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Abstract. This paper studies the effects of desynchro-
nization attacks such as delay and warping on the perfor-
mance of blind spread-spectrum watermark detection sys-
tems. The host signal is modeled as a colored Gaussian sig-
nal. Evaluation of the optimal likelihood ratio test is often
computationally expensive, so as a practical alternative, we
propose a family of quadratic detectors and construct the
detector and family of watermarks that maximize the de-
flection criterion. Experiments are carried out to verify the
suitability of the deflection as a performance index. Sub-
stantial improvements over conventional watermark designs
are demonstrated.

1. INTRODUCTION

Consider the problem of detecting a known watermark �
originally embedded in a host signal �. The watermarked
signal � � ��� is subjected to attacks. The corrupted sig-
nal � is made available to the watermark detector, together
with the reference watermark �. It is known that desyn-
chronization attacks such as unknown delays and warping
(time-varying delay) can disable empirically designed de-
tectors [1]. A natural approach to combat such attacks is
to formulate watermark detection as a composite hypoth-
esis testing problem. This paper extends our recent work
on white Gaussian hosts [2] and constructs a detector and
a family of watermarks that are computationally tractable
and satisfy optimality properties under warping attacks. The
theory is however general enough to be applicable to a larger
list of attacks.

2. MATHEMATICAL MODEL

For mathematical convenience, we assume that all signals
are discrete-time and periodic with period equal to � . The
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host ���� is a Gaussian periodic process with full-rank co-
variance matrix �� � ������ �

�� � 	������������ � �
�� �� � ��. The special case of a white Gaussian host
was considered in [2]. Unlike the setup in [2], here we
consider a random watermark, because this increases the
system security. The watermark considered is a zero-mean
random signal, with covariance matrix �� to be designed.
The warping function 
���� � � � � � , is real-valued and
slowly-varying. By ����
���� and����
���� we denote
the resampled versions of the underlying continuous-time
warped signals.

The detection problem can be formulated as a composite
hypothesis test [3]:�
�� � ���� � ����� � � � � �
�� � ���� � ���� 
���� � ���� 
����� � � � � ��

(1)
We assume that the statistics of ���� are indistinguishable
from those of ��� � 
����, otherwise the host signal itself
would serve as a synchronization signal. Hence, we study
the hypothesis test�

�� � ���� � ���� � � � � � �
�� � ���� � ��� � 
���� � ���� � � � � � ��

(2)
which serves as an approximation to the original detection
problem.

3. ANALYSIS OF WARPING ATTACKS

3.1. Coherent Detector

If the warping function 
���� � � � � � was known, we
would have a coherent detection problem [3]. The likeli-
hood ratio test (LRT) compares the linear statistic 
� with a
threshold �:
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�� (3)
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Under �� and ��, the statistic 
� has means �� � � and

�� �

��
���

��
���

��� � 
�������� ��� ����� � 
����� (4)

respectively, and variances
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����
�������� ��� ������
����� (5)

For Bayesian detection under equal priors on �� and ��,
the threshold of the LRT is � � �

�
��� � ���, and the

probability of error is �� � �� �
�

�
����, where ���� ���

�
���� ��, ���� � �	������ 
�������	� and

���
�
�

��� ����
�

��
�

� (6)

3.2. Quadratic Noncoherent Detector

When 
 is unknown, a suboptimal but often good approach
to noncoherent detection consists of using a quadratic de-
tection test [5] of the form

� � �	��

��

�
�
��

� (7)

where� is an��� symmetric matrix, and � is the thresh-
old of the test.

3.2.1. Deflection Criterion

Assume the � -vector 
 is random over ��� � �� , with a dis-
tribution ��
�, and is independent of ����� � � � � � .
Computing the first two moments of � in (7) under �� and
��, we obtain

	�
������� �  !������ (8)

	�
������� �  !����� �  !���
���� (9)

where ��
� is an � �� watermark autocorrelation matrix
with entries

��
���� �
�� � 	�
����� � 
�������� � 
������

� 	������ � 
���� �� � 
������

�

� �
���� � 
���� �� � 
�����

�"�
���� 
������
����
���� (10)

for � � �� �� � � . Here "�
���� 
����� denotes the bivari-
ate probability density function of 
��� and 
�� ��. 1 The set
of all ��
� of the form (10) is the feasible set ��
�.

1If moreover ���� is a periodic stationary stochastic process with uni-
form marginal distributions, then ������� ������ depends only on � � ��

and on ����� �����, and it can be verified that ���� is Toeplitz.

After some algebra, the variance of � under �� is

# $!������ � 	 !�������
	 �� (11)

The threshold of the test (7) satisfies

 !����� � � �  !���
��� �  !������ (12)

We define the deflection criterion (also called generalized
SNR) for quadratic detection as [5]

�� �
�	�
��������	�
��������

�

# $!������

�
� !���
�����

	 !�������	 �
� (13)

This criterion would determine the probability of error of
the test (7) if the distributions of � under �� and �� were
Gaussian. In problems such as ours, it only serves as a
tractable measure of separability of the two distributions:
higher values of the deflection are expected to lead to lower
error probabilities. It can be shown that �� is maximized by

� � %���� ��
��
��

� (14)

where % is an arbitrary nonzero constant. The maximum
value of the deflection for the optimal kernel � is:

�� �
�

	
 !���
��

��

� ��
��
��

� �� (15)

Remark. The mean-square average of 
� in (3) is:

	�
��

�

�� �

��
���

��
���

����&��� ������ � �	&� (16)

where & � ���� ��
��
��
� . Comparing with (14), we con-

clude that (16) is an optimal quadratic decision statistic.

3.2.2. Optimal Watermark Design

The use of �� as a performance criterion for quadratic detec-
tion also suggests its use as a criterion for watermark design.
The criterion �� depends on the statistics of the watermark
only via its correlation matrix ��.

The watermark should be imperceptible, so we constrain
its average energy per sample:

�

�
 !���
�� � ���� (17)

The maximization of (15) subject to the constraint of (17)
and the constraint ��
� � ��
� (as defined below (10))
must generally be done numerically. However, a useful up-
per bound on �� can be derived. Let 
� � �'$(�)����� � �
� � �� and 
�
� � �'$(�)�
����� � � � � �� be di-
agonal matrices made of the eigenvalues of �� and ��
�
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respectively. The elements of 
� and 
�
� are nonnegative
and are arranged in the same order. Then, from (15) we
have [4]:

�� � �

	

��
���

�
)�
����

)����

��
� (18)

The upper bound (18) is achieved when both��
� and ����
have the same eigenvector matrix * . This fact will play an
essential role in the analysis. Maximization of the right side
of (18) subject to the constraint

�

�
 !���
�� �

�

�

��
���

)�
���� � ���� (19)

leads to the following upper bound on the deflection:

�� � ���� �
�����
	)��

��

� (20)

where )�

�� is the smallest eigenvalue of the host. This
upper bound is attained by some��

�
� if and only if���
� �

*
��
�*
� , where � denotes Hermitian transpose, the eigen-

vector matrix of ���
� is the same as that of ��, and


��
� � �'$(��� ���� �� ����� �� ���� ��� (21)

In other words, all the available power is assigned to one
single eigenvalue corresponding to )�

��. The upper bound
on the deflection can be achieved only if ��

�
� � ��
�.
However, in general, it is not always possible to construct a
feasible ��
� that achieves this upper bound. A case of in-
terest, shown in Example 	, is when �� is circulant Toeplitz
and a feasible ���
� can be generated.

Once a feasible ���
� is found, we still need to find a
corresponding correlation matrix��

�. Equation (10) defines
a linear mapping ���
� � 	����. Any �� � 	��� ����
�� is
therefore optimal.

Example 1. A case of practical interest, where ��� can
be found easily from ���
�, occurs when the attack is a sim-
ple delay that is uniformly distributed, and �� and ���
�
are circulant Toeplitz. In this case, the choice ��

� � ���
�
satisfies (10). For example, the watermark ���� could be
generated as a Gaussian signal with zero mean and correla-
tion matrix ��� � ���
�.

Example 2. Consider a warping attack satisfying the
conditions of footnote � and assume again that�� and���
�
are circulant Toeplitz. Then ��
� is circulant Toeplitz. We
seek �� that satisfies:

���
���� �
�� �

�

�

� �
���� � 
���� �� � 
�����

�"�����
��� � 
������
����
����

�

�
���� � �� ���"���� ����� (22)

where "���� is the distribution of 
���� 
�� ��. A circulant
Toeplitz solution �� is guaranteed to exist.

Detectability/Security Tradeoff. In an actual water-
marking application, it may be desirable to spread the wa-
termark power over several eigenvectors to increase the sys-
tem’s security. For instance, let the power be equally dis-
tributed among the weakest + eigenvectors of the host, i.e.,
the power allocated to each channel is )���� � �����+,
where � � � � +. In that case we have

�� �
�

	

��
���

�
)�
����

)����

��
� �

+

�����
	)��

��

�
�

+
���� (23)

If )����� � � � � +, are all equal, (23) is achieved with
equality. The deflection decreases when the available water-
mark power is distributed among many channels of the host.
Thus, there is a trade-off between detectability and security.

Example 3. Consider a uniformly distributed delay at-
tack and a periodic and stationary AR(1) host �. Then *
is the DFT matrix, and ��
� � *
�
�*

� is circulant
Toeplitz. When the watermark power is allocated entirely
to � � ��	, the weakest component of the host, we have

�
� � 
��
�. Here, ���
� � *
��
�*

� � ��
�, so the
upper bound ���� on the deflection is achieved. Referring
to Example �, we can choose ��� � ���
�. The resulting
optimal watermark is a sinusoid with frequency �. The wa-
termark power could also be assigned to two eigenvalues to
increase the system security and also ensure that the result-
ing watermark is real-valued. Then, if )���� � )��� � ��
for � 
� �� � 
� ��	, ���� becomes a real sinusoidal water-
mark at frequency 	���� , and �� � �

�
����. Similarly, the

watermark power can be equally distributed among an even
number of the eigenvalues to further increase the system se-
curity, but at the cost of a lower ��. The resulting water-
marks will be sums of sinusoids at the frequencies chosen.

4. NUMERICAL RESULTS

We performed several experiments and evaluated the perfor-
mance of our design numerically, in terms of the deflection
criterion and the probability of error (which as mentioned
earlier is not a function of the deflection criterion) under
different choices of the kernel and different choices of the
watermark. Monte-Carlo runs (averaging over all random
variables) were used to determine empirical probabilities of
error. In order to draw reliable and generally applicable con-
clusions, we considered watermarks of varying strength, pa-
rameterized by the ratio of the maximum host power to the
maximum watermark power. The ratio � ����

�

� was in the
range of � to 	� dB. We considered a length � � ��� pe-
riodic Gaussian AR(1) host with zero mean, unit variance
and , � ���� displayed in Fig. 1. Assume the warping at-
tack is a periodic AR(1) process with mean zero, variance
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��� � �, � ��-��	 (where - � ����, see [2]) and , � ����
(see example in Fig. 1). The optimal watermark under this
setup is sinusoidal with frequency �, as all the power is al-
located to )����	�.

Experiments were also conducted to compare the per-
formance of the proposed scheme with the optimal kernel
� of (14) and with � � �� (which would be optimal
for a white host [2]). As Fig. 2(a) shows, the value of
the deflection indeed decreases when the suboptimal ker-
nel is used, suggesting that the distributions under �� and
�� are less separated than they are when the optimal ker-
nel is used. Consequently, the error probability is expected
to increase. Indeed, Fig. 2(b) shows that use of the op-
timal kernel leads to significantly lower error probabilities
(ranging from ����� to ��	 instead of ���� to ����). The er-
ror probability for the coherent detector (which knows the
warping function and serves as an oracle) is also shown in
Fig.2(b). It is of course lower than for the noncoherent case,
but the gap is small when the host-to-watermark power ratio
�����

�
� is large.

Using the optimal kernel, experiments were also con-
ducted to compare the performance of an optimal water-
mark, designed following Section 3.2.2, with one generated
from a suboptimal covariance�� with the same structure as
��. The watermark is statistically similar to the host signal.
Fig. 3 shows that the deflection increases and the probability
of error decreases when an optimal watermark is hidden.
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Fig. 1. Gaussian AR(1) host with , � ���� (solid line) and
AR(1) warping attack with , � ���� (dotted line).
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Fig. 2. The effect of different kernels � on the system
performance for optimally designed watermarks of differ-
ent strength. (a) Deflection (b) Probability of error for
���� � ���� ���

��
� (solid line), � � �� (dotted line)

and coherent detection (dashed line).
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Fig. 3. The effect of suboptimal watermarks of different
strength on the system performance for optimally designed
kernels �. (a) Deflection (b) Probability of error for an
optimal �� (solid line), for �� with the same structure as
�� (dotted line) and coherent detection (dashed line).
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