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ABSTRACT

Successful image interpolation requires proper enhancement
of high frequency content of image pixels around edges. In
this paper, we introduce a simple edge model to estimate
high resolution edge profiles from lower resolution values.
Pixels around edges are viewed as samples taken from one
dimensional (1-D) continuous edge profiles according to 1-
D smooth edge contours defining the sampling instants. The
image is highpass filtered by wavelets and subpixel edge lo-
cations are estimated by minimizing the modeling error in
the wavelet domain. Interpolation is carried out by apply-
ing the model, wherever applicable, together with a base-
line interpolator (here, bilinear) in order to make edges look
sharper without introducing artifacts. The results are com-
pared to bilinear interpolation, and significant improvement
in terms of SNR, edge sharpness and contour smoothness is
observed.

1. INTRODUCTION

Resolution enhancement of images becomes complicated
due to the localized high-frequency nature of pixel values
across edges. Standard methods such as bilinear or bicubic
interpolation[1] fail to capture these sudden changes around
edges and cause visually unacceptable artifacts such as blur-
ring or ringing. Various techniques have been proposed
to improve the visual quality of interpolated images. Un-
sharp masking[1] and nonlinear interpolation filters[2] help
to sharpen edges, only to produce artifacts and increase noise
in return. Adaptive interpolation schemes[3, 4, 5] use sim-
ple edge models to estimate edge locations and interpolate
selectively among pixels around edges. These are typically
ad hoc methods and the outcome is significantly affected by
the mistakes made in edge locations. Wavelet[6] or fractal[7]
based techniques enhance the high-frequency content of the
interpolated image by predicting the high-frequency details
in the wavelet or fractal domain. Since no explicit edge
model is involved, these techniques usually end up increas-
ing any noise present in the unmagnified image. Edge di-
rected interpolation of Xin Li, et al.[8, 9], avoids using an
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edge-map by estimating local covariance characteristics at
low resolution and using them to direct the interpolation at
high resolution. Even though it achieves sharpness across
the edge and smoothness along the edge contour, it is not
clear whether the technique provides the level of adaptivity
required for pixels around edges.

In order to enhance the sharpness of an edge without
incurring any additional artifacts, an accurate model for the
high-frequency content of the edge profile (i.e., pixel val-
ues across the edge) is needed. When a high resolution
image is downsampled, the high frequency components get
aliased to the low frequency terms. Aliasing can be avoided
by pre-filtering before downsampling; yet, this might blur
the appearance of the edge and high-frequency components
are lost in any case. In this paper, we develop a simple yet
powerful edge model to estimate the aliased high-frequency
terms from downsampled pixel values around an edge con-
tour. The model is based on the observation that the edge
profile changes smoothly and slowly along an edge contour.
Therefore, pixel values around the contour can be modelled
as samples from the same 1-D edge profile, with sampling
instants determined according to the location of the pixel
with respect to the edge contour. The model is applied in
the wavelet domain after the image is high-pass filtered us-
ing wavelets. For a given edge, 1-D wavelet coefficient pro-
file and edge contour are chosen by minimizing the approx-
imation error of the model. For the interpolation step, the
model is used together with a baseline interpolator. Since
the model is meant to capture the high-frequency deviations,
the baseline interpolator is needed for stable interpolation.
By properly combining the two interpolation schemes, we
achieve sharper and more accurate edge profiles and smooth
edge contours without introducing much noise or artifacts.

There are several interesting features of this “contour +
profile” model. First of all, it provides accurate estimation
of edge locations as long as the model is applicable. For
such “well behaving edges”, the high-frequency enhance-
ment is properly defined in terms of the original pixel val-
ues, in contrast to the ad hoc enhancement schemes used in
former edge-based interpolation ideas. Most of the previous
schemes tend to obscure the smoothness along the edge con-
tour. On the other hand, “contour + profile” model improves
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Fig. 1. Edge Contour and Its Neighborhood

such smoothness by using a 1-D smooth contour description
and low-pass filtering along the contour direction. Section
2 introduces the model and relevant notation and discusses
when the model is applicable. Section 3 is about the con-
tour estimation algorithm in the wavelet domain. In Section
4, we provide the details of the interpolation scheme, and
discuss the pros and cons of various different approaches.
Experiment results and discussions about the performance
are included in Section 5. We conclude the paper by high-
lighting the future directions to be taken.

2. CONTOUR + PROFILE MODEL FOR EDGES

Typically, pixel values within a local neighborhood of an
edge tend to change smoothly and slowly along the edge ori-
entation. This observation forms the basis of our “contour
+ profile” model in images. A 1-D continous edge profile is
sampled according to the subpixel edge locations provided
by the 1-D smooth contour, and pixel values are modelled
as these sampled values plus small additive noise (see Fig-
ure 1,2). In its most general form, the edge profile is de-
fined along the direction orthogonal to the edge orientation
at a certain point. We further simplify the model by us-
ing horizontal profiles for edges close to being vertical, i.e.
“vertically oriented”, and vertical profiles for “horizontally
oriented” edges. The corresponding 1-D contour is defined
accordingly as a function of vertical and horizontal axis re-
spectively. For diagonal edges both profiles need to be used
for accurate modelling. In the rest of the paper, we assume
the edge to be vertically oriented. The same ideas apply
trivially for the horizontal case.

Specifically, pixel values are given by the following for-
mulation (see Figure 1,2); V(m,n) € A(e),

I(m,n) = Pe(m — Ce(n)) +(m,n), @

where P, is the edge profile, C. is the contour, A(e) is the
set of neighboring pixels for the edge e. «y is assumed to be a
small independent additive white Gaussian noise (AWGN)
process.
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Fig. 2. Edge and Wavelet Coefficient Profiles

Since higher frequencies are more sensitive to changes
in location, contour estimation is governed mainly by the
high frequency components of the edge profile. In addi-
tion, edge spectrums decrease as 1/f and therefore alias-
ing is much more pronounced for high frequencies com-
pared to low frequencies. Wavelet filters at different scales
divide the edge spectrum into portions of dyadic propor-
tion. This dyadic scaling matches the 1/f-like behavior of
the edge spectrum. Hence, each portion of the spectrum can
be weighted properly based on how much it contributes to
location uncertainty and how much it is affected by aliasing.
However, experience shows that performance loss is neg-
ligible when only the highest frequency band is used and
other bands are discarded. In view of these facts, contour
estimation is carried out after the image is high-pass filtered
using wavelets in the horizontal direction. The edge model
is still applicable in the wavelet domain: V(m,n) € A(e),

w(m,n) = Qe(m — Ce(n)) +(m,n). @

Edge profile P, is filtered by 4, to produce wavelet coeffi-
cient profile Q). (see Figure 2), where 1), is the upsampled
wavelet filter:

s ={ g0 LR e g

Note that wavelet coefficients are determined by the
pixel values that lie within the support of the wavelet filter.
Consequently, when there are multiple high frequency pat-
terns within a local neighborhood (i.e., texture and/or mul-
tiple edges at different directions), the assumptions of the
model fail. We will later comment on this issue.

3. CONTOUR ESTIMATION

Wavelet coefficient profile (). and edge contour C., are as-
sumed to be smooth 1-D functions. . is a compact signal
with support determined by the length of the wavelet fil-
ter and shape of the edge profile (see Figure 2). Strictly
speaking, it cannot be bandlimited. Yet, the effective band-
width is typically small and since we would like to magnify
the image by two, we assume (). to have bandwidth equal
to 2. In other words, the Nyquist sampling period is 0.5
units. For a given edge, profile and contour are chosen as
two smooth functions that minimize the approximation er-
ror of the model:

> (wim,n) = Qe(m — Ce(n)))?,

(m,n)€eA(e)
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where By, is the linear subspace for bandlimited functions
with bandwidth 27, and H is some highpass filter. Contour
smoothness is controlled by penalizing the high-frequency
deviations of the contour using an appropriate weight 4.

For a given contour, the solution for the optimal pro-
file simply becomes the orthogonal projection of the wavelet
coefficients onto a linear subspace. Contour estimate is up-
dated using an iterative gradient-based approach so as to
minimize the above error expression.

4. MODEL-BASED IMAGE INTERPOLATION

Estimated contours provide subpixel accurate edge orienta-
tions along which smooth interpolation is possible. Stan-
dard interpolation techniques could be modified for selec-
tive edge-directed interpolation using similar ideas as in [3].
Even though improved image quality is observed, these meth-
ods suffer from mistakes in edge locations. Furthermore,
since such methods don’t include explicit models for the
edge profile, high frequency enhancement around the edge
does not necessarily correspond to the aliased components
of the true high resolution image. This leads to artifacts
around the edge and failure to maintain a visually smooth
edge contour.

We propose to use the model introduced in Section 2 for
estimating the proper enhancement to sharpen edges with-
out sacrificing contour smoothness. Wherever the model
is applicable, missing pixels of the high resolution image
could also be treated as samples from the 1-D continuous
edge profile. Unfortunately, unlike wavelet coefficients, the
edge profile is not a compact signal. This leads to ringing
when bandlimited interpolation is used to define the contin-
uous edge profile. The common solution to this problem
is to use a localized kernel, such as linear interpolator. As
mentioned before, aliasing at low frequencies is negligible
and wavelet coefficient profile is capable of resolving alias-
ing at high frequencies. Therefore, we combine the two ap-
proaches such that bilinear interpolation is used as the base-
line interpolator, and estimated wavelet coefficient profile
provides the necessary adjustment for high frequencies.

The two schemes define a set of linear equations, and
pixel values of the interpolated image are given by the least
square solution of these equations. Specifically, define F,
as the bilinear interpolation filter; ¥ is the discrete up-
sampled (by 2) wavelet filter; Sp4; is (FFT-based) shifting
by dt units; I, is the interpolated image and Iy is the up-
sampled low resolution image. For a given edge e, define
m, = {m; ([F],5]) € A(e)}. Then, we would like the
interpolated edge to satisfy, V 7, j such that m;, m; # 0,

Sicz(iNPule)(mi,i) = Sic2() Pul)(my,5), (5)

The contour is linearly interpolated; i.e. C2(2n + 1) =

(Ce(n) + Ce(n + 1))/2. The bilinear interpolation gives,
1(2) = FLIU. (6)

The pixel values due to the low resolution image are kept
the same using the constraint,
I(5y(2m, 2n) = Iy(2m,2n), Y(m,n).

The model equations (5) can be weighted by some con-

stant A(e) depending on how reliable the model is. A mea-

sure of reliability is the percentage error of approximation
for the wavelet coefficients of low resolution image:

_ Dice)
Z(m,n)el\(e) w(mJ n)2

p(e)

Typically, if p(e) > 0.2, then the model is assumed to fail
and A(e) is set to zero. When p(e) < 0.2, A(e) = 0.5 seems
to yield a good tradeoff between enhancing edge profile and
avoiding artifacts.

It needs to be mentioned that using bilinear interpola-
tion in this fashion is not necessarily the best approach. The
image could first be low-pass filtered by the scaling filter,
and equation (6) could be modified accordingly in order to
separate low frequency interpolation from high frequency
interpolation. Bilinear interpolation could be replaced by
a weighted linear interpolation scheme, where the weights
would reflect the edge orientation. However, the perfor-
mance gains are usually small; and since the goal of this
paper is to model the high frequency behavior around edges,
we decided to work with the simplest strategy.

For natural images, there exist many different types of
localized high frequency patterns, which could come in the
form of multiple intersecting or neighboring edges, texture
and other complicated shapes and figures. In most of these
cases, our model is not going to be applicable, and the per-
formance will be limited by the choice of the baseline inter-
polation scheme. Our future research is geared towards gen-
eralizing this basic model to include these different types of
patterns.

5. SSIMULATIONS AND RESULTS

The scheme is tested around the hat of Lena image (see Fig-
ure 3). Since the model performs best around isolated and
smooth edges, this image is suitable to see the application of
the idea. We used length 9 wavelet filter from linear phase
9/7 filter pair. Contour length is chosen to be between 4 and
8. This defines a window of size (9 x (4 — 8)) (for verti-
cal edges) around the edge locations. The idea is applied
separately in vertical and horizontal directions. If a pixel
happens to belong to some A(e) in both directions (which
happens for diagonally oriented edges), then the final result
is a weighted sum of the two outcomes, with weights given
by the wavelet coefficient energy in a (3 x 3) window around
the pixel.
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The image is magnified by a factor of 4 in both dimen-
sions. Figure 3 compares the scheme against using bilinear
interpolation only. The preserved smoothness along major
(strong) edges in the image shows the stength of our algo-
rithm. The ragged contours of the bilinear interpolated im-
age degrades the perceptive image quality. Using a contour-
based enhancement scheme, we manage to introduce the
necessary high frequency details to make up for the lost res-
olution. The SNR gain relative to the original high resolu-
tion image is more than 2 dB. Improvement in SNR goes up
as high as 6 dB (in other parts of Lena), depending on the
sharpness of the edge profile and the smoothness of pixel
values along the edge contour. The method gives a simi-
lar performance when cubic B-spline interpolation is used
instead. This is expected, since the success of the method
depends on the accuracy of the model for high frequency
details and not on the baseline interpolation scheme. Com-
pared to using spline interpolation only, the SNR gain for
the same region is about 1.4 dB.

As mentioned before, using bilinear interpolation to-
gether with bandlimited interpolation of wavelet profile is
probably not the best choice for images. The slight increase
in noise around the right edge of the hat can be attributed
to the undesirable properties of these two methods. We ex-
pect to achieve a better image quality when a more localized
description is used for the wavelet coefficient profile.

6. CONCLUSION AND FUTURE WORK

Edge directed interpolation doesn’t live up to its promise
unless enhancing the edge sharpness is consistent with the
smoothness of the high resolution edge contour. Our con-
tour + profile model provides a simple framework, where
interpolation of the edge profile is controlled by the sub-
pixel accurate contour description. This leads not only to
sharper edges but visually smooth and pleasing contours.

Future research will focus on extending this basic idea
to more complicated situations such as multiple edges. Once
this is achieved, support length of the wavelet filter becomes
less of an issue and wavelet decomposition at different scales
could be used in addition to the highest frequency scale to
develop better interpolation schemes. The algorithm in its
current form is computationally expensive, mainly because
of iterative contour estimation. We need to develop simpler
strategies for estimating edge locations.
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