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ABSTRACT

Quantization index modulation (QIM) is a powerful host-
interference rejecting method for data hiding. This paper
applies QIM to one-bit watermarking and proposes a simple
but powerful watermark detector. We derive lower bounds
on the error exponents for the detector under a quadratic
distortion constraint for the watermarker and additive white
Gaussian noise attacks. These bounds are independent of
the host-signal distribution and are substantially better than
recently derived bounds for public (blind) spread-spectrum
watermarking.

1. INTRODUCTION

Data hiding and one-bit watermarking are two fundamental
problems in watermarking research. The data hiding prob-
lem has been systematically treated for several years, with
quantization index modulation (QIM) [1] being recognized
as the most successful method to approach the fundamental
limits predicted by information theory [2]. The most fasci-
nating characteristic of QIM is that it can completely reject
host interference. Traditional embedding methods such as
spread spectrum do not possess that property.

This paper proposes a simple but powerful detector and
develops the first quantitative performance analysis of QIM
for one-bit watermarking. Specifically, we derive error ex-
ponents for binary hypothesis testing and the receiver op-
erating characteristic of the detector. As expected, interfer-
ence from the host signal can be completely rejected.

2. MATHEMATICAL MODEL

One-bit watermarking can be modeled as in Fig. 1. Let Sn

be the length-n host signal to be marked. A watermark may
be inserted in Sn, resulting in a marked signal Xn that is
made publicly available. We write Xn = ψ(Sn,M,Kn),
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Fig. 1. Mathematical model of one-bit watermarking.

where M ∈ {0, 1} 1 and Kn is a secret key shared with the
detector. The embedding function ψ must satisfy a certain
distortion constraint. The attacker takes Xn and produces a
degraded signal Y n in an attempt to fool the watermark de-
tector. The detector has access to Y n and Kn but not to Sn

(public watermarking) and must decide whether the water-
mark was embedded or not. In Sec. 3, we shall also consider
private watermarking where Sn is available to the detector.
The detector’s output is M̂ = M̂(Y n,Kn) ∈ {0, 1}.

We focus on the additive Gaussian case where

1
n

E ‖Xn − Sn‖2 ≤ D1, (1)

Y n = Xn + Wn and Wn ∼ N (0,D2In). (2)

Here, E (·) denotes mathematical expectation, ‖ · ‖ denotes
l2 norm, In is the n × n identity matrix, and N (µ, R) de-
notes the Gaussian distribution with mean µ and covariance
matrix R. In addition, we assume that

max{D1,D2} � min
1≤i≤n

σ2
s,i, (3)

where σ2
s,i denotes the variance of the i-th component of Sn.

This low-distortion regime is typical of many watermarking
problems. We require that

ψ(Sn,M = 0,Kn) = Sn, (4)

i.e., ψ reproduces the original signal when no watermark is
embedded.

1This is unlike in the data hiding problem [1, 2], where the hidden mes-
sage rate is R bits per sample: M ∈ {1, 2, · · · , 2nR}.
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It is assumed that the watermark detector knows the statis-
tics of the host signal and the attack channel; the detector
then implements the optimal likelihood ratio test (LRT). In
this context, the performance of the one-bit watermarking
system is determined by the embedding function. We eval-
uate the false-alarm and miss exponents, which are respec-
tively defined as

EFA = lim
n→∞− 1

n
ln P

(n)
FA (5)

and

EM = lim
n→∞− 1

n
ln P

(n)
M , (6)

when the limits exist. Here, P
(n)
FA = Pr{M̂ = 1 |M = 0}

and P
(n)
M = Pr{M̂ = 0 |M = 1}.

3. ERROR EXPONENTS FOR
SPREAD-SPECTRUM WATERMARKING

Traditional one-bit watermarking systems use spread-spectrum
embedding. A game-theoretic methodology to design and
embed spread-spectrum watermarks was recently investi-
gated in [3]. The spread-spectrum embedding function takes
the additive form

Xn = ψ(Sn,M = 1,Kn) = Sn + Pn, (7)

where the watermark Pn is asymptotically N (0,D1In), and
depends on the secret key Kn. The detector solves the fol-
lowing binary hypothesis testing problem:{

M = 0 : Y n = Sn + Wn

M = 1 : Y n = Pn + Sn + Wn.

Assume that the host signal is a Gaussian random vector
with independent and identically distributed components 2

Sn ∼ N (0, σ2
sIn). (8)

Then, for public watermarking, the LRT is a correlation test:

T (Y n|Kn) =
n∑

i=1

PiYi

M̂ = 1
>
<

M̂ = 0

nρ, (9)

where nρ is the threshold of the test. The probabilities of
error can be directly calculated as

P
(n)
FA = Q

(√
nρ2

P 2(σ2
S + D2)

)
(10)

2The paper [3] treats the more general case of colored host signals and
attacks.
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Fig. 2. Receiver operating characteristics for spread-
spectrum embedding and QIM embedding. The solid line
and the dotted line give the possible tradeoff between error
exponents for private and public spread-spectrum embed-
ding, respectively. The dashed line represents lower bounds
on the error exponents for (public) QIM embedding. Nu-
merical values are based on D1 = D2 = σ2

s/10.

P
(n)
M = Q

(√
n(P 2 − ρ)2

P 2(σ2
S + D2)

)
, (11)

where Q(x) =
∫ ∞

x
1√
2π

e−t2/2dt and P 2 = 1
n

∑n
i=1 P 2

i ,
which converges to D1 almost surely by the strong law of
large numbers. Using the property

lim
n→∞− 1

n
lnQ(

√
nx) =

1
2
x, x > 0,

we obtain the error exponents as

EFA =
ρ2

2D1(σ2
S + D2)

and EM =
(D1 − ρ)2

2D1(σ2
S + D2)

(12)
for any 0 ≤ ρ ≤ D1.

For private watermarking, the LRT becomes

T (Y n|Kn, Sn) =
n∑

i=1

Pi(Yi − Si)
M̂ = 1

>
<

M̂ = 0

nρ, (13)

and the error exponents can be similarly calculated as

EFA =
ρ2

2D1D2
and EM =

(D1 − ρ)2

2D1D2
. (14)

The error exponents for both cases are shown in Fig.
2 (see solid line and dotted line parameterized by ρ). The
performance for public watermarking is much worse than
that for private watermarking due to the host interference,
which is extremely strong in the low-distortion regime.
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Fig. 3. The QIM embedding function (M = 1).
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Fig. 4. Watermark detector: M̂ ∈ {0, 1}.

4. ERROR EXPONENTS FOR QIM
WATERMARKING

4.1. Embedding Function and Watermark Detector

Fig. 3 shows the QIM embedding function which has been
previously used in data hiding and communication prob-
lems [1, 4]. The host signal Sn is scaled by α ∈ (0, 1]
and then quantized using an n-dimensional ”good” lattice
D1-quantizer Q [4, 5]:

Un = Q(αSn) = αSn + Zn. (15)

The basic Voronoi cell V0 associated with the lattice Λ is
”nearly spherical”. We have 1

nE ‖Zn‖2 = D1. Under the
low-distortion assumption (3), Zn is uniformly distributed
within the reflective image of V0, i.e.,

Zn ∼ U(−V0). (16)

Here, we do not need to assume the host signal is Gaussian
as we did in (8) for spread-spectrum embedding, as long as
(3) holds. The marked signal Xn is obtained as

Xn = ψ(Sn,M = 1,Kn) = Un + (1 − α)Sn, (17)

where the lattice Λ may depend on the secret key Kn. In-
serting (15) into (17), we have

ψ(Sn,M = 1,Kn) = Sn + Zn

= 1
αUn + (1 − 1

α )Zn.
(18)

In the data hiding problem, the choice α = D1
D1+D2

achieves
the embedding capacity [4]. As we will see, in one-bit wa-
termarking, α can also be judiciously chosen to optimize the
appropriate performance measure, i.e., the error exponents.

The optimal LRT is hard to evaluate. Instead, we pro-
pose the suboptimal watermark detector depicted as in Fig.
4. The degraded signal Y n is scaled by α and then quan-
tized using the lattice quantizer Q. The quantization noise
becomes

En = αY n mod Λ = αY n − Q(αY n). (19)

The lattice detector compares the squared norm of En with
a threshold

T (Y n|Kn) = ‖En‖2

M̂ = 0
>
<

M̂ = 1

nρ. (20)

The (possibly slight) loss of optimality is due to the quan-
tization operation, which discards some information con-
tained in Y n.

4.2. Error-Exponent Analysis

When M = 0, it follows from (2), (4) and (19) that

En = α(Sn + Wn) mod Λ. (21)

Clearly, we have 1
nE ‖α(Sn + Wn)‖2 � D1 due to the

low-distortion assumption (3). Therefore

En ∼ U(V0). (22)

When M = 1, it follows from (2), (17) and (19) that

En = (Un + (α − 1)Zn + αWn) mod Λ
= ((α − 1)Zn + αWn) mod Λ,

(23)

where the second equality is because Un ∈ Λ. By (2) and
(16), we have

1
n

E ‖(α − 1)Zn + αWn)‖2 = (α − 1)2D1 + α2D2,

which can be made smaller than D1, the normalized square
radius of V0. Further, the distribution of En is complicated
by the non-Gaussian term (α−1)Zn, the mod-Λ operation,
and the nonspherical shape of V0. To derive error exponents,
we resort to bounding techniques.

The main result is stated in the following theorem, and
illustrated in Fig. 2 (see dashed line parameterized by ρ).

Theorem: For QIM one-bit watermarking, with α =
D1

D1+D2
, the false-alarm and miss exponents can be simulta-

neously bounded from below as

EFA ≥ 1
2

ln
D1

ρ
(24)

EM ≥ 1
2

(
ρ

D2

(
1 +

D2

D1

)
− ln

(
ρ

D2

(
1 +

D2

D1

))
− 1

)
(25)

for any D1D2
D1+D2

≤ ρ ≤ D1.
Outline of Proof: The probability of false alarm can be
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bounded from above as follows:

P
(n)
FA = Pr{ ‖En‖2 < nρ |M = 0 }

=
vol(Bn(

√
nρ) ∩ V0)

vol(V0)

≤ vol(Bn(
√

nρ))
vol(V0)

=
(

n

n + 2
Gn

G∗
n

ρ

D1

)n/2

, (26)

where vol(·) denotes the volume of a set, Bn(R) denotes an
n-dimensional ball with a radius of R, and Gn and G∗

n are
normalized second moments of the lattice quantizer and the
n-dimensional ball, which converge to 1/2πe as n → ∞
[5]. Hence, (24) follows from (5) and (26).

The probability of miss can be written as

P
(n)
M = Pr{ ‖En‖2 > nρ |M = 1 }. (27)

We bound this probability in five steps:
Step 1: P

(n)
M ≤ Pr{ ‖(α − 1)Zn + αWn‖2 > nρ },

following from the use of the Voronoi (nearest neighbor)
quantizer.

Step 2: P
(n)
M ≤

(
Rc

Re

)n

Pr{ ‖Ṽ n‖2 > nρ }, where Rc

and Re are respectively the covering radius and the equiva-
lent radius of V0, Ṽ n = Z̃n + Wn, and Z̃n ∼ U(Bn(Rc)).

Step 3: For any ε > 0, there exists an N ∈ N such that

for any n ≥ N we have P
(n)
M ≤

(
Rc

Re
eε

)n

Pr{ ‖V̂ n‖2 >

nρ }, where V̂ n = Gn + Wn and Gn ∼ N (0,D1In).
Step 4: (Chernoff bound for χ2

n random variables) For
any ε > 0 and n large enough, we have

P
(n)
M ≤

(
Rc

Re
eε

)n

exp(−nC(ρ, α)),

where C(ρ, α) = 1
2

(
ρ
σ2 − ln ρ

σ2 − 1
)

depends on α via
σ2 = (α − 1)2D1 + α2D2.

Step 5: C(ρ, α) is maximized by α∗ = D1
D1+D2

.

Now choose ε arbitrarily small. We have Rc

Re
→ 1 as

n → ∞ [5]. Then (25) follows. This completes the proof of
the theorem. �

Next consider the total probability of error, which is
the sum of PFA and PM weighted by their priors. The
exponent for this probability of error is given by ETE =
min{EFA, EM}. The threshold of the test, nρ, can be se-
lected to equalize EFA and EM . We have the following
result, which is illustrated in Fig. 5.

Proposition: Choosing ρ = D1D2
D1+D2

(
1 + ln

(
1 + D1

D2

))
,

we have for (public) QIM embedding

ETE ≥ ln
(

1 +
D1

D2

)
− ln

(
1 + ln

(
1 +

D1

D2

))
. (28)
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Fig. 5. Lower bound on ETE for (public) QIM embed-
ding (solid line) and exact value of ETE for private spread-
spectrum embedding (dotted line).

Choosing ρ = 1
2D1, we have for private spread-spectrum

embedding

ETE =
1
8

D1

D2
. (29)

5. CONCLUDING REMARKS

The lower bounds derived for our lattice detector also pro-
vide lower bounds for the optimal QIM error exponents.
Our lower bounds are independent of the host-signal dis-
tribution. This shows that QIM is a host-interference reject-
ing method for one-bit watermarking. It is also interesting
to note that for QIM embedding there is no symmetry be-
tween the false alarm exponent and the miss exponent due
to the constraint (4). The error exponents for multi-bit trans-
mission without this constraint can be treated using similar
bounding techniques.
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