level k+1.

Motion estimation is performed based on the initial
estimate. Motion vectors shown in Figure 1 for level k are the
resulting motion vectors after the motion estimation on the
initial estimate. For four pixels (in pattern) in the middle, the
initial estimate is (0,2). In case of MRME, the search range is
3x3 around this initial estimate. So, the motion vector
candidates for the top left of this pixel group are (-1,1), (-1,2),
(-1,3), (0,1), (0,2), (0,3), (1,1), (1,2) and (1,3). Motion vector
(0,2) will be chosen as its match.

The problem occurs for pixel P, who has initial motion
vector of (0,0). The correct motion vector for pixel P is (0,2).
The motion vector candidate range is (–1  a  +1, –1  b 
+1). It is clear that this search range is insufficient to match the
correct pixel in the next frame. It should be (–2  a  +2, –2  b
 +2) for the pixel P to be matched.

The solution to this problem that has been developed in this
work is based on an adaptive search space, based on the
previously used 3x3 space, but extended to encompass the
initial motion estimates of the four neighbouring pixels.

The initial estimate of the motion vector (a,b) has been
influenced by its three neighbours who make up the pixel on the
next higher level. The rigidity of the pyramid structure did not
allow for a border between white and pixels in pattern to be
located at any other place but at the limits between the next
higher pixels. The problem occurs because the movement of
pixel P is larger than the 3x3 search space. This measurement
was well detected at lower resolution levels. However at this
low resolution the border could not be accurately located
because it is mis-aligned with the pyramid grid by one-pixel.
The original 3x3 search space of pixel P made it impossible to
match it with its matched in the next frame.

However, now we extend the search space of pixel P to
ensure that the initial estimates of the four neighbouring pixels
are included. The search space for pixel P is extended to make
it a rectangle that encompasses the initial estimate of the
motion vector for pixel R. So, the search space for pixel P is
extended from (–1  a  +1, –1  b  +1) to (–1  a  +1, –1 
b  +2). Hence, the correct motion vector for pixel P, (0,2), is
included in this new search space. With this extended search
space, it is indeed possible to find a motion vector that matches
the pixel P with its match in the next frame.

The difference between the MRME and the AMRME
algorithms is that the search space for each pixel is set to 3x3,
and then extended to encompass the initial estimates of its four
neighbours. In this way, pixels that are located just at a (rigid)
boundary of the pyramid structure do not get isolated in their
movement from the pixels that are just on the other side of the
boundary, and the rigidity of the pyramid structure is overcome.

3. RESULTS AND DISCUSSION

The results for the algorithms are compared objectively and
subjectively. The 20 original image sequences at 30 fps is
compressed using H.263+ to 10-fps. Down sampling is
performed on this 10-fps to get the 5-fps image sequence. The
5-fps is then interpolated to 10-fps using the algorithms
discussed. The interpolated 10-fps is finally compared with the
originally compressed 10-fps in terms of mean square error
(MSE) and picture quality. Figure 2 shows the typical results of
interpolation from 5 to 10 fps for Miss America, Susie and
Coastguard compressed image sequences. Table I shows the
objective and subjective evaluation for only 3 image sequences.

The objective evaluation (MSE) reveals that the AMRME is
the best compared to the other algorithms. Only in a few cases
is MRME slightly better. For the Container sequence,
Averaging is better - which can be explained by the very slow
motion in that particular sequence. For the Stefan sequence,
Adapted Castagno is slightly better. These results are to be
expected, since the algorithms were gradually improved, from
Castagno to Adapted Castagno to MRME to AMRME, using
the MSE as measuring stick for improvement. The (nice)
surprise comes from the fact that the algorithm development
was consistently done with one single sequence (Suzie), but the
results are consistent when using other sequences, and even
other formats (SIF and CIF).

The subjective evaluation is more mitigated, although the
average is still in favour of the AMRME algorithm. Adapted
Castagno never comes out as the best algorithm. Averaging and

III - 118

➡ ➡

Castagno are preferred in 4 cases (out 19), while all the other
cases carry MRME or AMRME as preferences. When MRME
is preferred, the difference is usually marginal, while when
AMRME is preferred the difference is usually more significant.

The reason why the subjective evaluation is less
overwhelmingly in favour of AMRME is probably due to the
artifacts. MSE is a kind of "average" error, which does not care
about local big errors, as long as the global impression is good,
while subjective evaluation is very much affected by local big
errors like artifacts. This is illustrated in Figure 3, which shows
two corrupted versions of an image of the Suzie sequence. In
(a), the error is limited to 6 pixels which were put to zero,
while in (b) the error introduced is a gaussian error over the
whole image with average zero and variance 0.0002. The MSE
is 7.2367 and 13.1458, respectively. Hence, the MSE is clearly
in favor of the first image, while the subjective evaluation is
clearly in favor of the second one. The artifacts introduced in
the Adapted Castagno, MRME and AMRME are of a nature
like the error in (a), while the blur introduced by the Averaging
and Castagno algorithms are more of the nature of the error in
(b).

The global preference, even in the subjective evaluation, is
still in favour of the AMRME algorithm, which shows that the
improvement introduced compared to the other algorithms more
than offsets the disturbing artifacts.

AMRME computational load is much less than Adapted
Castagno algorithm. Computational load is of the order of Nx x
Ny x Bx x By x Sx x Sy, whereby (Nx, Ny) is the image
dimension, (Bx, By) is the block size, and (Sx, Sy) is the search
space. In the case of MRME, the image dimension to be taken
into account is the sum of the image dimension at each level,
namely: (144 x 176) + (72 x 88) + (36 x 44) + (18 x 22) + (9 x
11), with Bx = By = 9 and Sx = Sy = 3. The resulting estimate of
calculations to interpolate ONE image is 58,164,480 operations
for Castagno, 15,878,903,040 for Adapted Castagno (273 times
more than Castagno!), and 24,610,311 for MRME (42% of
Castagno). For AMRME, the search space is not fixed and
possibly larger than for MRME, so while the number of
operations will be large than for MRME, no upper limit can be
given. The ratios for the computational load are 1000:1 and 3:1
for Adapted Castagno and AMRME compared to Castagno,
respectively. Although AMRME is slower possibly due to the
fact that the lower-resolution images have to be calculated
before starting the motion estimation, it is to be remembered
that Castagno was designed for 50-to-75 fps (hence 40 ms time
to do the calculation in real-time). AMRME was designed for 5-
to-10 fps (hence 200 ms time to do the calculation in real-time),
hence AMRME is still doing better than Castagno is.

4. CONCLUSION

Interpolation at low frame rate is a great challenge. Most
existing algorithms interpolate at high frame rate (e.g.
Castagno). The algorithms have to be adapted to assess fast
motion (resulting in large frame-to-frame displacement)
occurring at low frame rate. Classical block matching
introduces combinatorial problems. Small block size and small
search area cannot detect fast motion (e.g. Castagno). On the
other hand, large block size and large search area produce

mismatches, which lead to artifacts and speed reduction
(Adapted Castagno).

The MRME algorithm is proposed and implemented. It
estimates the movement first at lower resolution (smaller search
space), and then successively increases the resolution and
performs search only in a subset of the search space around the
search solution from the previous hierarchical level. It manages
to reduce artifacts and long computation time introduced by the
Adapted Castagno algorithm.

An improved version of MRME algorithm, called the
AMRME algorithm, is also proposed. The AMRME algorithm
reduces artifacts further because of its adaptive search space,
which is obtained by stretching the search space to include the
search space of the current, previous, next, top and bottom
pixels. The AMRME algorithm is superior to Averaging,
Castagno, Adapted Castagno, and MRME algorithms
subjectively and objectively.

5. REFERENCES

[1] R. Castagno, P. Haavisto, and G. Ramponi, “A method for

motion adaptive frame rate up-conversion’’, IEEE Trans.
on Circuits Syst. Video Technol. vol. 6, no. 5, pp. 436-445,
1996.

[2] K. A. Bugwadia, E. D. Petajan, and N. N. Puri,

“Progressive-scan rate up-conversion of 24/30 Hz source
materials for HDTV’’, IEEE Trans. Consum. Electron.
vol. 42, no. 2, pp 312-321, 1996.

[3] D. W. Kim, J. T. Kim, and I. H. Ra, “A new video

interpolation technique based on motion-adaptive
subsampling”, IEEE Trans. Consum. Electron., vol. 45,
no. 3, pp 782-787, 1999.

[4] R. Krishnamurthy, J. W. Woods, and P. Moulin, “Frame

interpolation and bi-directional prediction of video using
compactly encoded optical-flow fields and label fields’’,
IEEE Trans. on Circuits Syst. Video Technol., vol. 9, no.
5, pp 713-726, 1999.

[5] W. R. Sung, E. K. Kang, and J. S. Choi, “Adaptive motion

estimation technique for motion compensated interframe
interpolation’’, IEEE Trans. Consum. Electron., vol. 45,
no. 3, pp 753-761, 1999.

[6] B. T. Choi, S. H. Lee, and S. J. Ko, “New frame rate up-

conversion using bi-directional motion estimation’’, IEEE
Trans. Consum. Electron., vol. 46, no. 3, pp 603-609,
2000.

[7] C. L. Huang, and T. T. Chao, “Motion-compensated

interpolation for scan rate up-conversion’’, Optical
Engineering, vol. 35, no. 1, pp 166-176, 1996.

[8] M. Bister, J. Cornelis, and A. Rosenfeld, “A critical view

of pyramid segmentation algorithms’’, Pattern Recognition
Letters, vol. 11, pp 605-617, 1990.

III - 119

➡ ➡

Fig. 1. AMRME illustration

 Original (ORGC) Averaging (A) Castagno (C) Adapted Castagno (AC) MRME (M) AMRME (AM)

Miss America

Suzie

Coastguard

Fig. 2. Typical results for interpolation

 (a) (b)

Fig. 3. Suzie image with (a) strong local error
(b) small global error

Table I. Objective and subjective evaluation
 Objective

Image ORGC A C AC M AM
1.MAa 10.08 16.01 9.22 91.87 7.84 7.71
2.Sza 19.63 103.40 92.58 124.51 75.45 66.69
3.Cgda 77.67 230.20 205.22 316.28 225.33 150.00
 Subjective
Image ORGC A C AC M AM
1.MAa 3.07 2.67 2.60 0.73 3.20 3.27
2.Sza 2.67 1.80 2.00 1.13 2.67 2.33
3.Cgda 3.07 2.67 2.60 0.87 1.87 2.53

a 176144 – QCIF, MA-Miss America, Sz-Suzie, Cgd-Coastguard,
ORGC–Original compressed

Level k+1

Frame n-1 Frame n+1

0,0

(0,0) (0,0) (0,0)

(?,?) (0,1) (0,0)

(0,0) (0,0) (0,0)

0,0 0,0 0,0 0,0 0,0

0,0 0,0 0,0 c,d 0,0

0,0 e,f 0,2 0,2 ?,? ?,?

?,? ?,? 0,2 0,2 0,0 0,0

0,0 0,0 0,0 0,0 0,0 0,0

0,0 0,0 0,0 0,0 0,0 0,0

a,b

Level k

Motion vectors

P R P R

III - 120

➡ ➠

