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ABSTRACT

In this paper we present a system for classifying various human
actions in compressed domain video framework. We introduce
the notion of quantifying the motion involved, through what we
call “Motion Flow History” (MFH). The encoded motion infor-
mation readily available in the compressed MPEG stream is used
to construct the coarse Motion History Image (MHI) and the cor-
responding MFH. The features extracted from the static MHI and
MFH compactly characterize the temporal and motion information
of the action. Since the features are extracted from the partially de-
coded sparse motion data, the computational load is minimized to
a great extent. The extracted features are used to train the KNN,
Neural network and the Bayes classifiers for recognizing a set of
seven human actions. Experimental results show that the proposed
method efficiently recognizes the set of actions considered.

1. INTRODUCTION

Recognition of human actions and event detection has recently
gained more interest among video processing community due to
the automatic surveillance, monitoring systems [1], video index-
ing and retrieval, robot motion, human-computer interaction and
segmentation [2, 3]. Most of the existing literature on action clas-
sification are based on pixel domain [4, 5, 6, 7, 8] and almost all
the multimedia documents available nowadays are in the MPEG
[9] compressed form to facilitate easy storage and transmission.
Hence, it would be efficient if the classification is performed in the
MPEG compressed domain without having to completely decode
the bit-stream and subsequently perform classification in the pixel
domain. This calls for techniques which can use information avail-
able in the compressed domain such as motion vectors and DCT
coefficients.

Recently, we have developed a technique for recognizing hu-
man actions from the compressed video using Hidden Markov
Model (HMM) [10], where the time-series features used for train-
ing the HMM are directly extracted from the motion vectors cor-
responding to each frame of the video. Though this approach has
proven its ability to classify the video sequences, the extracted time
series features are not suitable for other efficient classifiers such as
Neural networks and Bayes.

The present work is motivated by a technique proposed by
Davis et al., [11] where a view-based approach is used to recog-
nize actions. They presented a method for recognition of temporal
templates. A temporal template is a static image where the value
at each point is a function of the motion properties at the corre-
sponding spatial location in an image sequence. The actions were
represented by the cumulative motion images called Motion En-

ergy Image (MEI) and MHI. The MEI represents where the mo-
tion has occurred in the image plane, whereas MHI represents the
recency of motion using intensity. For recognition, the Hu mo-
ments [12], obtained from the templates are known to yield reason-
able shape discrimination in a translation and scale invariant man-
ner. Extracted Hu moments are matched using a nearest neighbor
approach against the examples of given motions already learned.
This work was extended by Rosales [6] using various classifica-
tion approaches like KNN and Bayes with dimensionality-reduced
representation of actions.

In this paper we propose a technique for building motion his-
tory images from the compressed video and extract features from
the motion history information for action classification. The en-
coded motion information available in the MPEG video is exploited
for constructing the coarse MHI and MFH. These MHI and MFH
represents the human action in a very compact manner. Though the
motion information extracted from each frame of the compressed
video is very sparse, they are sufficient to construct the coarse MHI
and MFH for representing the actions.

This paper is organized as follows: Section 2 describes the
overview of the proposed work. Section 3 explains about the con-
struction of coarse MHI and MFH. The feature extraction proce-
dures are explained in Section 4. Section 5 presents the classifica-
tion results and Section 6 concludes the paper.

2. SYSTEM OVERVIEW

The overview of the proposed system is shown in Fig. 1. First
the motion vectors are extracted from the compressed video by
partially decoding the MPEG video bit-stream. This partial de-
coding is very less expensive compared to the full decoding. Since
the sampling rate of the video is normally very high (typically 25
frames/sec) compared to human motion dynamics, it is not nec-
essary to extract the motion vectors from all the frames. So we
have used only the motion vectors obtained from the predictive ( � )
frames for constructing the coarse MHI and MFH. As motion vec-
tors are usually noisy, the coarse MHI and MFH are constructed
after removing the noisy motion vectors. The constructed coarse
MHI and MFH are at macroblock resolution not at pixel resolution.
Hence the size of the MHI and MFH are sixteen times smaller
than the original frame size. In feature extraction phase, various
features are extracted from the constructed coarse MHI and MFH
which hold the temporal and motion information of the video se-
quence. The features based on projection profiles and centroids are
extracted from MHI. The affine features and motion vector his-
togram based features are obtained from the MFH. The features
are finally fed to the classifiers such as KNN, Neural network and
Bayes for recognizing the action.
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Fig. 1. Overview of the proposed system

3. REPRESENTATION OF ACTION USING MHI AND
MFH

Since we are interested in analyzing the motion occurring in a
given window of time, we need a method that allows us to cap-
ture and represent it directly from the video sequence. Such static
representations are called Motion Energy Images (MEI), Motion
History Images (MHI) and Motion Flow History (MFH). They are
functions of the observed motion properties at the corresponding
spatial image location in the video sequence.

MEI is basically a cumulative binary image with only spatial,
and no temporal details of the motion involved. It answers the
question ‘where did the motion occur?’. MEI can be obtained by
binarizing the MHI. The MHI is a cumulative gray scale image
incorporating the spatial as well as the temporal information of
the motion [11]. MHI points to, ‘where and when did the motion
occur?’. It does not indicate anything about the direction and mag-
nitude of the motion. MFH gives the information about the extent
of the motion at each macro block (‘where and how much did the
motion occur?’). In case of occlusion, the old motion information
is over-written by the new reliable motion information.

Since it is computationally very expensive to decode the full
video, we use the readily available encoded motion information in
MPEG bit-stream for constructing the coarse MHI and MFH. In
MPEG, the motion vectors are computed for each macroblock (of
size ��������� pixels) of ( � ) and ( 	 ) frames. The motion vectors not
only indicate the blocks under motion but also gives the informa-
tion regarding magnitude and direction of the block with respect
to the reference frame. The spurious motion vectors which do not
belong to the moving object are removed by connected component
analysis before constructing MFH and MHI. The MFH and MHI
are constructed from non zero � frame motion vectors according
to the following:


���
������������������ �"!� ��#�� if $&% � �"!� ��#��('*),+.-
 % � �/!� ��#�� ' otherwise
(1)

where,$ % �0�/!� �213� ' �54 �0�/!� ��#6��7 med % � �/!� ��#6��8/898 � �"!� ��#�7;:�� ' 4/< and
 % � �/!� ��#�� ' � med % � �/!� ��#6��898/8 � �/!� ��#�7=:>� ' , here med refers
to median filter, � �/!� ��#�� can be horizontal

� �0? � component or
vertical

� �0@ � component of motion vector located at
�

th row and�
th column in frame

#
and
:

indicates the number of previous �
frames to be considered for median filtering. Typical range of

:

(a)

(b) (c)

Fig. 2. (a) Key-frames of bend-down sequence and the correspond-
ing coarse (b) MHI (c) MFH

is 3-5. The function $ checks the reliability of the current motion
vector with respect to the past non-zero motion vectors at the same
location against a predefined threshold

+A-
. This makes sure that

no reliable motion vector will be replaced by a recent noisy motion
vector. Such spurious motion vectors are replaced by the reliable
median value.
�
0B�������������� # if CD% � �/! ��#��('FE�HGG

otherwise
(2)

where, CI% � �/! ��#��('J��K � �/!? ��#6�9K/LMK � �/!@ ��#6�9K
Fig. 2 shows the key frames of the bend-down action and the

corresponding MHI and MFH. The MHI is a function of the re-
cency of the motion at every macroblock. The brightness of the
macroblock is proportional to how recently the motion occurred.
Whereas MFH describes the spatial distribution of motion over the
video clip without temporal information. The MHI which has tem-
poral information but no motion information is complemented by
the MFH which has motion information without temporal infor-
mation. Thus MHI and MFH together capture the temporal and
motion information of the entire video sequence. The drawback of
this representation is that, self occlusion or overlapping of motion
on the image plane may result in the loss of a part of the motion
information. However it might be representative enough for all
human actions.

4. FEATURE EXTRACTION

Given the MHI and MFH of an action, it is essential to extract
some useful features for classification. We have extracted features
from MHI based on i) Projection profiles and ii) Centroid. The
MFH based features are i) Affine motion model ii) Projected 1-D
feature and iii) 2-D Polar feature [10].

4.1. MHI features

Projection profile based feature : Let N be the the number of
rows and



be the number of columns of MHI. Then the vertical

profile is given by the vector �>O of size N and defined by: �PORQ S�T �UMVW/XPY 
M
0B Q S ��Z T . The horizontal profile is represented by the
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vector �>[ of size



and define by: �>[6Q Z T � UM\]^XPY 
M
0B Q S �_Z T .
The features representing the distribution of projection profile with
respect to the centroid are computed as follows:`bacad�fe U [hg]^XPY � [ Q S�TU V]iX [ g�j Y � [ Q S�T U Ocg]iXPY �PO�Q S�TU \]iX O g�j Y �kORQ S�Tcl (3)

where, mon and pqn are the horizontal and vertical centroids of MEI.
Centroid based feature : The other feature is computed as the

shift of centroids of MEI and MHI, which is given by:` n � Q 
M
0B ? n 7I
 $ B ? n 
�
0B @ n 7D
 $ B @ n T (4)

The above feature indicates the approximate direction of the cen-
troid motion of the corresponding action.

4.2. MFH features

Three types of features are extracted from MFH. Since it holds the
entire history of spatial motion information, many useful features
are extracted from MFH.

Affine feature : An important feature is the six-parameter
affine motion model ‘ r ’ corresponding to the MFH. This affine
model is sufficient enough to capture the flow characteristics of
MFH. The affine parameters r are computed as follows:ros �ut2vxwDy�z|{ s wDy2z}{c~R� Y 8cv�w s �����������>�"8 (5)

where, w;�������f� ��� � G�G�GG�G�G ��� �M���� Q ����T s is the vector representing the position of pixel in the
image plane. and

�����>�
is the motion at location

�
. Here all the

motion vectors are assigned to the center pixel of the correspond-
ing macroblock.

Projected 1-D feature : This feature is computed from the
histograms of horizontal and vertical components of motion vec-
tor. Let � ? � � ?R��� ] � � W � , � @ � �0@ �3� ] � � W � be the number of horizontal
and vertical components of motion vectors in the range � ] and � W ,
with non-overlapping intervals

� � ] ) � W � , then the combinationQ � ? � � @ T forms the feature vector. The ranges used in the experi-
ment for horizontal and vertical component to get a 10 dimensional
feature vector are Q ����� �97��R�/7��R�����c�R� ���h��T .

2-D polar feature : The motion vector direction and magni-
tude for each macroblock is obtained from both horizontal and ver-
tical components of the corresponding motion vector. The number
of motion vectors falling between the angle range � ] and � W and
having magnitude within the range � ] and � W can be expressed as��� � � � �(� ] � � W � � ] � � W ����¡  ����������¢ � ]>£ K � � K £ � W and � ]>£¥¤ � � £ � W§¦ (6)

where � � is the motion vector
� � ? � �¨@ � in polar co-ordinates

with
K � � K©��ª � <? L � <@ and ¤ � � �¬« �©� � Yb­¯®�°®b±¯²

Here,
� � ] � � W � and

� � ] � � W � are chosen so as to cover the en-
tire range of motion vectors and the angle ranges from

7J³
to
³

in a non-overlapping manner. In our experiment, the ranges of� used are Q 7J³��/7J³k´¶µ��cGR�3³k´¶µ���³ T and the ranges of � used areQ GR�"·�� � G�� ���q��T , which leads to a feature vector of 12 dimensions.
The following table summarizes the features used in our experi-
ment.

Feature Dimension
MHI Proj. Profile 2
Features Centroid 2

Affine 6
MFH 1-D Projected 10
Features 2-D Polar 12

Total 32

Table 1. Features extracted from MHI and MFH

5. CLASSIFICATION RESULTS AND DISCUSSION

We have used three types of classifiers for recognizing the ac-
tion, namely Normalized K-nearest neighbors (KNN), Bayesian
and Neural network (MLP). Totally seven actions were considered
for recognition namely walk, run, jump, bend down, bend up, twist
left and twist right. In our experimental setup, we trained the sys-
tem with 10 instances of each action performed by four to five dif-
ferent subjects. For testing, we have used at least five instances per
action with the subjects that are not used for training phase. The
total number of samples used for training is 70 (10 samples/action)
and 51 samples for testing.

The KNN algorithm simply selects the k-closest samples from
the training data to the new instance and the class with the high-
est number of votes is assigned to the test instance. An advantage
of this technique is due to its non-parametric nature, because we
do not make any assumptions on the parametric form of the un-
derlying distribution of classes. In high dimensional spaces these
distributions may be often erroneous. Even in situations where
second order statistics can not be reliably computed due to limited
training data, KNN performs very well, particularly in high di-
mensional feature spaces and on atypical samples. Table 2 shows
the classification results of KNN classifier with all aforementioned
features.

Class Walk Run Jump BD BU TWL TWR Error

Walk 5 0 0 0 0 0 0 0
Run 0 7 0 0 0 0 0 0
Jump 0 0 7 0 0 0 0 0
BD 0 0 0 11 0 0 0 0
BU 0 0 0 0 8 1 0 1
TWL 0 0 0 0 0 6 0 0
TWR 0 0 0 0 0 0 6 0

Error 0 0 0 0 0 1 0 1

Table 2. Confusion matrix for KNN Classifier (k=3)

The second classifier is Bayes classifier - a parametric clas-
sifier that assumes normal distribution for class (̧ ) conditional
probability of feature vector ¹ , � � ¹ K ¸ ] � . Though Bayes classi-
fier is optimal, the performance degrades if the models used are
erroneous. Since the erroneous models degrades classification, we
added the features one by one as long as the classification result
improves on the training data. Table 3 shows the performance of
Bayes classifier with only 4 selected features out of total 32 fea-
tures.

Networks of non-linear computing elements (artificial neu-
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Class Walk Run Jump BD BU TWL TWR Error

Walk 3 2 0 0 0 0 0 2
Run 0 7 0 0 0 0 0 0
Jump 0 0 7 0 0 0 0 0
BD 0 0 0 11 0 0 0 0
BU 0 0 0 0 9 0 0 0
TWL 0 0 0 0 0 6 0 0
TWR 0 0 0 0 0 1 5 1

Error 0 2 0 0 0 1 0 3

Table 3. Confusion matrix for Bayes Classifier

rons), interconnected through adjustable weights are called Neu-
ral Networks. They are called Neural networks because the non-
linear elements have as their inputs a weighted sum of the outputs
of other elements-much like networks of biological neurons do.
Back propagation proceeds by comparing the output of the net-
work to that expected, and computing an error measure based on
sum of square differences. A crucial issue in the use of neural
net is regularization, that is, selecting or adjusting the complexity
of the network. The generalization will be poor if too many pa-
rameters are used; conversely if too few parameters are used, the
training data cannot be learned adequately. Table 4 shows the clas-
sification results for a network trained with 2 hidden layers with 15
neurons in each layer using all the features.

Class Walk Run Jump BD BU TWL TWR Error

Walk 4 1 0 0 0 0 0 1
Run 0 7 0 0 0 0 0 0
Jump 0 0 7 0 0 0 0 0
BD 0 0 0 11 0 0 0 0
BU 0 0 0 0 9 0 0 0
TWL 0 0 0 0 0 6 0 0
TWR 0 0 0 0 0 0 6 0

Error 0 1 0 0 0 0 0 1

Table 4. Confusion matrix for Neural Net Classifier

Comparing the results of the classifiers, the results obtained by
KNN and Neural Net show excellent performance. Bayes classifier
recognizes most of the actions, but fails to discriminate between
‘walk’ and ‘run’ actions. This could be due to the parametrization
of the underlying feature distribution. Moreover the Bayes result
is obtained only with the selected 4 features, whereas the other
classifiers use all features. Table 5 summarizes the recognition
results for various classifiers.

Classifier No. of Fea-
tures used

Classification
Accuracy

KNN (k=3) 32 98.0%
Neural Net 32 98.0%
Bayes 4 94.1%

Table 5. Comparison of various Classifiers

6. CONCLUSION

In this paper we have proposed the method for constructing coarse
Motion History Image (MHI) and Motion Flow History (MFH)
from compressed MPEG video with minimal decoding. Various
useful features are extracted from the above mentioned two mo-
tion representations for human action recognition. We have shown
the recognition results for three classification paradigms. Though
the test instances are from entirely different subjects that are used
for training the classifiers, the results show excellent recognition
accuracy. Since the data is handled at macroblock level, the com-
putational cost is extremely less compared to the pixel domain pro-
cessing.
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