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Abstract. This paper studies the effects of desynchro-
nization attacks such as delay and warping on the perfor-
mance of blind spread-spectrum watermark detection sys-
tems. The host signal is modeled as a colored Gaussian sig-
nal. Evaluation of the optimal likelihood ratio test is often
computationally expensive, so as a practical alternative, we
propose a family of quadratic detectors and construct the
detector and family of watermarks that maximize the de-
flection criterion. Experiments are carried out to verify the
suitability of the deflection as a performance index. Sub-
stantial improvementsover conventional watermark designs
are demonstrated.

1. INTRODUCTION

Consider the problem of detecting a known watermark w
originally embedded in a host signal s. The watermarked
signal = s + w is subjected to attacks. The corrupted sig-
nal y is made available to the watermark detector, together
with the reference watermark w. It is known that desyn-
chronization attacks such as unknown delays and warping
(time-varying delay) can disable empirically designed de-
tectors [1]. A natural approach to combat such attacks is
to formulate watermark detection as a composite hypoth-
esis testing problem. This paper extends our recent work
on white Gaussian hosts [2] and constructs a detector and
a family of watermarks that are computationally tractable
and satisfy optimality propertiesunder warping attacks. The
theory ishowever general enoughto be applicableto alarger
list of attacks.

2. MATHEMATICAL MODEL

For mathematical convenience, we assume that al signals
are discrete-time and periodic with period equa to N. The
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host s(n) is a Gaussian periodic process with full-rank co-
variance matrix Ry, = {Rs(k,k') = E[s(k)s(k")],1 <
k,k'" < N}. The specia case of a white Gaussian host
was considered in [2]. Unlike the setup in [2], here we
consider a random watermark, because this increases the
system security. The watermark considered is a zero-mean
random signal, with covariance matrix R, to be designed.
Thewarping functionf(n), 1 <n < N, isrea-valued and
sowly-varying. By s(n—6(n)) and w(n —6(n)) we denote
the resampled versions of the underlying continuous-time
warped signals.

The detection problem can be formulated as acomposite
hypothesistest [3]:

Hy : y(n)=s(n), 1<n<N
Hy :yn)=wn-0n))+sn—-=0n)), 1< ng(lj)\f

We assume that the statistics of s(n) are indistinguishable
from those of s(n — 6(n)), otherwise the host signal itself
would serve as a synchronization signal. Hence, we study
the hypothesistest

,1<n<N

; 1<n <N,
@)

which serves as an approximation to the original detection

problem.

2 y(n) =s(n)
2 y(n) =w(n —0(n)) +s(n)

3. ANALYSIS OF WARPING ATTACKS

3.1. Coherent Detector

If the warping function §(n), 1 < n < N was known, we
would have a coherent detection problem [3]. The likeli-
hood ratio test (LRT) compares the linear statistic ¢y with a
threshold »:

H,
=Y S wlk—0R)R (kDy(1) Z 1. (3
k=1 1=1 HO
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Under Hy and H, the statistic ¢y hasmeansmy = 0 and

k=1 1=1

VR (b, Dw(l - 0(),  (4)

respectively, and variances

ZZkQ

k=11=1

(B, Dw(=0(D))- (9)
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For Bayesian detection under equal priors on Hy and H,,

the threshold of the LRT isn = $(mo + my), and the

probability of error is P. = Q(3V'SNR), where Q(u) =
f;o b(v) dv, ¢p(u) = (2r) /2 exp{—u?/2} and
(m1 —mo)?

T (6)
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3.2. Quadratic Noncoherent Detector

When 6 is unknown, a suboptimal but often good approach
to noncoherent detection consists of using a quadratic de-
tection test [5] of the form
H,
z=y"Ky 2 7 (7
Hy

where K isan N x N symmetric matrix, and 7 is the thresh-
old of the test.

3.2.1. Deflection Criterion

Assume the N-vector 6 is random over [0, N7V, with adis-
tribution 7(#), and is independent of s(n),1 < n < N.
Computing the first two moments of Z in (7) under H, and
H,,weobtain

EwolZ|Hy] = Tr(R,K), 8)
EwolZ|H)] = Tr(RK)+Tr(Ru.K), (9

where R, r isan N x N watermark autocorrelation matrix
with entries

Rw,ﬂ(k7kl) = Ewé’[ ( (k)) ( (I))]
- — (k) K — 0( ]
- / / (k— (k). K — 6(k"))
p(O(k), 0(K'))dB(k)dB(K') (1)

forl1 < k,k' < N. Herep(6(k),6(k")) denotes the bivari-
ate probability density function of §(k) and §(k'). * The set
of al R, , of theform (10) isthe feasible set R, .

L1f moreover 0(k) is a periodic stationary stochastic process with uni-

form marginal distributions, then p(8(k), 0(k’)) depends only on k — k'
and on 6(k) — 6(k'), and it can be verified that Ry, is Toeplitz.

After some algebra, the variance of Z under Hy is
Var[Z|Hy) = 2Tr(R,KR,K™). (11)
Thethreshold of the test (7) satisfies
Tr(RsK) <n<Tr(RyK)+Tr(R:K). (12)

We define the deflection criterion (also called generalized
SNR) for quadratic detection as [5]

(Bw,o[Z|H1] = EwlZ|Ho))?
Var[Z|Ho]
(Tr(Ry - K))?
STr(R,KR,KT)"

& =

(13)

This criterion would determine the probability of error of
the test (7) if the distributions of Z under H, and H,; were
Gaussian. In problems such as ours, it only serves as a
tractable measure of separability of the two distributions:
higher values of the deflection are expected to lead to lower
error probabilities. It can be shown that d? is maximized by

K =aR;'R, .R;* (14)

where « is an arbitrary nonzero constant. The maximum
value of the deflection for the optimal kernel K is:

d2 = %TT(Rw’ﬁR‘ZlRw,ﬁR‘:l)' (15)

Remark. The mean-square average of ¢y in (3) is:

RN

k=11=1

Eyolch] YM(k,D)y(l) =yTMy  (16)

where M = R;'R,, »R;*. Comparing with (14), we con-
cludethat (16) is an optimal quadratic decision statistic.

3.2.2. Optimal Watermark Design

Theuse of d? asaperformancecriterion for quadratic detec-
tion also suggestsits use as acriterion for watermark design.
The criterion d? depends on the statistics of the watermark
only viaits correlation matrix R, .
Thewatermark should beimperceptible, so we constrain
its average energy per sample:
1 T 9
N T(Rw,n) <o
The maximization of (15) subject to the constraint of (17)
and the constraint Ry, » € Ry, (&8s defined below (10))
must generally be done numerically. However, a useful up-
per bound on d? can bederived. Let A; = diag{\s(k), 1 <
k< N}and Ay, = diag{\y(k), 1 <k < N} bedi-
agonal meatrices made of the eigenvalues of R, and Ry,

(17)

w-
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respectively. The elementsof A, and A, are nonnegative
and are arranged in the same order. Then, from (15) we

have [4]:
N

, 1 Ao (B)\

The upper bound (18) isachieved whenboth R,  and R *
have the same eigenvector matrix U. This fact will play an
essential rolein the analysis. Maximization of theright side
of (18) subject to the constraint

1 2
NTT wﬂ— N ZA'LUTI' S Oy (19)

leads to the following upper bound on the deflection:

N2 4
)\2

s,min

d dub

(20)

where Ag pin IS the smallest eigenvalue of the host. This
upper boundis attained by some R, - if andonly if R}, . =
UA;, .UM, where# denotesHermitian transpose, theeigen-
vector matrix of R}, . isthe same asthat of R, and

A, . = diag(0, ...,0,No?, .0, ..., 0). (21)
In other words, all the available power is assigned to one
single eigenvaluecorrespondingto A s .. Theupper bound
on the deflection can be achieved only if R}, . € Ry x-
However, in general, it is not always possi ble to construct a
feasible R,, - that achieves this upper bound. A case of in-
terest, shown in Example 2, iswhen R s iscirculant Toeplitz
and afeasible R}, . can be generated.

Once afeasble Ry, . isfound, we still need to find a
corresponding correl atlon matrix R} . Equation (10) defines
alinear mapping R}, . = L. R};,. Any R, € L;'(R;}, ) is
therefore optimal.

Example 1. A case of practical interest, where R}, can
be found easily from R, ., occurswhen the attack isasim-
ple delay that is unlformly distributed, and R, and R},
are circulant Toeplitz. In this case, the choice R}, = R*
satisfies (10). For example, the watermark w(n ) could be
generated as a Gaussian signal with zero mean and correla-
tion matrix R}, = R}, .

Example 2. Consder a warping attack satisfying the
conditionsof footnote 1 and assume againthat R ; and R}, .
are circulant Toeplitz. Then R,, . is circulant Toeplitz. We
seek R, that satisfies:

%//Rw(k —0k), K — ("))
xpi_i (0(k) — O(K'))do (k) dB (k')
/ Ru(k — K — A)pe_p (A)dA (22)

Ry, (kK =

where p;_;s isthedistribution of 8(k) — 6(k'). A circulant
Toeplitz solution R,, is guaranteed to exist.

Detectability/Security Tradeoff. In an actual water-
marking application, it may be desirable to spread the wa-
termark power over several eigenvectorsto increase the sys-
tem'’s security. For instance, let the power be equally dis-
tributed among the weakest L eigenvectors of the host, i.e.,
the power allocated to each channel is A, (k) = No2 /L,
wherel < k < L. Inthat case we have

1N24

P wr(k))?
52( ) = L2X2

S, min

1
Zdib (23)

If A\s(k), 1 < k < L, aredl equal, (23) is achieved with
equality. The deflection decreaseswhen the available water-
mark power is distributed among many channels of the host.
Thus, there is a trade-off between detectability and security.
Example 3. Consider a uniformly distributed delay at-
tack and a periodic and stationary AR(1) host s. Then U
is the DFT matrix, and Ry, » = UA, U™ is circulant
Toeplitz. When the watermark power is allocated entirely
to k = N/2, the weakest component of the host, we have
Awx = A}, .. Here, Ry = UA; . U" € Ry x, sothe
upper bound d2 op On the deflectlon is achieved. Referri ng
to Example 1, we can choose R}, = R}, .. Theresulting
optimal watermark is a sinusoid Wlth frequency m. Thewar
termark power could also be assigned to two eigenvaluesto
increase the system security and also ensure that the result-
ing watermark isreal-valued. Then, if A, (k) = Ay (N — k)
fork # 0,k # N/2,w(n) becomesareal sinusoidal water-
mark at frequency 27k/N, and d* = 1d2,. Similarly, the
watermark power can be equally distributed among an even
number of the eigenvaluesto further increase the system se-
curity, but at the cost of a lower d2. The resulting water-
marks will be sums of sinusoids at the frequencies chosen.

4. NUMERICAL RESULTS

We performed several experimentsand eval uated the perfor-
mance of our design numerically, in terms of the deflection
criterion and the probability of error (which as mentioned
earlier is not a function of the deflection criterion) under
different choices of the kernel and different choices of the
watermark. Monte-Carlo runs (averaging over all random
variables) were used to determine empirical probabilities of
error. In order to draw reliable and generally applicable con-
clusions, we considered watermarks of varying strength, pa-
rameterized by the ratio of the maximum host power to the
maximum watermark power. The ratio o2 /02 was in the
range of 8 to 20 dB. We considered alength N = 400 pe-
riodic Gaussian AR(1) host with zero mean, unit variance
and p = 0.98 displayed in Fig. 1. Assume the warping at-
tack is a periodic AR(1) process with mean zero, variance
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02 = (p+1)e?/2 (Wwheree = 0.04, see[2]) and p = 0.98
(see examplein Fig. 1). The optimal watermark under this
setup is sinusoidal with frequency =, as al the power is a-
located to A, (N /2).

Experiments were also conducted to compare the per-
formance of the proposed scheme with the optimal kernel
K of (14) and with K = R,, (which would be optimal
for a white host [2]). As Fig. 2(a) shows, the vaue of
the deflection indeed decreases when the suboptimal ker-
nel is used, suggesting that the distributions under H, and
H, are less separated than they are when the optimal ker-
nel is used. Consequently, the error probability is expected
to increase. Indeed, Fig. 2(b) shows that use of the op-
timal kernel leads to significantly lower error probabilities
(ranging from 0.005 to 0.2 instead of 0.01 to 0.45). The er-
ror probability for the coherent detector (which knows the
warping function and serves as an oracle) is also shown in
Fig.2(b). Itisof course lower than for the noncoherent case,
but the gap is small when the host-to-watermark power ratio
o2 /o2 islarge.

Using the optimal kernel, experiments were also con-
ducted to compare the performance of an optimal water-
mark, designed following Section 3.2.2, with one generated
from asuboptimal covariance R, with the same structure as
R,. Thewatermark is statistically similar to the host signal.
Fig. 3 showsthat the deflection increases and the probability
of error decreases when an optimal watermark is hidden.
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Host Signal and Warping Attack
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Fig. 1. Gaussian AR(1) host with p = 0.98 (solid line) and
AR(1) warping attack with p = 0.98 (dotted line).

Deflection for Optimal and Suboptimal Kernel Probability of Error for Optimal and Suboptimal Kernel

@ (b)

Fig. 2. The effect of different kernels K on the system
performance for optimally designed watermarks of differ-
ent strength. (a) Deflection (b) Probability of error for
Kopt = R;'R,R;! (solid ling), K = R,, (dotted line)
and coherent detection (dashed line).

Deflection for Optimal and

ty of Error for Optimal and Suboptimal Watermark
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Fig. 3. The effect of suboptimal watermarks of different
strength on the system performance for optimally designed
kernels K. (a) Deflection (b) Probability of error for an
optimal R,, (solid line), for R,, with the same structure as
R, (dotted line) and coherent detection (dashed line).
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