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ABSTRACT

In this paper, we systematically analyze different components of
human gait, for the purpose of human identification. We investi-
gate dynamic features such as the swing of the hands/legs, the sway
of the upper body and static features like height, in both frontal and
side views. Both probabilistic and non-probabilistic techniques are
used for matching the features. Various combination strategies may
be used depending upon the gait features being combined. We dis-
cuss three simple rules: the Sum, Product and MIN rules that are
relevant to our feature sets. Experiments using four different data-
sets demonstrate that fusion can be used as an effective strategy in
recognition.

1. INTRODUCTION

Biometrics, such as face, voice/speech, iris, fingerprints, gait etc.
have come to occupy an increasingly important role in human iden-
tification due, primarily, to their universality and uniqueness. Face
recognition systems have good performance with canonical views
at high resolution and good lighting conditions. Current iris recog-
nition systems are designed to work when the subjects are placed at
relatively close distances from the imaging system. A possible al-
ternative is gait or simply, the way a person walks. While medical
studies [1] have shown that gait is indeed a unique signature of hu-
mans, all the components considered, psychophysical evidence [2]
also points to the viability of gait recognition. Gait, a non-intrusive
biometric, can be captured by cameras placed at a distance. Illumi-
nation changes are not a cause for serious concern. In particular, it
might even be attempted in night-time conditions using IR imagery.
The potential applications of gait analysis/recognition systems in-
clude access control, surveillance and activity monitoring and ki-
nesiology.

We know from our experience that gait and posture provide us
with cues to recognize people. Consider a familiar person walking
at a sufficiently large distance so that the face is not clearly visible
to the naked eye. To recognize the person, we may try to combine
information such as posture, arm/leg swing, hip/upper body sway
or some unique characteristic of that person. Generally speaking,
information may be fused in two ways. The data available may be
fused and a decision can be made based on the fused data or each
signal/feature can be matched separately, using possibly different
techniques and the decisions made may be fused. The former is
called data fusion while the latter is decision fusion. Kokar et al.
[3] have shown that decision fusion is a special case of data fusion.
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Note however, that the converserelationship need not be true. Con-
sequently, data fusion, which tends to be more complex to imple-
ment, need not be a bottleneck.

In this paper, we investigate different techniques to combine
classification results of multiple measurements extracted from the
gait sequencesand demonstrate the improvement in recognition per-
formance. Three sets of features are extracted from the sequenceof
binarized images of the walking person. Firstly, we investigate the
swing in the hands and legs. Since gait is not completely symmetric
in that the extent of forward swing of hands and legs is not equal to
the extent of the backward swing, we build the left and right projec-
tion vectors. To match these time-varying signals, Dynamic Time
Warping (DTW) is employed. Secondly, fusion of leg dynamics
and height combines results from dynamic and static sources. A
hidden Markov model is used to represent the leg dynamics [4].
While the above two components consider the side view, the third
case explores frontal gait. We characterize the performance of the
recognition system using the cumulative match scores computed
using the aforesaid matrix of similarity scores [5]. As in any recog-
nition system, we would like to obtain the best possible performance
in terms of recognition rates. Combination of evidences obtained
is not only logical but also statistically meaningful. We show that
combining evidence using simple strategies such as Sum, Product
and MIN rules improves the overall performance.

The paper is organized as follows: section 2 discusses differ-
ent features viz. hand and leg swing, leg dynamics, and height, foot
dominanceand frontal gait. Section 3 presents the experiments per-
formed on different datasets and Section 4 concludes the paper.

2. METHODOLOGY

We assume that, within the field of view of the stationary camera,
only one person is present. The task of tracking is thus simplified.
Background subtraction [6] is used to convert the video sequence
into a sequence of binarized images in which a bounding box en-
capsulates the walking subject. All the features of interest are ex-
tracted from the aforesaid sequence of binarized images. Three as-
pects of gait are discussed: Motion of the hands and legs, dynamics
of the legs alone and frontal gait. We address the issue of foot dom-
inance as well. Different strategies such as Sum, Product and MIN
rules [7], as applicable in each of the cases are used.

The left and right projection vectors are constructed from the
image sequence to study the motion of the hands and legs. Dy-
namic time warping is used to match the two vector sequencessep-
arately. The overall similarity score is taken to be the sum of the
two scores. Secondly, the truncated width vector captures the leg
dynamics. A hidden Markov model (HMM) is used to describe the
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Fig. 1. Illustrating the generation of (a) left projection vector, (b)
right projection vector and (b) width vector.

motion of the leg within a walk cycle. In the evaluation phase, the
absolute value of the forward log probability is recorded as the sim-
ilarity score. These scores are weighted by a factor that depends on
the height of the subject. Thirdly, frontal gait sequences are rep-
resented using the width vector, suitably normalized for apparent
changes in the height as the subject approaches the camera. A set
of width vectors are built for the side view and the two are matched,
separately, using DTW. Again, the Sum rule is used to combine the
two similarity scores.

2.1. Motion of the arms and legs

In the four-limb system, we seek to find a consistent pattern by sys-
tematically analyzing (a) all the four limbs and (b) a pair of limbs.
If the degree of coupling between, say, the legs is significantly more
than the coupling between the right leg and left hand, then we would
assign a higher weight to the similarity score obtained by compar-
ing the leg motion in the reference and test pattern. We first con-
sider the arms and legs of the subject. While it is tempting to as-
sume that gait is a symmetric activity, there exists an asymmetry
between the forward and backward swing of the limbs. Maintain-
ing this dichotomy, we build the left and right projection vectors
as follows. Given a binarized image, we first align the box so that
the subject is in the center of the bounding box. The left and right
projection vectors are computed as illustrated in Figure 1 (a) and
(b).

After feature selection and extraction, the next logical step is
matching. Direct frame-by-frame matching is not a realistic scheme
since humans may slightly alter the speed and style of walking with
time. Instead of restricting the frames of possible matches, it would
be prudent to allow a search region at each time instant during eval-
uation. Dynamic Time Warping (DTW) provides a mathematical
framework [8] for non-linear time normalization during matching.
We form two matrices of similarity scores by matching the left and
right projection vectors in the gallery (reference/training) with those
in the probe (testing) set, separately.

The overall similarity score is the sum of the similarity scores
obtained the two sets of projection vectors. If the estimation errors
of the different classifiers are assumed to be uncorrelated and un-
biased, then variance reduces to ��� � ��e�C�

Like hand dominance (right/left handedness), foot dominance
(right/left leggedness) also exists. While matching therefore, we
may assume that improperly aligned (i.e. right/left leg forward)
reference and test sequences affects the performance. This is an
issue because it is not possible to distinguish between the left/right
limbs from 2-D binarized silhouettes. Suppose there are five (half)

(a) (b)

Fig. 2. Eigen-smoothing: (a) Overlapped raw width vectors for
several gait cycles (b) Smoothed width vectors. X-axis represents
the magnitude. Y-axis represents the row position in the image.

cycles in both the gallery and probe sequences for a particular sub-
ject. To account for foot-dominance, we match the first four half
cycles of the two sequencesand generate a matrix of similarity sco-
res. Then, we match the gallery sequencewith a phase-shiftedprobe
sequence to generate another matrix of similarity scores. Of the
two phase-shifted test sequences,only one can provide a match that
is in-phase unless the subject does not exhibit foot dominance. With-
out loss of generality, we may assume that foot dominance exists in
all subjects. Then one of the two test sequences is a better match
unless corrupted by noise. Therefore, the two similarity scores are
combined using the MIN rule.

2.2. Leg dynamics

Previously, both the hands and legs were considered while select-
ing the features. If the movement of the hands is restricted (if the
subject is carrying an object in his/her hands) or if the sequence
is excessively noisy in the torso region due to a systematic failure
in background subtraction, then leg dynamics carries information
about the subject’s gait. We construct a ’width vector’ (width of the
outer contour of the binarized silhouette) of sizeN�� from each of
the images of sizeN �M in the sequence, as illustrated in Figure
1(c). Resistance to noise is provided in two stages. While a part of
the noise is removed during the computation of the width vector us-
ing the spatial correlation of pixels, eigen decomposition and width
vector reconstruction utilizes the temporal nature of the data. The
sequence of width vectors W � fWk � k � �� �� � � � � Fg where
Wk represents the width vector of sizeN��, at time t � k, is stan-
dardized and the scatter matrix computed. Eigen decomposition
yields the eigen vectors, the largest K of which are retained. The
projections of the width vectors on the K� largest eigen vectors
yield coefficients that are in turn, used to reconstruct the gait se-
quence by summing the appropriately weighted K� largest eigen
vectors. Figure 2 illustrates the effect of ’eigen-smoothing’ on the
gait sequence.

A cursory examination of the width vectors suggests that the
leg region may exhibit a more consistent pattern compared to other
parts of the body such as the arms. At the same time, the gross
structure of the body, as contained in the say, the height is also use-
ful in discriminating between subjects. While leg dynamics con-
centrate on the variation of the width vector in the horizontal di-
rection in the leg region alone, the height of the subject varies in an
orthogonal direction. The width vector is truncated so that only the
information about the leg is retained. This sequence of truncated
width vectors is the first feature set, say set A. We estimate the
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Fig. 3. Identification rates for USF Database: Effect of fusion of
left and right projection vectors. Gallery in all the experiments is
sequences from surface: grass, shoe type: A, camera view: right.

height of the subject from the image sequence using robust statis-
tics. The estimated height of the individuals forms the second fea-
ture set, say set B. Euclidean distance is used to compare the fea-
ture setB of estimated height of the subjects in the probe and gallery
sets.

To compare the truncated width vectors that contain the infor-
mation about leg dynamics, we use an HMM. There exists a Marko-
vian dependencebetween frames since the way humans go through
the motion of walking has limited degrees of freedom. K-means
clustering is used to identify ’key frames’ or ’stances’ during a half-
cycle. We found that a choice of k � � is justified by the rate-
distortion curve. We project the sequence of images on the stance
set creating a ��D vector (Frame-to-Stance Distance or FSD) rep-
resentation for each frame and use these samples to train an HMM
model using the Baum-Welch algorithm [9]. The Viterbi algorithm
is used in the evaluation phase to compute the forward probabili-
ties. The absolute values of the log probability values are recorded
as the similarity scores.

If the decisions made are statistically independent, we may write
the final error probability Pe �

Q
C

c=1P
c
e . In practice, however

it is difficult to validate this assumption. Instead, we use the low
correlation of decisions across feature sets as corroboration to the
hypothesis that the errors in the two feature sets, the leg dynamics
and the height, are uncorrelated. We use the product rule to com-
bine the scores to compute the overall similarity scores.

2.3. Frontal gait

Hitherto, we have studied gait in its canonical view so that the ap-
parent motion of the walking subject is maximal. This does not pre-
clude the possibility of using other views ranging from the frontal
view to any arbitrary angle of viewing. Even in the frontal view
where the apparent leg/arm swing is the least, there may be sev-
eral cues that can be used toward human recognition. More specif-
ically, the head posture, hip sway, oscillating motion of the upper
body among other features may pave the way for recognition. As
before, to focus our attention on gait, we extract the outer contour
of the subject from the binarized gait sequence in the form of the
width vector, suitably normalized for an apparent change in height
as the subject approaches the stationary camera.

For matching these sequences, we use the DTW technique for
similar reasons as outlined in section 2.1. When both the frontal
and fronto-parallel (side) gait sequences are available, it is natu-
ral to combine these two orthogonal views before making the fi-

Table 1. Cumulative match scores at rank 1 and rank 5 for CMU
dataset: Combining leg dynamics and height using Sum rule

Feature CMS at rank 1 CMS at rank 5
Leg dynamics 92 100

Fusion: leg dynamics 96 100
and height

Table 2. Cumulative match scores at rank 1 and rank 5 for CMU
dataset: effect of frontal and side gait fusion

Feature CMS at rank 1 CMS at rank 5
Frontal Gait 92 96

Side gait 92 96
Frontal and side 96 96

nal decision about the identity of the subject. One way to combine
multiple views is through the use of 3-D models. Currently, 3-D
models have been built using sequencescaptured inside the lab un-
der controlled conditions.[10] takes the visual hull approach while
Bobick et al. extract parameters insensitive to the angle of view-
ing [11]. We adopt the decision fusion approach and combine the
matching scores obtained by matching the frontal and side gait se-
quences separately using the Sum rule.

3. EXPERIMENTS

We report our experiments using the following datasets.

� CMU Dataset (http://hid.ri.cmu/edu)
consists of 25 subjects walking on a treadmill. Seven cam-
eras are mounted at different angles and we use two of the
views for our experiments, viz. the frontal and the side views.
The first half of the gait sequence is used for training while
the second half is used for testing.

� MIT dataset (http://www.ai.mit.edu/people/llee/HID)
consists of side view of outdoor gait sequences of 25 sub-
jects collected on four different days. Four experiments are
designed. Data from three days provides the training data
and data from the fourth day is used as the test sequences.

� UMD dataset (http://degas.umiacs.umd.edu/hid)
contains outdoor gait sequences captured by two cameras
(frontal and side views). 44 subjectsare recorded in two ses-
sions. We train with the video data collected from the first
session and test with that of the second session.

� USF dataset (http://marathon.csee.usf.edu/GaitBaseline/)
consists of outdoor gait sequences of 71 subjects walking
along an elliptical path on two different surfaces (Grass and

Table 3. Cumulative match scores at rank 1 and rank 5 for UMD
dataset: effect of frontal and side gait fusion

Feature CMS at rank 1 CMS at rank 5
Frontal Gait 66 86

Side gait 58 74
Frontal and side 85 95
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Table 4. Cumulative match scores at rank 1 and rank 5 for UMD
dataset: Foot dominance and effect of fusing evidence from two
gait sequences (each 4 half cycles long), with one sequence being
phase-shifted.

Feature CMS at rank 1 CMS at rank 5
First sequence 68 84

Phase shifted sequence 70 88
Fusion 77 89

Table 5. USF Dataset: 7 probe sets with the common gallery being
G,A,R consisting 71 subjects. The numbers in the brackets are the
number of subjects in each probe set.

Experiment Probe Difference
A G,A,L (71) View
B G,B,R (41) Shoe
C G,B,L (41) Shoe, View
D C,A,R (70) Surface
E C,B,R (44) Surface, Shoe
F C,A,L (70) Surface, View
G C,B,L (44) Surface, Shoe, View

Concrete) wearing two different types of footwear (A and
B). Two cameras, R and L capture that data. Seven experi-
ments are set up5.

Table 1 shows that while the leg dynamics, by itself has rich
information fusion can only improve the performance. Results ob-
tained using the leg dynamics in the casesof UMD and MIT datasets
are shown in Tables 6 and 7 respectively. Table 4 shows that foot
dominance is present and that fusing classification results from out
of phase gait sequences increases the identification rate. Figure 3
suggests that asymmetry about a vertical axis in the side view may
be addressed by considering the two halves of the body on either
side of the vertical axis. The results of matching left and the right
projection vectors separately were combined using the Sum rule.
Tables 2 and 3 show that the performance of frontal gait recogni-
tion can be enhanced by using the side view as well.

We observe, in Figure 3 that the right projection vector which
captures the forward swing outperforms the left projection vector.
This suggests that, in this database, the forward swing of the hands
and legs tends has a lesser degree of variability with time (between
the gallery and probe sequences). MIT dataset, unlike the other
datasets has a low frame rate. Secondly, errors in background sub-
traction necessitate frame-dropping. This could be a reason for the
poor performance.

Table 6. Cumulative match scores at rank 1 and rank 3 for MIT
dataset: Combining leg dynamics and height by adding the simi-
larity scores.

Evaluation Scheme CMS at rank 1 CMS at rank 3
Day 1 vs. Days 2,3,4 29 50
Day 2 vs. Days 1,3,4 50 100
Day 3 vs. Days 1,2,4 20 54
Day 4 vs. Days 1,2,3 30 52

Table 7. Cumulative match scores at rank 1 and rank 5 for UMD
dataset: Combining leg dynamics and height using Sum rule.

Feature CMS at rank 1 CMS at rank 5
Leg dynamics 31 65

Fusion: leg dynamics 49 72
and height

4. CONCLUSION

Different features that affect gait such as the swing of the hands and
legs, the sway in the body as observed in frontal gait, static features
like height were systematically analyzed. Starting with dynamic
time warping which is a variant of template matching, a more gen-
eralized scheme, the HMM was chosen for matching. The matri-
ces of similarity scores between the gait sequences in the gallery
and probe sets were computed. Sum, Product and MIN rules were
used to combine the decisions made using the separate features. As
expected, the overall recognition performance improved due to fu-
sion. Experiments were conducted on four different datasets, each
dataset presented different types of challenges.

Acknowledgement

The authors would like to thank Professor B. Yegnanarayana, IIT
Madras for helpful discussions on dynamic time warping.

5. REFERENCES

[1] M.P. Murray, A.B. Drought, and R.C. Kory, “Walking pat-
terns of normal men,” Journal of Bone and Joint surgery,
vol. 46-A, no. 2, pp. 335–360, 1964.

[2] J. Cutting and L. Kozlowski, “Recognizing friends by their
walk:gait perception without familiarity cues,” Bulletin of the
Psychonomic Society, vol. 9, pp. 353–356, 1977.

[3] M.M. Kokar and J.A. Tomasik, “Data vs. decision fusion in
the category theory framework,” FUSION 2001, 2001.

[4] A. Kale, N. Cuntoor, and R. Chellappa, “A framework for
activity-specific human identification,” Proc. ICASSP, May
2002.

[5] P. J. Philips, H. Moon, and S. A. Rizvi, “The feret evaluation
methodology for face-recognition algorithms,” IEEE Trans.
PAMI, vol. 22, no. 10, pp. 1090–1100, October 2000.

[6] A. Elgammal, D. Harwood, and L. Davis, “Non-parametric
model for background subtraction,” FRAME-RATE Work-
shop, IEEE, 1999.

[7] J. Kittler, M. Hatef, R.P.W. Duin, and J. Matas, “On com-
bining classifiers,” IEEE Trans. PAMI, pp. 226–239, March
1998.

[8] B. H. Juang, “On the hidden markov model and dynamic time
warping for speech recognition - a unified view,” Technical
Journal, vol. 63, pp. 1213–1243, 1984.

[9] L.R. Rabiner, “A tutorial on hidden markov models and se-
lected applications in speech recognition,” Proc. IEEE, vol.
77, no. 2, pp. 257–285, February 1989.

[10] G. Shakhnarovich and T. Darrell, “On probabilistic combi-
nation of face and gait cues for identification,” Proc. FGR,
2002.

[11] A.F. Bobick and J.W. Davis, “The recognition of human
movement using temporal templates,” IEEE Trans. PAMI,
vol. 23, no. 3, pp. 257–267, March 2001.

III - 36

➡ ➠


