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ABSTRACT 
 
In this paper we present a spatially adaptive wavelet video 
coding technique with an update-first lifting structure. A 
common problem in many adaptive-transform frameworks is the 
introduction of large overhead to address side information. In 
this paper we demonstrate that our structure does not need to 
transmit any side information to synchronize the encoder and 
decoder. We incorporate this technique in a motion compensated 
wavelet video codec. The experimental results confirmed the 
performance improvement. 

 

1. INTRODUCTION 
 

A typical hybrid wavelet video encoder generally consists of the 
following three components as shown in Figure 1. First the video 
sequences are sent to motion prediction to de-correlate the 
temporal dependence, the residue frames are generated here. 
Afterwards, a wavelet transform is used to de-correlate the 
spatial dependence inside a residue frame and obtain transform 
coefficients. Finally these coefficients are quantized and sent to 
an entropy coder to form the compressed stream.  
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Figure 1. Hybrid wavelet video encoder 

        However, despite a great deal of effort in designing motion 
prediction, quantizers and entropy coders to adapt to various 
characteristics of video sequences, there is relatively little work 
reported on adaptive transform for video coding in the literature. 
One reason is that it is both conceptually and computationally 
difficult to design efficient transforms with respect to the spatial 
context. Moreover, generally a large overhead is inevitable 
needed to address the context information in such a design and 
can easily overwhelm the performance gain of adaptive 
transforms.  

Fortunately, the first challenge is alleviated with the 
introduction of the lifting structure [1]. The lifting structure 
provides a spatial domain interpretation of wavelet transforms. 
In this paper we base our work on an update-first lifting structure 
proposed by Claypool et al [2]. This structure introduces 
adaptivity in the predict lifting step and has been proved useful 

for edge-dominated still images. We incorporate this technique 
into our hybrid video codec. Our experiments confirmed the 
performance improvement. 

The rest of this paper is organized as follows. Section 2 
describes the problem formulation of adaptive transforms for 
video coding. We give a brief introduction of the lifting structure 
in Section 3 and further explore in details the update-first lifting 
structure. We present our video coding with adaptive lifting in 
Section 4 and evaluate the experimental results in Section 5. 
Section 6 concludes the paper with remarks on future work. 
 

2. PROBLEM FORMULATION 
 
It is widely recognized that the Daubechies (9,7) wavelet 
transform achieves the best compression performance for still 
natural images compared to other wavelet transforms due to its 
ability to efficiently approximate smooth signals. However, this 
may not be true for the residual frames generated by motion 
compensation in a video codec. Residual frames may have a lot 
of edges and discontinuities and cannot be efficiently 
represented by long tapped filter banks such as the (9,7) 
transform.   

To make this clearer, we present an example. Figure 2 is the 
Y component of the 1st frame in the Foreman QCIF sequence 
which is coded as an I frame. Figure 3 is the Y component of the 
210th residual frame generated after the motion prediction in a 
hybrid wavelet transform encoder. Note that since the original Y 
in a residue frame where the pixels range from –255 to 255, we 
clip it to (0, 255) to ensure proper display. We then compressed 
each of these two frames with the (9,7) transform and the (1,7) 
transform under various data rates. The PSNR is evaluated by 
taking these two images as original images and comparing them 
with the reconstructed images respectively. Figure 4 and Figure 
5 show that the (9,7) transform clearly outperforms the (1,7) 
transform for the I frame, while in the 210th P frame the two 
transforms outperform each other alternatively. Intuitively, if we 
can find a more suitable transform for each spatial area, the 
overall coding efficiency could to be increased. 

Generally it is difficult to implement such adaptive 
transforms since the encoder needs to transmit side information 
so that the decoder is able to employ the exactly same transform 
in each spatial area as the encoder. And as traditional transforms 
are constructed based on the frequency domain analysis, it is also 
hard to construct transforms according to the spatial context. In 
Section 3 we will see the adaptive lifting structure can address 
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these two problems and provide a solution for the adaptive 
transform in video coding.  

 

 
Figure 2. Y component of the 1st frame of Foreman QCIF 

           
Figure 3. Y component of the 210th residue frame of Foreman QCIF 
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Figure 4. Coding efficiency for 1st frame 
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Figure 5. Coding efficiency for 210th frame 

 

3. ADAPTIVE LIFTING SCHEME 
 
In this section we first present a short introduction to the lifting 
scheme. Readers who are interested in more detail are referred to 
[1][2]. We then discuss the adaptive lifting structure in detail. 

The lifting structure emerged as a new approach to construct 
wavelets. It was originally developed to adjust wavelet 
transforms to complex geometries and irregular characteristics of 
sampling data. It provides an entirely spatial domain 
interpretation of wavelet transforms. It was shown in [3] that all 
1-D FIR filter banks can be implemented by the lifting structure. 
Due to its advantage of custom design, in-place computation, 
integer-to-integer transforms, and speed, the lifting scheme has 
been widely investigated recently. 

Figure 6. Standard predict-first lifting structure 

A typical lifting scheme, shown in Figure 6, comprises three 
steps in the analysis part: split, predict and update. On the 
synthesis part, correspondingly, there are also three steps, i.e., 
undo update, undo predict, and merge. We describe the three 
analysis steps in the following.  
Split: This step takes in the signal x[n] and splits into even and 
odd components, xo[n] and xe[n], respectively, where  
xe[n] = x[2n]                                                      (1) 
xo[n] = x[2n + 1]                                               (2) 
Predict: In this step xo[n] is predicted from its neighboring even 
coefficients xe[n]’s with the predictor 

∑ +=
l

ele lnxpnxP ][])[(                      (3) 

Here pl is the prediction coefficients and xo[n] is replaced by the 
prediction residual 
d[n] = xo[n] – P(xe)[n]                                       (4) 

At the decoder given the even components xe[n]’s and the 
prediction residual d[n], we can recover the odd components by  
xo[n] = d[n] + P(xe)[n]                                       (5) 
which ensures the perfect reconstruction (PR) property in this 
lifting step. It is noted that from the point of view of signal 
processing, the predict step is actually a high pass filter, which 
extracts the high frequency component of the original signal.  
Update: In this step the even coefficient xe[n] is updated  
with 
c[n] = xe[n] + U(d)[n]                                        (6) 
where U(d) is a linear combination of prediction residuals 

∑ +=
l

l lndundU ][])[(                          (7) 

where ul is the weighting factor. 
Here the update step is a low pass filter. This step also 

reserves the PR property since given c[n] and d[n]’s, the xe[n] 
can be recovered by  
xe[n] = c[n] - U(d)[n]                                         (8) 
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The inverse lifting steps basically reverse the three steps 
mentioned above.  

In light of the spatial domain interpretation of wavelet 
transforms by the lifting structure, there has been work trying to 
introduce adaptivity into the spatially domain. In [4], an adaptive 
update approach is presented based on maximum likelihood 
decoding, where no bookkeeping is required. To our 
understanding, it demonstrates entropy reduction in synthesis 
signals and images, whereas no application with respect to 
residue images has been found in the literature.  

Our work is based on [3], where a simple structure is used to 
introduce adaptivity in the predict step. The basic idea is to 
reverse the order of predict and update step as shown in Figure 7.  
The even coefficients are first updated based on the odd samples 
and yield low pass approximation coefficients c[n], i.e., 
c[n] = xe[n] + U(xo)[n]                                        (9) 
Here U(xo)[n] is a linear combination of xo[n]’s with 

∑ +=
l

olo lnxunxU ][])[(                      (10) 

where ul is the weighting factor. 
then these low pass coefficients are used to predict the odd 
samples and gives the high pass coefficients d[n] by 
d[n] = xo[n] – P(d)[n].                                        (11) 
Here P(d) is the predictor with 

∑ +=
l

l lndpndP ][])[(                          (12) 

where pl is the prediction coefficient. 
 

Figure 7. Update-first lifting scheme 
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Figure 8. An example of the lifting structure 

        A simple example is presented. The left part of Figure 8 is a 
standard predict-first lifting structure and the right part is a 
corresponding update-first lifting structure. We note that if in the 
predict-first scheme we also want to introduce spatial adaptivity 
based on the local spatial property in the predict lifting step, i.e., 
the prediction coefficients pl’s are not fixed but dependent on the 
sampling data. A straightforward approach is to minimize the 
difference between the predicted sample xo[n] and the predictor. 
Then at the decoder, since the predict function is also dependent 
on xo[n]’s, which are not available when we perform undo-
predict step, we cannot reconstruct the same transform and drift 
error is introduced due to the mismatch.  

        On the other hand, with the update-first lifting scheme, the 
predict function is based on the updated coefficients c[n]’s, all of 
which are available at the decoder before the undo-predict step, 
hence we are able to perfectly reconstruct the predict step. 

Two comments on the update-first adaptive lifting structure 
are in order here. First is that in the original lifting scheme we 
can implement the adaptive update but the fixed predict with the 
same mechanism here. However, it turns out that the prediction 
residuals d[n]’s, which are the high pass residuals, are not 
accurate enough to reflect the local spatial property. Furthermore, 
the introduction of the adaptivity in the predict step, or high pass 
step, is more critical than that in the update step, or low pass 
step,. A more accurate prediction can directly result in smaller 
coefficients, while a better update only results in different low 
pass residues, which are generally still large.  

Second, another approach to implement adaptive predict in 
the predict-first structure is to have the predict function 
dependent only on the even samples xe[n]’s, which are available 
prior to the undo-predict step. However, xe[n]’s, unlike c[n]’s, 
contain no information about the predicted samples xo[n]. Hence 
the spatial property xe[n]’s expressed can be totally different 
from that of xo[n]’s, esp. in those areas where a lot of edges and 
discontinuities exist.  
 
4. SPATIALLY ADAPTIVE WAVELET VIDEO CODING 

 
In this section we incorporate the idea of spatially adaptive 
lifting structure to the hybrid video coding.  

The video coding framework is basically a typical motion 
compensated (MC) 2D wavelet structure, as shown in Figure 9. 
The residue frames obtained after the motion prediction are sent 
to the wavelet codec where the adaptive lifting structure is used.  
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Figure 9. Video coding structure 

The lifting structures are chosen from a fixed set of wavelet 
transforms, which have different tap length, to adapt to various 
spatial properties. For each data we first examine its spatial 
smoothness characteristics. The smoothness is determined by 
fitting the predicted sample and its nearby data samples with 
order-n polynomials, where higher order fittings indicate 
smoother areas. The adaptive lifting is then used. The basic idea 
is to use higher order transforms to smooth areas while using 
lower ones for edge areas and discontinuities. We are also 
considering generating the lifting structures online according to 
the local image property rather than making a choice over a fixed 
set. This approach may problems due to complexity issues and is 
note reported here.  

For the sake of simplicity, we employ only the first four 
wavelet transforms in the (1,N) branch of CDF family [5] here, 
as also used in [2]. We give the coefficients for reference. The 
low-pass update coefficients are obtained using a Haar filter 
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c[n] = (x[2n] + x[2n+1])/2                                      (13) 
The high-pass predict coefficients are obtained as the residues of 
a prediction of the odd samples, where 
For the (1,1) transform 
d[n] = x[2n+1] - c[n]                                              (14) 
For the (1,3) transform 
d[n] = x[2n+1] - (-c[n-1]/8 + c[n] + c[n+1]/8)      (15) 
For the (1,5) transform 
d[n] = x[2n+1] - (3*c[n-2]/128 - 11*c[n-1]/64 + c[n] + 
           11*c[n-1]/64 - 3*c[n-2]/128)                        (16) 
For the (1,7) transform 
d[n] = x[2n+1] - (-5*c[n-3]/1024 + 44*c[n-2]/1024 - 201*c[n-

1]/1024 + c[n] + 201*c[n-1]/1024 - 44*c[n-2]/1024 + 
5*c[n-3]/1024)                                             (17) 

 
5. EXPERIMENTAL RESULTS 

 
This section verifies the performance of the adaptive lifting 
structure. We first use the adaptive lifting to the 210th residue 
frame as mentioned in Section 2. Figure 10 shows that the 
adaptive structure achieves approximately a  0.3 - 0.5dB gain.  

The performance comparisons of the original video codec 
and the codec with the adaptive lifting structure are shown in 
Figure 11 and Figure 12. In each figure we list the results of the 
adaptive scheme, best and worst individual transform in terms of 
coding efficiency. We see that even though with only four 
choices of lifting transforms, the adaptive lifting still yields 
performance gain over the best transform and significant gain 
over the worst transform. It should be noted that the best choice 
of an individual transform might vary for different sequences due 
to different characteristics. For example, the (1,3) transform is 
better than the other three transforms in the Stefan test sequence, 
while it is the worst in the Foreman scene change sequence. 
Hence it is remarkable to have an adaptive lifting scheme that 
achieves consistently better performance than all those 
individual transforms without prior knowledge of sequence 
characteristics. 

With respect to computational complexity, we only need to 
evaluate the smoothness of the local area with a simple criterion. 
So there is no significant additional complexity in this case. 
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Figure 10. Coding efficiency for 210th frame 
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Figure 11. Performance comparison of adaptive lifting 

Foreman Scene Change

27

28

29

30

31

210 240 270 300

Frame Number

PSNR (dB)

(1,1)
(1,3)
Adaptive

 
Figure 12. Performance of adaptive lifting at scene change 

 
6. CONCLUSIONS AND FUTURE WORK 

 
In this paper we present a novel spatially adaptive lifting scheme 
for video coding based on an update-first lifting structure. We 
have shown that no additional overhead information is needed in 
the scheme and performance improvements have been achieved.  

In the future more accurate characteristics classification and 
transform are needed to further explore the advantage of 
adaptive lifting structures.  
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