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ABSTRACT Fx)

Often used as an observation model for image interpo-
lation, is the moving average a correct and accurate model
for most circumstances? Are there other options? In this
paper we present a novel theoretical analysis of the reg-
ularized image up-sampling problem focusing on the data
fidelity term. We start with formulation of the physical ac-
quisition processes the image has undergone and develop a
generalized design for the correct and accurate data fidelity f(lkf;;))
term for regularized image up-sampling.

~ Observation Model

Hu) [~ A—TF

Fig. 1. Scenario for image upsampling.
1. INTRODUCTION

Image up-sampling to achieve higher perceived resolution isPY combining a data fidelity term with a regularization term.
a problem with many potential applications such as video- Much research has focused on the regularization term, which
to-film conversion and law enforcement. A continuous im- Might involve differenta priori constraints, to pick one so-
age is acquired by a physical camera to produce a lower-lution with desirable properties from the infinite number of
resolution (LR) image(s). The physical camera is modelled possible solutions. The data fidelity term used for most im-
as a continuous-space(-time) filter followed by sampling on g€ interpolation and super-resolution research [1, 2, 3] is
a lower-density lattice. It is desired to obtain a higher-resol- the special case proposed in [4]. Their model supposed that
ution (HR) version of that image sampled on a denser sam-the LR image was obtained from the continuous image by
pling lattice. The HR image is obtained in principle from & CCD camera whose aperture is modelled by a rect func-
the continuous image through a theoretical, not necessarilytion [5]. If the HR image is also obtained by a rect aperture,
a physically realizable, camera specifying desired proper_then the modelling observation filter is the discrete moving
ties of the image. The scenario is shown in Fig.1. The the- average.

oretical camera consists of a continuous-space(-time) filter ~ The motivation in pursuing this study is that an accurate
and a denser lattice. Our focus in this paper is to find and data observation model leads to a better definition of the
design an observation model that can best produce the Lpsolution space which is indeed a critical factor for a better
image from the HR image. This observation model is the quality interpolation [6]. Hence, choices become available
data fidelity term for the regularized up-sampling process. for picking nice theoretical cameras and obtaining the cor-
It should be noted that our problem is the inverse one; we 'esponding observation model.

are given the LR image and are trying to obtain the HR im-

age. We study the possibility of obtaining such observation 2. PROBLEM STATEMENT

models for any scenario for both cameras. Our results are

for some existing physical cameras and arbitrary theoreti- Let f(x) be a continuous-space(-time) image that is sam-
cal cameras. As far as we know, we are the first to perform pled on two different latticed andI". Without loss of gen-
this study and offer a generalized design of this observa-erality, assume thdf C A, and soA* C I'*. The super-
tion filter for arbitrary scenarios. Image up-sampling and script* denotes the reciprocal lattice. In cases where neither
super-resolution is an ill-posed problem that can be solvedA norI is a subset of the other, then an intermediate lattice
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is introduced as in rate conversion by a non-integer factor. of a discrete-space stationary random field with PSD
The sampling aperture impulse responses for sampling on

andT areh;(x) andhy(x) respectively, yielding the sam- Z Sg(u+s)
pled imagesf; (x) and f,(x). We seek a model to relate ) it (5)
f2(x) to f1(x). The situation is illustrated in Fig.1 where |H2(u +s)— Hi(u+s)H(u+s)%

g(x) is the model off2(x) ande(x) = f2(x) — g(x) is the

modelling error. Hereg(x) is assumed to be obtained by The corresponding mean square error (MSE) is

LSl filtering of f1(x) on A, followed by downsampling to o2 — S.(u)du
T. © = )
1 6
S Sy(u+ (6)
3. DESIGN OF THE OBSERVATION MODEL d(T) sezr* Pz s(u+ts)
2
Assume thaf (x) has a continuous-space Fourier transform [Ha(u + ) — Hi(u+s)H(u+s)"du
F(u). Thenfi(x) and f>(x) are related tof (x) in the fre-  whereP;: is a unit cell ofT"*. Thus the best modelling filter
guency domain by Hy(u) in the MSE sense satisfies
1 hg = arg mhin o? (7

) 1) where H(u) = Xicahlx]exp(—j2mu - x) which is a fi-

> (
reA*
nite sum for FIR filters, and real for zero-phase filters. We
F H ’
) S; (us)Ha(u+s) can assume that the integrals in (6) are non-negligible for
only a fews € I'* in the vicinity of 0. This is reasonable
whered(-) is the unit-cell area of its argument lattice. As- because the aperiodic frequency response of the continuous
suming that% Z%/F\ ; = K, thenl™ = JX | (A*+dy) filters H, (u) and H (u) will decay rapidly in the neighbor-
whered, € T*.k = 1, .., K are the coset representatives of hood of Py, P} respectively. This is dictated by the phys-
A*inD*[7]. It foIIows that ical aperture pre-filter characteristics in cutting down alias-
ing. Fixing some numbelV of independent coefficients for

- =

+r)Hi(u+r)
)

=

Fl(u) = d(
Fg(u) = d(

| XK H(u), 02 is just a real function of the N unknowns, and our
G(u) = 7 Z Fi(u+dg)H(u+dg). 2 objective function (6) can be minimized with a general op-
k=1 timization routine, or optimized analytically since it can be

. _ written as a quadratic form ian].
SinceH(u +r) = H(u) for anyr € A* and substituting

f 1)i 2), it foll hat (2 i
rom (1) into (2), it follows that (2) can be written 4. ANALYTIC OPTIMIZATION

G(u) = d( Z Fu+s)Hi(u+s)H(u+s). (3)  while the general formulation above is applicable to 2 or
ser~ 3 dimensions, we now consider the specific case of spatial

(2D) up-sampling. Assume that is a lattice that admits

quadrantal symmetry [8]. Suppokgx] has quadrantal sym-

metry, and the independent coefficients are in the quadrant

Q, so thatH (u) = .o I'[x] cos(2muz) cos(2mvy). If

Hy, H, are real, then expanding the terms of (6) yields

Thus, g(x) can be obtained in one step by filterirfgx)
with the LSI continuous-space(-time) filter whose frequency
response id4; (u)H (u) and sampling od". It should be
noted thatH; (u) is aperiodic whileH (u) is periodic, com-
ing from a digital filter. We can also write the Fourier trans-

form of the errorle(x) as o2 :ﬁ S;:* . S;(u+ s)H(u + s)du
E(u) :WF)S;* Flu+s) @ Z W Y / S(u+s)Hy(u+s)
(Ha(u+s) — Hi(u+s)H(u+s)).

Hg(u + s) cos(27r(u + s5)x) cos(2m(v + sy)y)du
Thus, e(x) can be obtained by filtering(x) with the LSI o
continuous-space(-time) filter whose frequency response is + Z Z W xR % Z / Sy(u+s)

Hy(u) — Hy(u)H (u) and sampling off. ) etic sl

If we assume thaf (x) is a realization of a continuous- H? (11 +5) cos(2m(u + sg)x) cos(2m (v + sy )y)
space(-time) stationary random field with power spectral cos(2m(u + s5)&) cos(2m(v + sy)¥)du
density (PSD)S¢(u), then the erroe(x) is a realization (8)
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where,s = [s,, s,]T. Puttingh’[x] into a lexicographic
vectorh’[x], (8) can be simply written as

2 /T / Ty./ 5
o2=h""Dh'+b'h' +¢ 9) I
£
where the elements & and D can be determined by nu- o / () ‘ \
merical integration. Them;? is easily minimized with 04 \\ ~ ‘ ':W‘“\ \
o 'm \\\‘ 'u‘ ‘ \\ '/1 o\\(//
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5. PSD MODEL OF THE IMAGE
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Several models for the PSD of the continuous imégéu)
exist. SinceSy(u) £ F.T{R;(x)} then we used the basic
model for the autocorrelation of continuous images defined (a) Gauss-Rect](25).
by Rs(z,y) £ o exp (—a|z|) exp (—azly|), wheres? =

R¢(0,0) is the autocorrelation with zero lag ang, o, are

parameters. We derive the PSD to be

a2 aq

S¢(u,v) =40 )
7(u;v) 7 47202 + a3 4m2u? + o2

(11)

In our simulations we also used the Welch-modified Peri-
odogram to estimate the PSD from a very high resolution
image.

6. SIMULATIONS AND EXPERIMENTS

Most physical apertures have an impulse response that is
approximated with &D Gaussian, rect, or circ function.
Hence, our experiments used scenarios with the Gaussian
and rect functions foH,. We will name each scenario ac-
cording to the aperture used féf, and H, respectively
and the value ofi(; in other words ifff; is a Gaussian, Fig. 2. Magnitude of the frequency response for the obser-
H, is a rect function, and{ = 25, then we call it Gauss-  vation modelH (u) for two scenarios.
Rect( 25). Our sample scenarios in this paper are Gauss-
Gauss(25), Rect-Rect(25), Rect-Gauss$@5), and Gauss-
Rect( 25). For each scenario we obtained an FIR modelling the actual modelling errdfe(x)||2 and computed the peak-
filter h[x] described in the first row in Table 1. signal-to-noise ratio (PSNR). For sake of comparison we
In order to verify the results obtained we ran a simu- also chose some reasonable filters to be the modelling filter
lation of each scenario and used the modelling filter ob- and measured the actual error. For all the Gaussian filters
tained to measure the actual modelling ere¢x) on the used as modelling filters, we optimized the variance that
images. We started with a very high resolution image sim- maximizes PSNR because we found that results changes
ulating the continuous signgl(x). We simulatedH, H» drastically with non-optimal variance! All the PSNR mea-
by the appropriate digitally designed Gaussian or moving sures for all scenarios with all filters are shown in Table
average with the appropriate cut-off angular frequency. Thel. Our result for the Rect-Rect scenario agrees with that
very-high-resolution image is filtered b§;, H, and then of [4]. For the Gauss-Gauss scenario our method designed
downsampled by different large factors, in order to mini- a Gaussian-like observation filter with the optimized vari-
mize the error between the digital simulation and the reality ance. We obtained totally new observation models for the
of the continuous spectrum analysis, simulating the sam-Rect-Gauss and Gauss-Rect scenarios.
pling on both lattices\, I" respectively. We chosg, T" to Another verification we used was to obtain a modelling
be rectangular, wheré = LAT(diag(X,Y")). Theimages filter using the imageg;, f- and solving a numerical opti-
obtained are used to simulafe(x), f2(x). We measured  mization problem, directly from the images. Here we used

(b) Rect-Gauss|(25).
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Modelling Filter Gauss-Gauss |25) Rect-Rect Gauss-Rect Rect-Gauss
(125) (125) (125)

Resulting Optimal Modelling filter | Optimized Gaussiant Moving Aver- | see Fig.2(a); see Fig.2(b):
like: Variance is criti-| age: Phase cor- Moving Aver- | Neither Gaus-
cal rection is criti- | age can work| sian nor moving

cal but not optimal | average

Simulated Optimization 61.96 63.22 53.48 58.35

Our Model with PSD model: (11) | 53.51 58.39 52.20 55.15

Moving Average 32.31 63.22 50.42 31.77

Maximally flatw,; = w/4 34.45 37.22 38.03 29.00

Maximally flatw.,; = 7/8 38.07 33.03 32.76 38.97

Optimized Gaussign 53.69 40.90 40.4% 38.42¢

a Standard deviation of optimized Gaussian® 2.1772 pixels ©¢ 1.5635 pixels 9 1.497 pixels ¢ 1.874 pixels

Table 1. Performance of modelling filters for different scenaripgx)||2, MSE expressed as PSNR (dB)

the least squares method because the problem is overdetef2] D. Rajan and S. Chaudhuri,
mined. The simulated modelling filter obtained was also
used to compute the modelling error which appears in the

first row of results in Table 1 and is namsiinulated op-

timization This helped us in obtaining an upper bound on
the PSNR that can be obtained from the simulation experi-

ment. However, it can’t be practically used sinfeis not

available, and it results in a modelling filter that is biased

towards the specific features of the underlying image.

7. CONCLUSION

We were able to formulate a generalized design for the ob-
servation model and succeeded in obtaining the optimal ob-rg
servation model for important scenarios in image up-sampl-
ing and super-resolution. Furthermore, our method allows
us to solve for any desired scenarios; standards conversion
posing known physical specifications or up-sampling to im-
ages acquired with nice a theoretical aperture specifying de{6]
sired properties of the image! With our optimal modelling
filter tightening the relation between the HR and LR, we
can cut down noise amplification during the interpolation
process. This leads to relaxing the smoothness (regulariza Y
tion) constraint(s) and helps in obtaining less blurred (over
smoothed) results, if a suitable regularizer is selected. We
used the bounded total variational regularizer, along with
our designed observation model, and the results will appearyg

in a future paper.
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