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ABSTRACT

Often used as an observation model for image interpo-
lation, is the moving average a correct and accurate model
for most circumstances? Are there other options? In this
paper we present a novel theoretical analysis of the reg-
ularized image up-sampling problem focusing on the data
fidelity term. We start with formulation of the physical ac-
quisition processes the image has undergone and develop a
generalized design for the correct and accurate data fidelity
term for regularized image up-sampling.

1. INTRODUCTION

Image up-sampling to achieve higher perceived resolution is
a problem with many potential applications such as video-
to-film conversion and law enforcement. A continuous im-
age is acquired by a physical camera to produce a lower-
resolution (LR) image(s). The physical camera is modelled
as a continuous-space(-time) filter followed by sampling on
a lower-density lattice. It is desired to obtain a higher-resol-
ution (HR) version of that image sampled on a denser sam-
pling lattice. The HR image is obtained in principle from
the continuous image through a theoretical, not necessarily
a physically realizable, camera specifying desired proper-
ties of the image. The scenario is shown in Fig.1. The the-
oretical camera consists of a continuous-space(-time) filter
and a denser lattice. Our focus in this paper is to find and
design an observation model that can best produce the LR
image from the HR image. This observation model is the
data fidelity term for the regularized up-sampling process.
It should be noted that our problem is the inverse one; we
are given the LR image and are trying to obtain the HR im-
age. We study the possibility of obtaining such observation
models for any scenario for both cameras. Our results are
for some existing physical cameras and arbitrary theoreti-
cal cameras. As far as we know, we are the first to perform
this study and offer a generalized design of this observa-
tion filter for arbitrary scenarios. Image up-sampling and
super-resolution is an ill-posed problem that can be solved
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Fig. 1. Scenario for image upsampling.

by combining a data fidelity term with a regularization term.
Much research has focused on the regularization term, which
might involve differenta priori constraints, to pick one so-
lution with desirable properties from the infinite number of
possible solutions. The data fidelity term used for most im-
age interpolation and super-resolution research [1, 2, 3] is
the special case proposed in [4]. Their model supposed that
the LR image was obtained from the continuous image by
a CCD camera whose aperture is modelled by a rect func-
tion [5]. If the HR image is also obtained by a rect aperture,
then the modelling observation filter is the discrete moving
average.

The motivation in pursuing this study is that an accurate
data observation model leads to a better definition of the
solution space which is indeed a critical factor for a better
quality interpolation [6]. Hence, choices become available
for picking nice theoretical cameras and obtaining the cor-
responding observation model.

2. PROBLEM STATEMENT

Let f(x) be a continuous-space(-time) image that is sam-
pled on two different latticesΛ andΓ. Without loss of gen-
erality, assume thatΓ ⊂ Λ, and soΛ∗ ⊂ Γ∗. The super-
script∗ denotes the reciprocal lattice. In cases where neither
Λ norΓ is a subset of the other, then an intermediate lattice
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is introduced as in rate conversion by a non-integer factor.
The sampling aperture impulse responses for sampling onΛ
andΓ areh1(x) andh2(x) respectively, yielding the sam-
pled imagesf1(x) andf2(x). We seek a model to relate
f2(x) to f1(x). The situation is illustrated in Fig.1 where
g(x) is the model off2(x) ande(x) = f2(x)− g(x) is the
modelling error. Here,g(x) is assumed to be obtained by
LSI filtering of f1(x) on Λ, followed by downsampling to
Γ.

3. DESIGN OF THE OBSERVATION MODEL

Assume thatf(x) has a continuous-space Fourier transform
F (u). Thenf1(x) andf2(x) are related tof(x) in the fre-
quency domain by

F1(u) =
1

d(Λ)

∑

r∈Λ∗
F (u + r)H1(u + r)

F2(u) =
1

d(Γ)

∑

s∈Γ∗
F (u + s)H2(u + s)

(1)

whered(·) is the unit-cell area of its argument lattice. As-
suming thatd(Γ)

d(Λ) = d(Λ∗)
d(Γ∗) = K, thenΓ∗ =

⋃K
k=1(Λ

∗+dk)
wheredk ∈ Γ∗, k = 1, ..,K are the coset representatives of
Λ∗ in Γ∗ [7]. It follows that

G(u) =
1
K

K∑

k=1

F1(u + dk)H(u + dk). (2)

SinceH(u + r) = H(u) for anyr ∈ Λ∗ and substituting
from (1) into (2), it follows that (2) can be written

G(u) =
1

d(Γ)

∑

s∈Γ∗
F (u + s)H1(u + s)H(u + s). (3)

Thus, g(x) can be obtained in one step by filteringf(x)
with the LSI continuous-space(-time) filter whose frequency
response isH1(u)H(u) and sampling onΓ. It should be
noted thatH1(u) is aperiodic whileH(u) is periodic, com-
ing from a digital filter. We can also write the Fourier trans-
form of the errore(x) as

E(u) =
1

d(Γ)

∑

s∈Γ∗
F (u + s)

(
H2(u + s)−H1(u + s)H(u + s)

)
.

(4)

Thus,e(x) can be obtained by filteringf(x) with the LSI
continuous-space(-time) filter whose frequency response is
H2(u)−H1(u)H(u) and sampling onΓ.

If we assume thatf(x) is a realization of a continuous-
space(-time) stationary random field with power spectral
density (PSD)Sf (u), then the errore(x) is a realization

of a discrete-space stationary random field with PSD

Se(u) =
1

d(Γ)

∑

s∈Γ∗
Sf (u + s)

|H2(u + s)−H1(u + s)H(u + s)|2.
(5)

The corresponding mean square error (MSE) is

σ2
e =

∫

P∗Γ

Se(u)du

=
1

d(Γ)

∑

s∈Γ∗

∫

P∗Γ

Sf (u + s)

|H2(u + s)−H1(u + s)H(u + s)|2du

(6)

whereP ∗Γ is a unit cell ofΓ∗. Thus the best modelling filter
H0(u) in the MSE sense satisfies

h0 = arg min
h

σ2
e (7)

whereH(u) = Σx∈Λh[x] exp(−j2πu · x) which is a fi-
nite sum for FIR filters, and real for zero-phase filters. We
can assume that the integrals in (6) are non-negligible for
only a fews ∈ Γ∗ in the vicinity of 0. This is reasonable
because the aperiodic frequency response of the continuous
filtersH1(u) andH2(u) will decay rapidly in the neighbor-
hood ofP ∗Λ, P ∗Γ respectively. This is dictated by the phys-
ical aperture pre-filter characteristics in cutting down alias-
ing. Fixing some numberN of independent coefficients for
H(u), σ2

e is just a real function of the N unknowns, and our
objective function (6) can be minimized with a general op-
timization routine, or optimized analytically since it can be
written as a quadratic form inh[n].

4. ANALYTIC OPTIMIZATION

While the general formulation above is applicable to 2 or
3 dimensions, we now consider the specific case of spatial
(2D) up-sampling. Assume thatΛ is a lattice that admits
quadrantal symmetry [8]. Supposeh[x] has quadrantal sym-
metry, and the independent coefficients are in the quadrant
Q, so thatH(u) =

∑
x∈Q h′[x] cos(2πux) cos(2πvy). If

H1,H2 are real, then expanding the terms of (6) yields

σ2
e =

1
d(Γ)

∑

s∈Γ∗

∫

P∗Γ

Sf (u + s)H2
2 (u + s)du

− 2
d(Γ)

∑

x∈Q
h′[x]

∑

s∈Γ∗

∫

P∗Γ

Sf (u + s)H1(u + s)

H2(u + s) cos(2π(u + sx)x) cos(2π(v + sy)y)du

+
1

d(Γ)

∑

x∈Q

∑

x̆∈Q
h′[x]h′[x̆]

∑

s∈Γ∗

∫

P∗Γ

Sf (u + s)

H2
1 (u + s) cos(2π(u + sx)x) cos(2π(v + sy)y)

cos(2π(u + sx)x̆) cos(2π(v + sy)y̆)du
(8)

III - 102

➡ ➡



where,s = [sx, sy]T. Puttingh′[x] into a lexicographic
vectorh′[x], (8) can be simply written as

σ2
e = h′TDh′ + bTh′ + c (9)

where the elements ofb andD can be determined by nu-
merical integration. Then,σ2

e is easily minimized with

h′0 = −1
2
D−1b. (10)

5. PSD MODEL OF THE IMAGE

Several models for the PSD of the continuous imageSf (u)
exist. SinceSf (u) , F.T{Rf (x)} then we used the basic
model for the autocorrelation of continuous images defined
by Rf (x, y) , σ2 exp (−α1|x|) exp (−α2|y|), whereσ2 =
Rf (0, 0) is the autocorrelation with zero lag andα1, α2 are
parameters. We derive the PSD to be

Sf (u, v) = 4σ2 α2

4π2v2 + α2
2

α1

4π2u2 + α2
1

. (11)

In our simulations we also used the Welch-modified Peri-
odogram to estimate the PSD from a very high resolution
image.

6. SIMULATIONS AND EXPERIMENTS

Most physical apertures have an impulse response that is
approximated with a2D Gaussian, rect, or circ function.
Hence, our experiments used scenarios with the Gaussian
and rect functions forH2. We will name each scenario ac-
cording to the aperture used forH1 and H2 respectively
and the value ofK; in other words ifH1 is a Gaussian,
H2 is a rect function, andK = 25, then we call it Gauss-
Rect(↓ 25). Our sample scenarios in this paper are Gauss-
Gauss(↓25), Rect-Rect(↓25), Rect-Gauss(↓25), and Gauss-
Rect(↓25). For each scenario we obtained an FIR modelling
filter h[x] described in the first row in Table 1.

In order to verify the results obtained we ran a simu-
lation of each scenario and used the modelling filter ob-
tained to measure the actual modelling errore(x) on the
images. We started with a very high resolution image sim-
ulating the continuous signalf(x). We simulatedH1,H2

by the appropriate digitally designed Gaussian or moving
average with the appropriate cut-off angular frequency. The
very-high-resolution image is filtered byH1,H2 and then
downsampled by different large factors, in order to mini-
mize the error between the digital simulation and the reality
of the continuous spectrum analysis, simulating the sam-
pling on both latticesΛ, Γ respectively. We choseΛ,Γ to
be rectangular, whereΛ = LAT(diag(X, Y )). The images
obtained are used to simulatef1(x), f2(x). We measured
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(a) Gauss-Rect (↓ 25).
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(b) Rect-Gauss (↓ 25).

Fig. 2. Magnitude of the frequency response for the obser-
vation modelH(u) for two scenarios.

the actual modelling error‖e(x)‖2 and computed the peak-
signal-to-noise ratio (PSNR). For sake of comparison we
also chose some reasonable filters to be the modelling filter
and measured the actual error. For all the Gaussian filters
used as modelling filters, we optimized the variance that
maximizes PSNR because we found that results changes
drastically with non-optimal variance! All the PSNR mea-
sures for all scenarios with all filters are shown in Table
1. Our result for the Rect-Rect scenario agrees with that
of [4]. For the Gauss-Gauss scenario our method designed
a Gaussian-like observation filter with the optimized vari-
ance. We obtained totally new observation models for the
Rect-Gauss and Gauss-Rect scenarios.

Another verification we used was to obtain a modelling
filter using the imagesf1, f2 and solving a numerical opti-
mization problem, directly from the images. Here we used
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Modelling Filter Gauss-Gauss (↓25) Rect-Rect
(↓25)

Gauss-Rect
(↓25)

Rect-Gauss
(↓25)

Resulting Optimal Modelling filter Optimized Gaussian-
like: Variance is criti-
cal

Moving Aver-
age: Phase cor-
rection is criti-
cal

see Fig.2(a):
Moving Aver-
age can work
but not optimal

see Fig.2(b):
Neither Gaus-
sian nor moving
average

Simulated Optimization 61.96 63.22 53.48 58.35
Our Model with PSD model: (11) 53.51 58.39 52.20 55.15
Moving Average 32.31 63.22 50.42 31.77
Maximally flatωcut = π/4 34.45 37.22 38.03 29.00
Maximally flatωcut = π/8 38.07 33.03 32.76 38.97
Optimized Gaussiana 53.69b 40.90c 40.43d 38.42e

a Standard deviation of optimized Gaussianb 2.1772 pixels c 1.5635 pixels d 1.497 pixels e 1.874 pixels

Table 1. Performance of modelling filters for different scenarios :‖e(x)‖2, MSE expressed as PSNR (dB)

the least squares method because the problem is overdeter-
mined. The simulated modelling filter obtained was also
used to compute the modelling error which appears in the
first row of results in Table 1 and is namedsimulated op-
timization. This helped us in obtaining an upper bound on
the PSNR that can be obtained from the simulation experi-
ment. However, it can’t be practically used sincef1 is not
available, and it results in a modelling filter that is biased
towards the specific features of the underlying image.

7. CONCLUSION

We were able to formulate a generalized design for the ob-
servation model and succeeded in obtaining the optimal ob-
servation model for important scenarios in image up-sampl-
ing and super-resolution. Furthermore, our method allows
us to solve for any desired scenarios; standards conversion
posing known physical specifications or up-sampling to im-
ages acquired with nice a theoretical aperture specifying de-
sired properties of the image! With our optimal modelling
filter tightening the relation between the HR and LR, we
can cut down noise amplification during the interpolation
process. This leads to relaxing the smoothness (regulariza-
tion) constraint(s) and helps in obtaining less blurred (over
smoothed) results, if a suitable regularizer is selected. We
used the bounded total variational regularizer, along with
our designed observation model, and the results will appear
in a future paper.
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