
FAST GLOBAL MOTION-COMPENSATED FRAME INTERPOLATOR FOR VERY
LOW-BIT-RATE VIDEO QUALITY ENHANCEMENT

Tien-Ying Kuo and Lin-Ying Chuang

Department of Electrical Engineering
National Taipei University of Technology

Taiwan, R.O.C.
Email: tykuo@ee.ntut.edu.tw

ABSTRACT

In this paper, we proposed a fast frame interpolator at decoder
end to enhance the temporal quality of the real-time low-bit-rate
video applications, such as the cellualr video conferencing. The
proposed frame interpolator operates in the fashion of block-base
instead of pixel-base to achieve the real-time speed. The global
motion model is adopted in our scheme to interpolate the camera
motion. Our scheme fully utilizes the received block-based mo-
tion vectors from the encoder to minimize the complexity of the
global motion search. Furthermore, the majority of the local mo-
tion vectors for moving object interpolation can be directly derived
without performing complex local motion search at the decoder
end. The experiment shows that the proposed algorithm can in-
terpolate frames in real-time and successfully remove the jigger
artifacts caused by the low frame rate.

1. INTRODUCTION

A video coder usually sacrifices the visual quality to meet the
bit budget constraint for very low bit rate applications.Even with
H.263++ video coding standard, the visual quality of coded video
is often unsatisfactory due to noticeable artifacts in the spatial do-
main and very low frame rates in the temporal domain. Spatial ar-
tifacts can be reduced by using the post-filtering techniques while
the temporal resolution of the coded picture can be increased with
a motion-compensated frame interpolation scheme. The primary
objective of this work is to investigate the use of motion informa-
tion contained in the H.263++ bitstream for quality enhancement
of decoded video

The low frame rate often causes motion jerkiness observed in
the decoder. One way to handle this problem is to increase the
frame rate in the decoder to avoid jerky motion, which requires
an effective frame interpolation scheme based on available trans-
mitted (or decoded) frames. Three techniques have been widely
used, namely, frame repetition (FR), frame averaging and motion-
compensated frame interpolation (MCI)[1]. The frame repetition
scheme duplicates the preceding decoded frame as the desired in-
terpolating frame. It is the simplest method to increase the frame
rate, but does not solve the problem of motion jerkiness. The frame
averaging scheme interpolates frames using the averaged pixel in-
tensity of the preceding and the succeeding decoded frames. It
generally increases the PSNR value due to a better performance

This work was supported by National Science Council NSC 91-2219-
E-027-001.

on the stationary part, but significant ghost artifacts are observed
along the boundary regions of moving objects. Thus, it does not
produce a good subjective result. It is well understood that the
motion field information plays a critical role in the bit stream of
low bit rate video. The technique of using the motion information
to interpolate one or multiple frames between two consecutive de-
coded frames is called motion-compensated interpolation (MCI).
MCI usually provides the best subjective result and is examined in
this work.

MCI was originally developed in the context of offline frame
rate conversion, such as the conversion between different video
or TV systems. A large amount of work has been done. Thoma
and Bierling [1] proposed an MCI scheme by considering cov-
ered and uncovered backgrounds in addition to the stationary back-
ground and moving object. The original MCI interpolates frames
by performing the motion search pixelwise for moving objects.
The complexity is high. Many works [2][3] improved the origi-
nal MCI by replacing it with block-base motion vector search to
lower the operational complexity. However, those MCI variations
still require motion search for interpolation and thus are not ap-
plicable to restore frame rate in the real-time video application,
such as the video-conferencing. Our previous work [4] proposed
a deformable MCI(DMCI) scheme to interpolate frames without
performing motion search and, therefore, can restore frame rate in
real-time. DMCI utilizes the block-based vector fields embedded
in the bitstream from encoder and therefore the motion search is
avoided. The DMCI warps the block with affine transform on the
interpolated frame to avoid the blocky artifacts. However, some
small perturbations on the received motion vectors due to camera
motion may cause the slight “running water” artifacts and in the
background and poor prediction in objects. Furthermore, DMCI
requires three frames for moving object segmentation, which may
cause the slight display latency. Migliorati et. al.[5] introduced the
global motion estimation to the original MCI, however, in which
all operations are in pixel-base and requires extremely high com-
plexity for both the global and local motion search. In this paper,
we retained the merits of low complexity given in DMCI scheme,
while proposing an global motion-compensated frame interpolator
(GMCI) by considering the global motion estimation to compen-
sate the camera motion for enhancing the visual quality.

The paper is organized as follows. We first overview the con-
cept of our proposed GMCI scheme and its framework in Section
2. The GMCI framework is further divided into two parts includ-
ing the global motion estimation and the local motion-compensated
frame interpolation, for which are presented in Sections 3 and 4,

III - 1130-7803-7663-3/03/$17.00 ©2003 IEEE ICASSP 2003

➠ ➡



respectively. Experimental results and performance comparisons
are provided in Section 5. Concluding remarks are given in Sec-
tion 6.

2. SYSTEM OVERVIEW

The proposed GMCI scheme acts as a video post-processing unit at
the block-based video decoder, which is able to use the conformed
bitstream to interpolate frames without changing bitstream syntax.
The major advantage of the GMCI system over other frame inter-
polators in the literature is to utilize the block-based motion fields
vr embedded in the bitstream so that the fast interpolation can be
accomplished.

Figure 1 illustrates the proposed GMCI framework. The GMCI
frame interpolator first decodes two frames from bitstream, called
the previous frame Fprev and the current frame Fcurr. The goal
of the interpolator is to estimate frames Fintp in between to re-
store the frame rate. For providing more accurate estimation on
Fintp, the interpolator has to estimate the global motion param-
eters f and p from both frames Fprev and Fcurr by taking into
account the camera’s zooming and panning action. It is worthy of
mentioning that the moving object Ocurr can be identified as those
regions of Fcurr that do not follow the global motion model.

Camera 


Compensation


Current 


Frame


Previous


 Frame


DMCI

Global

Motion


Estimation


Bitstream

f
. 
P


curr
O


Camera  


Uncompensation

uc


curr
F
 uc

curr
O


uc


intp
F

intp
F


r
V

r
V


curr
F


prev
F


Fig. 1. Framework of GMCI Frame Interpolator

The system then remove the camera effects from the current
frame Fcurr and the segmentation map Ocurr by un-compensating
them with the estimated global motion parameters (f and p), called
the global un-compensated current frame F uc

currand the global un-
compensated moving object Ouc

curr, respectively.
The next step is interpolate local motion-compensated frames

F uc
intp in between frames Fprev and F uc

curr. The local motion-
compensated frame interpolator performs DMCI[4] to interpolate
frame, basically, by traversing local motion trajectory to warp ob-
jects. Then the local motion-compensated frames F uc

intp can be
obtained. In the last step, we compensate camera motion back to
the local motion-compensated frames F uc

intp to get the final GMCI
interpolated frames Fintp.

3. GLOBAL MOTION ESTIMATION

Supposed that the whole picture content Fcurr contains only the
static background, that is, no moving object is observed from Fprev

to Fcurr, then any picture content inconsistence between Fprev

and Fcurr should result from camera zooming and panning action.
The camera motion can be modeled [6] as

l
uc
curr = f lcurr + p (1)

where f is backward camera zooming factor, p is a two-dimensional
backward camera panning vector, lcurr denotes a pixel location at

Fcurr, and luc
curr represents the corresponding location at Fprev

before applying camera motion on lcurr. Note that the origin of
lcurr and lcurr locates at the center of the frame.

We perform global motion estimation to find the parameters
f and p in Equation (1). Let Ii(l) represent the intensity of pixel
located at l of frame Fi. The global motion parameters can be ob-
tained by minimizing the sum of intensity difference of Iprev(l

uc
curr)

and Icurr(lcurr) for all frame pixels. Any kind of fast global mo-
tion search algorithms may apply to solve this problem. In this
work, we adopt Tse’s approach[6] to solve the global motion pa-
rameters,

f (i) =
N

∑

< a(i−1), b(i−1) > − <
∑

a(i−1),
∑

b(i−1) >

N
∑

< b(i−1), b(i−1) > − <
∑

b(i−1),
∑

b(i−1) >
,(2)

p
(i) =

1

N

(

∑

a(i−1) − f (i)
∑

b(i−1))
)

, (3)

a(i−1) = Iprev(l
uc
curr) = f (i−1)

lcurr + p
(i−1),

b(i−1) = Icurr(lcurr)

where the summation performs over all frame pixels, N is the
number of items summed inside each summation, the superscript
(i) stands for the i-th iteration and < ·, · > denotes the inner prod-
uct operation.

Since iterations are required for solving Equations (2)- (3), the
complexity can be high. We reduce the complexity in two aspects.
First, we do not sum all pixels, but only considering block central
points as lcurr into the summation of Equations (2)- (3). For the
QCIF format sequence(176× 144 pixels) with macroblock size of
16 × 16 pixels, we reduce the sum of 176 × 144 items to 11 × 9
items. Secondly, since the block-based motion fields vr from the
encoder is available, we can initially iterate Equations (2)-(3) with
the condition of a(0) = luc

curr = lcurr + vr. The experiments
shows that the iterations converge within two runs.

Since the actual picture content Fcurr may contain moving
objects in addition to the stationary background. Therefore, we
have to exclude the blocks from the iterations if they falls into the
category of moving object. Hence, at the end of each iteration, we
have to look at Equation (1) by the iterated output of f (i) and p(i).
If the sum of the difference of Iprev(luc

curr) and Icurr(lcurr) is
larger than a preset threshold, the block is classified to the moving
objects, otherwise, the block belongs to the stationary background.
Thus, in addition to the global motion parameters f and p, the
system produces the moving object segmentation map Ocurr using
only two decoded frames.

4. LOCAL MOTION-COMPENSATED FRAME
INTERPOLATION

As shown in Figure 1, we have available outputs Fprev , Fcurr,
Ocurr , f , p and vr after performing the procedure described in
Section 3. Before performing local motion-compensated frame
interpolation, we first uncompensate and remove the camera mo-
tion on Fcurr to obtain F uc

curr using Equation (1). Then we use
MCI technique in between frames Fprev and F uc

curr to interpo-
late frames F uc

intp, which is the interpolated frames without camera
movement in action.

During MCI interpolation, we have to identify the object loca-
tions Ouc

curr on F uc
curr by the help of Ocurr . We divide the frame

F uc
curr into a macroblock grid, called control grid. For each grid

III - 114

➡ ➡



block of F uc
curr, we check its mapping position in Fcurr using

Equation (1). If one-quarter of mapping block covers Ocurr, then
we classify that block as Ouc

curr, or it falls into background cate-
gories.

After we categorize all blocks of F uc
curr to either object Ouc

curr

or background class, we furthure classify the background blocks
into covered, uncovered and stationary one[1]. We adopt our pre-
vious work DMCI[4] approach here, which is a variation of MCI,
to interpolate frames by averaging bi-directionally for stationary
background, copying unilaterally for covered as well as uncovered
backgrounds, and warping objects with affine transform using the
control grid motion vectors for the objects. The control grid mo-
tion vector, or called local motion vector vl, describes the motion
trajectory of the block-based object Ouc

curr . The control grid point
is defined as one of four corners of the block-based object Ouc

curr.
In order to find the grid motion vector vl of each control grid point,
we form an 8× 8 block around the control grid point, and perform
full motion search of it to find the best match on Fprev . However,
we can derive the vl using the available vr to avoid the search
complexity,

vl = lprev − l
uc
curr,

= (vr + lcurr) − (f lcurr + p),

= (vr − p) + (1 − f)lcurr (4)

The above derivation works under the condition that the camera
zooming factor is not too big to deform block size too much, such
that the vr searched and provided by the encoder is reliable for
deriving vl. We assume Equation (4) is valid only if the block
is deformed within more one pixel by camera zooming, that is,
|BW − f · BW | < 1 pixel, where BW is the width of block and
equals to 16. Thus, we say that Equation (4) is valid under the
condition 0.937 < f < 1.063.

Note that we have to find corresponding vr of vl to plug into
Equations (4)-(5). Since the 8 × 8 block central at each grid point
of F uc

curr may map to and cover at most four block-based motion
vectors vr’s of Fcurr. We can perform the block matching test on
those four candidates and pick the one giving the best match as our
corresponding control grid vector vl.

Furthermore, since (−176/2,−144/2) < lcurr <
(176/2, 144/2) for QCIF sequence, Equation (4) can be further
simplified to

vl = vr − p (5)

if (1 − f) ∗ 176/2 < ±1 pixel, that is, 0.989 < f < 1.011.
From Equations (4)-(5), we can simply derive the vl via vr

with very low complexity except the camera has very heavy zoom-
ing (f < 0.937 or f > 1.063), for which we have to perform the
full search for the control grid vector vl. Fortunately, our experi-
ments show that, the probability for turning to full motion search
is extremely low.

After we apply DMCI and interpolate the objects using warp-
ing to obtain the interpolated frame F uc

intp. Then we should com-
pensate the camera motion back onto F uc

intp to obtain our target
interpolated frame Fintp.

5. EXPERIMENTAL RESULTS

We test the MCI performance with the bit stream generated by the
fixed frame skip scheme. Experiments are performed based on the

UBC H.263++ video decoder with the replacement of frame rep-
etition (FR) with the proposed GMCI scheme. We use the Fore-
man, Carphone, Miss America and Mother Daughter four QCIF
sequences as the test video to demonstrate the visual performance.
For each sequence in test, the original frame rate of the input se-
quence is 30 frame per second (fps), the basic mode (i.e no op-
tional mode is activated) is chosen, and the quantization step 20
and frame skip 2 are used in the encoder. The bitstream generates
decoded video with 10 fps in the decoder. However, after inserting
two interpolated GMCI frames, the frame rate can be restored to
30 fps, which is the same as the original input image sequence.

The averaged PSNR performance of GMCI for each test se-
quences is shown in Table 1. Three approaches are compared in
the table. The averaged PSNR values show that GMCI outper-
forms both FR and DMCI schemes, especially, for the Foreman
sequence in which obvious camera motion is observed. Figure 2
demonstrates PSNR curves for each frame in Foreman sequence.
As we know that, in Foreman sequence, obvious camera motion
is observed from frame 200-267. From Figure 2, we see GMCI
in general provides improvement on PSNR over FR and DMCI
between frames 200-267, while keeping the same PSNR perfor-
mance as DMCI from frame 269-300.

Columns 2-4 in Table 2 show that the speed performance com-
parisons for three interpolators. GMCI only slightly increases the
run time over FR and DMCI. The speed test is performed on the
platform of the Pentiumn 4 2.0G Hz PC. During decoding play-
back on this platform, we can interpolate the GMCI frames in real-
time. Columns 5-6 in Table 2 indicate the minimum and the max-
imum zooming factor f found in each sequence. Since all of the
f ’s fall between 0.937 and 1.063, it indicates that the four test se-
quences all never turn to full motion search to obtain the local mo-
tion vectors, that is, all vectors can be calculated via Equation (4)
or (5) with very low complexity.

We also provide the visual quality comparisons in Figure 3.
Figure 3 demonstrates that GMCI is superior to DMCI, for ex-
ample, in the area of the mouth and the upper left, upper center
background. For the real-time playback, we see GMCI provide
the smooth video with less “running water” artifacts in the back-
ground.

FR DMCI GMCI

Foreman 26.60 28.62 28.74
Carphone 28.29 29.28 29.31
Miss America 34.72 35.84 35.85
Mother Daughter 30.92 31.53 31.53

unit: dB/frame

Table 1. Performance comparisons on averaged PSNR

FR DMCI GMCI Min f Max f
(sec (sec (sec

/frame) /frame) /frame)

Foreman 0.033 0.042 0.043 0.996 1.006
Carphone 0.034 0.040 0.044 0.997 1.002
Miss America 0.030 0.038 0.039 0.999 1.002
Mother Daughter 0.034 0.040 0.041 0.996 1.003

Table 2. Performance comparisons on the speed test

III - 115

➡ ➡



200 210 220 230 240 250 260 270 280 290 300
21

22

23

24

25

26

27

28

29

30

31

32

Frame Number

PS
NR

PSNR Comparisons for Foreman Sequence

FR  
DMCI
GMCI

Fig. 2. PSNR comparisons for Foreman sequence (frame skip=2)

6. CONCLUSIONS

We developed a fast GMCI frame interpolator, which is able to
restore frame rate at decoder in real-time. The low complexity is
achieved partly because the interpolation operation is performed
based on the block instead of pixel, and partly because we utilize
the vector fields embedded in the bitstream to save the complex-
ity on estimating both local and global motion parameters. The
GMCI takes camera motion into account during interpolation. The
experiments prove the proposed GMCI interpolator provide better
performance over other interpolators.

7. REFERENCES

[1] R. Thoma and M. Bierling, “Motion compensating interpola-
tion considering covered and uncovered background,” Signal
Processing: Image Compression 1, , no. 191-212, 1989.

[2] C.K. Wong and Oscar C. Au, “Modified motion compen-
sated temporal frame interpolation for very low bit rate video,”
IEEE International Conference on Acoustics, Speech, and Sig-
nal Processing, vol. 4, pp. 2329–2332, 1996.

[3] D. Bagni, V. Riva, and L. Albani, “An innovative temporal
post-processing to increase the frame rate in h.263 encoding
systems,” IEEE International Picture Coding Symposium, pp.
273–280, April 1999.

[4] T.-Y. Kuo and C.-C. J. Kuo, “Improved h.263 video codec
with motion-based frame interpolation,” Visual Communica-
tions and Image Processing, vol. 3653, no. 1, pp. 26–39, Jan-
uary 1999.

[5] P. Migliorati, F. Pedersini, L. Sorcinelli, and S. Tubaro, “Se-
mantic segmentation applied to image interpolation in the case
of camera panning and zooming,” IEEE International Confer-
ence on Acoustics, Speech, and Signal Processing, vol. 5, pp.
25–28, 1993.

[6] Y. T. Tse and R. L. Baker, “Global zoom/pan estimation and
compensation for video compression,” IEEE International
Conference on Acoustics, Speech, and Signal Processing, vol.
4, pp. 2725–2728, 1991.

(a) Frame 157 - DMCI (b) Frame 157 - GMCI

(c) Frame 158 - DMCI (d) Frame 158 - GMCI

(c) Frame 156 - Decoded (d) Frame 159 - Decoded

Fig. 3. Visual quality comparisons for consecutive interpolated
frames (Frame 157-158) using decoded frames (Frame 156 and
159). The proposed GMCI successfully interpolates frames and
provides better prediction in the area of mouth and upper left, up-
per center background.

III - 116

➡ ➠


