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ABSTRACT 

In some applications, the utility of an image watermarking 
system is greatly reduced if an attacker is able to extract a 
watermark from a marked image and re-embed it into an 
unmarked image.  This threat is known as the copy attack.  In 
this paper, we develop an image signature scheme to be used 
with digital watermarks to create an image watermarking system 
that is more resistant to this attack.  We describe the image 
signature algorithm in detail, and how it may be fused with a 
digital watermark.  We then present preliminary results of our 
system using an image test set of highly correlated images. 

1. INTRODUCTION 
In the past few years, the use of digital watermarks has been 
proposed in a variety of applications, from broadcast monitoring 
to digital image tracking[1]. One proposed threat to these 
systems is the copy attack [2], which is performed by attempting 
to isolate the watermark from one piece of media, and inserting 
this estimated watermark into an un-watermarked piece. 

In this paper we develop a system to mitigate the threat posed by 
a copy attack.  We first develop an image signature routine 
which forms a short, binary signature based upon image 
characteristics.  We then show how to use a digital watermark to 
ensure the image signature is robust to common image 
manipulations such as printing/scanning, rotation, and rescaling.  
Finally, we combine this image signature with a standard 
watermark  to tie the watermark to the original image only.  

2. IMAGE SIGNATURE ALGORITHM 

2.1 Description of Image Signature Algorithm 
The first step in diminishing the threat of this Copy Attack is to 
create an image signature algorithm.  The image signature 
algorithm aims to distil the essential qualities of an image into a 
small sequence of bits so that any perceptually similar image will 
generate the same or close to the same signature.  On the other 
hand, if two images are perceptually different, they are expected 
to produce very different signatures[3].  Of course the definitions 
of perceptually similar and different may be vague, but 
essentially we need an image signature algorithm which will 
produce similar bit sequences as long as the image examined is 
the same as the original image.  If the image has been changed, 
then the signatures should vary greatly. 

We begin by noting, as Fridrich points out in [4], that 
modification of the low frequency DCT values of an image 
typically results in significant visible changes to the original 
image.  Similarly, the low frequency coefficients of the DCT are 
given the greatest priority in JPEG quantization tables [5].  

Because of the importance of the low frequency components of 
the image, we propose to use the low frequency coefficients of 
the DCT to form our image signature. 

Our image signature algorithm begins by converting the image 
into grayscale and then dividing the image into blocks of 
128x128 pixels.  A 128x128 DCT is performed on each block, 
and all but the lowest 16 x 16 coefficients are then discarded.  
Because the DC value simply denotes the average luminance 
value in the block, which may change depending on scanning 
conditions, this value is zeroed out and the median value of the 
16x16 coefficients is found.  Using this median value as a 
threshold, we convert the 256 coefficients into a sequence of bits 
by replacing a coefficient with a 1 if the value is above our 
threshold, and with a 0 if it is below the threshold.  In this 
manner we create a 256 bit sequence, half 1’s, half 0’s, for each 
block, as shown in figure 1 below.  We will refer to this as a 
block signature, and the collection of block signatures for the 
entire image as the image signature. 

Because the DCT is sensitive to scaling, rotation, and translation, 
a change in image scale, orientation, or position may produce a 
dramatically different image signature.  The presence of a 
watermark can help solve this problem.  In our system, we 
embed a watermark that allows for easy geometric 
synchronization, similar to that described in [6].  This watermark 
is able to identify and measure geometric manipulations such as 
rotation, scale, and translation.  Using this information, the 
watermark reader is able to reverse these transformations without 
knowledge of the original photo.  With the image realigned to its 
proper scale and orientation during embedding, the image 
signature algorithm should produce a signature very similar to 
the original image signature. 

Figure 1. Graphical Depiction of Image Signature Algorithm 
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2.2 Results of Testing Image Signature Algorithm 
In order for our image signature algorithm to successfully protect 
against the copy attack, image signatures for recaptured images 
must vary little from the image signature of the original digital 
image.  Likewise, image signatures for images which are 
different from a given digital image, such as a different face, 
must vary greatly.  To determine whether our proposed 
algorithm meets these conditions, we tested our algorithm with a 
subset of facial images from the FERET Facial Image Database 
test set, distributed by the National Institute of Standards and 
Technology [7].  We chose this test set because the heads-on 
facial images should be very highly correlated, since all heads 
will have a similar oval type boundary, two eyes, a nose, and a 
mouth.   

The FERET Facial Image Database test set contains over 14,000 
head shots, with head angles ranging from profile to heads-on.  
We pruned the image test set by eliminating all non-heads-on 
images.  This forces the images in the test set to have even  
stronger correlation between images.   These correlations are 
essential in testing the uniqueness of our image signatures, since 
different photos need to produce very different signature results.  
Finally, some of the images contained in the database are 
essentially duplicates, with only a digital change in dress color or 
a slight expression change.  Since our system works on grayscale 
images, these photos contain almost the same image information 
of the same subject.  We therefore eliminated these image from 
our test set.  Our final test set contained 780 digital images.  

After embedding all 780 digital images with a watermark, we 
then printed 90 of these images using an Atlantek Model 85 dye 
sublimation printer.  Each digital image had pixel dimensions of 
256 x 384 and was printed at 300 dpi.  We then reacquired each 
image at 300 dpi using an HP Scanjet 5470c flatbed scanner.  
Scans with a Cardscan business card scanner, which provides 
slightly lower quality images, were also obtained.  Due to space 
limitations, these results will not be presented here, but 
interested parties may contact the authors for further 
information.  Since we used 128 x 128 blocks in calculating our 
image signatures, each image generated 2 x 3 blocks, for a total 
of 6 block signatures.  These six block signatures form the full 
image signature.  Using the watermark to properly align the 
images, we generated 6 block signatures for each of the 780 
digital images, and each of the 90 scanned images.  This gave us 
a total of 4680 digital block signatures and 540 scanned block 
signatures. Each block signature generated from a scan was then 
compared to every block signature from the digital collection.   
The number of bits that differed between the block signatures, or 
the Hamming distance, was recorded for each comparison.  We 
then created two histograms: one showing the distribution of 
Hamming distances between the same digital and scanned 
blocks, and the other showing the distribution of Hamming 
distances between different digital and scanned blocks.  Because 
each image signature will contain 128 ones and 128 zeros, the 
Hamming distance between two image signatures will be even.  
For simplicity’s sake, we remove the zero samples at the odd 
locations in the distributions in figure 2 below.  

Since each block signature consists of 256 bits, if block 
signatures of different blocks were fairly uncorrelated, we’d 
expect an average Hamming distance of 128.  In practice, this is 
almost exactly what we see, with a mean Hamming distance of 
127.5 (standard deviation of 8.56) between different blocks.  

Ideally the Hamming distance between the same block, digital 
version and re-acquired version, would be 0. In practice, 
variations are introduced in the printing and scanning process 
which make some differences inevitable. On the HP 5470 
scanner, the mean Hamming distance between same blocks was 
19.3 (standard deviation of 7.28).  From these results it appears 
that our image signature algorithm is able to separate same 
blocks from different blocks fairly efficiently.  It is important to 
note that in an actual system each photo is composed of multiple 
blocks, and therefore the image signature would be composed of 
many block signatures.  The plots, however, show the 
distribution of examining just one block signature 

 

 
Figure 2. Distribution of Hamming Distances for Images 

Reacquired with the HP Scanjet 5470 

3. COMBINING IMAGE SIGNATURE WITH 
WATERMARK 

3.1 Embedding Block Signatures into Watermark 
Creating an image signature algorithm which separates same and 
different blocks efficiently only solves half of the problem.  We 
also need to be able to transmit the image signature of the 
original image to an inspector looking for counterfeits, so that 
he/she can compare it to the image signature of the image being 
inspected.  To accomplish this, our system carries the image 
signature of the original digital image as part of the watermark, 
as described in [8].  Potentially, the watermark could use a 
variety of other methods to embed the information as well 
[9][10].   

Normally, the watermark contains a message of length L bits that 
is error correction coded to produce a string of a*L bits, where  
a ≥ 1 and represents the redundancy introduced by the code. The 
encoded bit pattern is then spread equally across non-
overlapping MxM blocks of the image so that each bit is 
repeated N = M2/(aL) times.  In our proposed system, we 
augment the a*L bits by 256  bits, to include our calculated 
block signature.  Clearly in each MxM block there are now fewer 
repeated bit locations as there are more bits to embed.  Instead of 
repeating the watermark message bits and the block signature 
bits equally, we choose to use 25% of the MxM bits to carry our 
block signature information and 75% of the bits to carry the 
watermark message.   
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Decreasing the number of bits used to carry our watermark 
message will of course cause a loss in SNR.  Specifically the  

Loss in SNR = -10 log10(1-Fraction of Bits Used for Image 
Signature) or -10 log10(1-.25) = 1.25 dB 

If needed, this loss can be overcome by either increasing the 
watermark strength or decreasing the number of bits the 
watermark message carries. 

By placing the block signature information into a portion of the 
watermark message bits, we introduce a second source of error.  
In addition to the differences found between block signatures of 
digital and the same print/scan blocks, we can also expect errors 
in faithfully extracting the block signature bits placed in the 
watermark.  Perfect extraction of each block signature bit is very 
unlikely since there are many of them and each will receive a 
relatively small number of repetitions compared to one of the 
coded watermark message bits.  We measure this new source of 
error in SNR by comparing the extracted bit sequence to that 
originally embedded. 

To determine the likely distribution of SNR values, we measured 
the SNR of one watermark block in each of our scans from the 
HP scanner.  The distribution obtained from these tests can be 
found in figure 3. 

The overall effectiveness of our system is now determined by the 
interaction of two sources of error: the ability to accurately 
recalculate the original block signatures, and the ability to 
accurately extract each block signature embedded into the 
watermark.  To depict this interaction, we define a value C, such 
that: 

EisCis

EisCis
C i

ii∑
==

256

1  

where Cisi is the ith calculated block signature bit, and Eisi is the 
ith extracted block signature bit.  One could think of this value C 
as the normalized correlation between a received signal 
(extracted block signature) and a known binary signal (calculated 
block signature) except that some of the bits have been reversed 
in the recalculation of the block signatures.  

 
Figure 3. Distribution of SNR on HP Scanner 

In order to determine what performance we could expect from 
our system as a whole, we ran a number of simulations.  In these 
simulations, we first chose a value of SNR for our extracted 
block signature.  Since in practice our extracted bits are 
approximately IID Gaussian, white Gaussian noise at this SNR 
level was pseudo-randomly generated and added to the pristine 
digital signature to simulate the extracted signature.  Next, we 
used the distribution of Hamming distances between same 
images on the HP scanner calculated in section 3 to create our 
recalculated image signature, complete with bit errors.  We 
found the normalized correlation between the extracted block 
signature and the recalculated block signature, and repeated this 
procedure a number of times.  After plotting the distribution of C 
for the given SNR, we reset the SNR to a new value and repeated 
this process.  Figure 4 has the results for six separate SNR 
values. 

With low SNR between the original embedded block signature 
and the extracted block signature (values up to about -3 dB), we 
see that our distributions do overlap somewhat.  However, even 
for the low case of SNR = -9dB (well outside the distribution of 
SNR given in figure 3), a full 90% of the copy distribution lies 
outside of 99.9% of the legitimate distribution.  This implies that 
we could detect 90% of the copy with minimal chance of falsely 
calling a legitimate a counterfeit.  As our SNR increases to more 
likely values as shown in figure 3, so does our ability to separate 
the two distributions. 

Figure 4. Distribution of C for Various Extracted Signature 
SNR Values on the HP 5470 Scanner 

It should also be pointed out that the normalized correlation 
behavior is highly dependent upon extracted signature SNR. If 
one were to set thresholds based upon low SNR values, a high 
SNR counterfeit would be much more likely to be authenticated 
by our system.  However, we can estimate the SNR of our 
extracted block signature bits by calculating the SNR of our 
watermark message.  After decoding the watermark message, we 
calculate the SNR of this signal, and adjust this value to take into 
account the differences in repetition between the watermark 
message and block signature.   
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Once the estimated SNR of the extracted signature is obtained, 
we simply refer to the characteristic subplot to obtain the proper 
choice of threshold. 

3.2 Combining Multiple Block Signatures into Image 
Signature 

As noted previously, the full image signature is composed of 
multiple block signatures.  By examining multiple block 
signatures, we should be able to better separate our same and 
different images.  To simulate this, we recalculated the 
distribution of C assuming we used three of the six block 
signatures for each image.  These results can be found in figure 5 
below.   

 
Figure 5. Distribution of C for Three Combined Block 

Signatures on the HP 5470 Scanner 

In these distributions we see even clearer separation between the 
legitimate and counterfeit image signatures.  Looking once again 
at a low value of SNR = -9dB, we find that with 3 block 
signatures the complete counterfeit distribution lies outside of 
99.9% of the legitimate distribution.  Within the limits of the 
experimental sample size, we should be able to detect 100% of 
the counterfeits with next to no chance of falsely calling a 
legitimate a counterfeit. 

4. CONCLUSIONS 
In this paper we presented a system which will mitigate the 
threat posed by the copy attack.  We first developed an image 
signature algorithm which uses highly stable low frequency DCT 
coefficients to uniquely describe the  image.  This image 
signature was then combined with a standard image watermark, 
and embedded into the original image.  If an attacker attempts to 
remove the watermark from this image and insert it into a new 
image, the image signature embedded in the watermark will not 
match the re-calculated image signature of the new image.   The 
watermark also enables geometric synchronization, which allows 
us to automatically restore the image to its proper rotation, scale, 
and translation.  This process, which in other systems must be 
performed by hand,  is necessary to ensure the re-calculated 

image signature matches the image signature of the original 
digital image. 

We also described how the image signature detector can be 
thought of as the normalized correlation between a received 
signal and a known binary signal.  To determine whether the 
watermark contained in an image truly belongs to that image, we 
calculate the normalized correlation between the extracted image 
signature from the watermark and the re-calculated image 
signature.  If this correlation value is above a certain value, we 
call the image legitimate, otherwise we label it a copy.  The 
choice of our threshold value is directly dependent on the SNR 
of our extracted image signature.  We illustrated that by 
calculating the SNR of our extracted watermark, we can estimate 
the SNR of our extracted image signature, and thus dynamically 
set the correlation threshold value despite varying environmental 
conditions. 
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