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ABSTRACT

Quantization index modulation (QIM) is a powerful host-
interference rejecting method for data hiding. This paper
applies QIM to one-bit watermarking and proposes asimple
but powerful watermark detector. We derive lower bounds
on the error exponents for the detector under a quadratic
distortion constraint for the watermarker and additive white
Gaussian noise attacks. These bounds are independent of
the host-signal distribution and are substantially better than
recently derived bounds for public (blind) spread-spectrum
watermarking.

1. INTRODUCTION

Data hiding and one-hit watermarking are two fundamental
problems in watermarking research. The data hiding prob-
lem has been systematically treated for several years, with
quantization index modulation (QIM) [1] being recognized
as the most successful method to approach the fundamental
limits predicted by information theory [2]. The most fasci-
nating characteristic of QIM isthat it can completely reject
host interference. Traditional embedding methods such as
spread spectrum do not possess that property.

This paper proposes a simple but powerful detector and
develops the first quantitative performance analysis of QIM
for one-bit watermarking. Specifically, we derive error ex-
ponents for binary hypothesis testing and the receiver op-
erating characteristic of the detector. As expected, interfer-
ence from the host signal can be completely rejected.

2. MATHEMATICAL MODEL

One-bit watermarking can be modeled asin Fig. 1. Let S™
be the length-n host signal to be marked. A watermark may
be inserted in S, resulting in a marked signal X™ that is
made publicly available. We write X™ = ¢(S™, M, K™),
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Fig. 1. Mathematical model of one-bit watermarking.

where M € {0,1} * and K™ is asecret key shared with the
detector. The embedding function «» must satisfy a certain
distortion constraint. The attacker takes X™ and produces a
degraded signal Y™ in an attempt to fool the watermark de-
tector. The detector has accessto Y™ and K™ but not to S™
(public watermarking) and must decide whether the water-
mark was embedded or not. In Sec. 3, weshall also consider
private watermarking where S™ is available to the detector.
The detector’s output is M = M (Y", K™) € {0,1}.
We focus on the additive Gaussian case where

1
~E|X" - $"|? < Dy, ®

Yr=X"4+W" and W"~N(0,Dol,). (2

Here, E () denotes mathematical expectation, || - || denotes
lo norm, |, isthe n x n identity matrix, and A'(u1, R) de-
notes the Gaussian distribution with mean p and covariance
matrix R. In addition, we assume that

max{D1, Dy} < 1r<nii£1n o2, (3)

where o2 ; denotesthe variance of thei-th component of 5™.
Thislow-distortion regime istypical of many watermarking
problems. We require that

(S", M =0,K") = 5", 4

i.e., 1 reproduces the original signal when no watermark is
embedded.

IThisisunlike in the data hiding problem [1, 2], where the hidden mes-
sagerateis R bits per sample: M € {1,2,--- ,2"F},
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It isassumed that the watermark detector knowsthe statis-
tics of the host signal and the attack channel; the detector
then implements the optimal likelihood ratio test (LRT). In
this context, the performance of the one-bit watermarking
system is determined by the embedding function. We eval-
uate the false-alarm and miss exponents, which are respec-
tively defined as

1
Eps = lim ——In P (5)

n—oo n

and )
Ey = lim ——lnP]E;), (6)

n—oo N

when the limits exist. Here, P} = Pr{M = 1|M = 0}
and P\ = Pr{N[ = 0|M = 1}.

3. ERROR EXPONENTSFOR
SPREAD-SPECTRUM WATERMARKING

Traditional one-bit watermarking systems use spread-spectrum
embedding. A game-theoretic methodology to design and
embed spread-spectrum watermarks was recently investi-
gated in[3]. The spread-spectrum embedding function takes
the additive form

X" = 1/)(S”7M — LKn) - gn + Pn7 (7)

wherethewatermark P" isasymptoticaly A/(0, Ds1,,), and
depends on the secret key K™. The detector solves the fol-
lowing binary hypothesis testing problem:

M=0: Y"=8"+Wn
M=1: Y"=Pr4 8" +W".

Assume that the host signal is a Gaussian random vector
with independent and identically distributed components 2

S™ ~ N(0,021,). 6)

Then, for public watermarking, the LRT isacorrelation test:

N M=1
TY'|K") = RY, 2 np, ©
=1 M =0

where np is the threshold of the test. The probabilities of
error can be directly calculated as

pn) _ _n—p2 10
4 Q( P2(0% 4 Dy) 10

2The paper [3] treats the more general case of colored host signals and
attacks.
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Fig. 2. Receiver operating characteristics for spread-
spectrum embedding and QIM embedding. The solid line
and the dotted line give the possible tradeoff between error
exponents for private and public spread-spectrum embed-
ding, respectively. The dashed line represents |ower bounds
on the error exponents for (public) QIM embedding. Nu-
merical values are based on D; = Dy = 02/10.

) _ n(P? - p)?
% - o). w

where Q(z) = [° A=e™""/%dt and P? = 1377, P2,
which converges to D; amost surely by the strong law of

large numbers. Using the property

1 1
lim ——1In Q(vnx) = 3% T> 0,
n

n—oo
we obtain the error exponents as
P’ (D1 = p)?

_ F adEy = — P
2D, (02 + Do) M 2D1(a§+Daz)

Erpqa =

forany 0 < p < D;.
For private watermarking, the LRT becomes
. M=1
T(Y"|K",S") =Y P(Yi=S) 2 np, (13

=t M=0
and the error exponents can be similarly calculated as

2 _ )2
P and EM:(D1 P)

Epa=—F
FA= 9D, D, 2D D,

(14)

The error exponents for both cases are shown in Fig.
2 (see solid line and dotted line parameterized by p). The
performance for public watermarking is much worse than
that for private watermarking due to the host interference,
which is extremely strong in the low-distortion regime.
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Fig. 3. The QIM embedding function (M = 1).
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Fig. 4. Watermark detector: M < {0,1}.

4. ERROR EXPONENTSFOR QIM
WATERMARKING

4.1. Embedding Function and Water mark Detector

Fig. 3 shows the QIM embedding function which has been
previousy used in data hiding and communication prob-
lems [1, 4]. The host signa S™ is scaled by o € (0, 1]
and then quantized using an n-dimensional "good” lattice
D -quantizer Q [4, 5]:

U™ = Q(aS™) = aS™ + Z". (15)

The basic Voronoi cell V, associated with the lattice A is
"nearly spherical”. We have LE||Z"|* = D;. Under the
low-distortion assumption (3), Z™ is uniformly distributed
within the reflective image of V), i.e.,

7" ~ U(=Wy). (16)

Here, we do not need to assume the host signal is Gaussian
aswe did in (8) for spread-spectrum embedding, as long as

(3) holds. The marked signal X" is obtained as
X" = (S, M =1,K") = U"+ (1 —-a)S", (17)

where the lattice A may depend on the secret key K. In-
serting (15) into (17), we have

St M=1,K") = S"+2Z"
w( ) — lUn + (1 _ l)Z". (18)
In the data hiding problem, the choice o = Dl’il[h achieves

the embedding capacity [4]. Aswe will see, in one-bit wa-
termarking, « can also be judiciously chosen to optimize the
appropriate performance measure, i.e., the error exponents.

The optimal LRT is hard to evaluate. Instead, we pro-
pose the suboptimal watermark detector depicted asin Fig.
4. The degraded signal Y™ is scaled by « and then quan-
tized using the lattice quantizer Q. The quantization noise
becomes

E" = aY" mod A = oY" —Q(aY™). (19

The lattice detector compares the squared norm of E™ with
athreshold

M=0
=|E"]> 2  np (20)
M=1

T(Y™"K")

The (possibly slight) loss of optimality is due to the quan-
tization operation, which discards some information con-
tainedin Y™,

4.2. Error-Exponent Analysis

When M = 0, it follows from (2), (4) and (19) that

E"=a(S"+W") mod A. (22)
Clearly, we have 1E [[a(S™ + W™)||? > D; due to the
low-distortion assumption (3). Therefore

E"™ ~TU(V). (22)
When M = 1, it follows from (2), (17) and (19) that

(a = 1)Z"+aW™) mod A

E" = (U"+
( 1)Z" +aW™) mod A, (23)

= ((a-

where the second equality is because U™ € A. By (2) and
(16), we have

"E[[(a~ 12" +aW")|? = (@~ 1)D +a%Ds,
which can be made smaller than D1, the normalized square
radius of V. Further, the distribution of £ is complicated
by the non-Gaussian term (a — 1) Z™, the mod-A operation,
and the nonspherical shape of V. To derive error exponents,
we resort to bounding techniques.

The main result is stated in the following theorem, and
illustrated in Fig. 2 (see dashed line parameterized by p).

Theorem For QIM one-bit watermarking, with o =
W the false-alarm and miss exponents can be simulta-
neously bounded from below as

1. D
Epa>-In=— (24)
2 p
1 Dy P D,
Ey > = 1+ —=—=| -1 — 14+ == -1
M (Dz( +D1> H(D2< +D1>> )

for any F452- < p < Dy.

Outline of Proof: The probability of false alarm can be
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bounded from above as follows:

P = Pr{|[E"|* <np|M =0}

vol(B™(y/np) N V)
vol(Vp)

vol(B" (y/np))

- vol(Vp)

B n Gni n/2

- \n+2Gx D ’

(26)

wherevol(-) denotesthe volume of aset, B™(R) denotesan
n-dimensional ball with aradius of R, and G,, and G}, are
normalized second moments of the lattice quantizer and the
n-dimensional ball, which converge to 1/2me asn — oo
[5]. Hence, (24) follows from (5) and (26).

The probability of miss can be written as

P" = Pr{|E"]>>np| M =1}. 27

We bound this probability in five steps:

Step 1. PV < Pr{||(a — 1)Z" + aW™|2 > np},
following from the use of the Voronoi (nearest neighbor)
guantizer.

Step 2. P < (g_:)”pr{ V™2 > np}, where R,
and R, are respectively the covering radius and the equiva-
lent radiusof Vo, V" = Z™ + W", and Z"™ ~ U(B"™(R,)).

Step 3: For any € > 0, thereexistsan NV € N such that
for any n > N we have P{") < (%ef) Pr{|ve)? >

np}, where V"* = G™ + W" and G ~ N'(0, Dy1,,).
Step 4: (Chernoff bound for x2 random variables) For
any ¢ > 0 and n large enough, we have

P < (%) exp(—nC(p,a)),

where C(p,a) = 3 (5 —In 2% — 1) depends on a via
0'2 = (Oé — 1)2D1 + Oé2DQ.

Step 5: C(p, a) ismaximized by o* = 5515

Now choose ¢ arbitrarily small. We have 1";—2 — 1as
n — oo [5]. Then (25) follows. This completes the proof of
the theorem. m|

Next consider the total probability of error, which is
the sum of Pr4 and P, weighted by their priors. The
exponent for this probability of error is given by Erg =
min{FEra, Epr}. The threshold of the test, np, can be se-
lected to equaize Er4 and Ej;. We have the following
result, which isillustrated in Fig. 5.

Proposition: Choosing p = #:52 (1 +1In (1 + g—;)),
we have for (public) QIM embedding

Dl Dl
> 4+ — ] — + + — 3
ETE In (1 2) In (1 In (1 2)) (28)

107 10" 10° 10 10°
D, /D,

Fig. 5. Lower bound on E;g for (public) QIM embed-
ding (solid line) and exact value of Erg for private spread-
spectrum embedding (dotted line).

Choosing p = 1Dy, we have for private spread-spectrum

embedding

1D,
Erg = -—. 29
e = 35 29

5. CONCLUDING REMARKS

The lower bounds derived for our lattice detector also pro-
vide lower bounds for the optimal QIM error exponents.
Our lower bounds are independent of the host-signal dis-
tribution. This showsthat QIM is ahost-interference reject-
ing method for one-bit watermarking. It is also interesting
to note that for QIM embedding there is no symmetry be-
tween the false alarm exponent and the miss exponent due
tothe constraint (4). The error exponents for multi-bit trans-
mission without this constraint can be treated using similar
bounding techniques.
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