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ABSTRACT

In this paper, we systematically analyze different components of
human gait, for the purpose of human identification. We investi-
gate dynamic features such asthe swing of the hands/legs, the sway
of the upper body and static featureslike height, in both frontal and
sideviews. Both probabilistic and non-probabilistic techniquesare
used for matching thefeatures. Variouscombination strategiesmay
be used depending upon the gait features being combined. We dis-
cuss three simple rules: the Sum, Product and MIN rules that are
relevant to our feature sets. Experiments using four different data-
sets demonstrate that fusion can be used as an effective strategy in
recognition.

1. INTRODUCTION

Biometrics, such as face, voice/speech, iris, fingerprints, gait etc.
havecometo occupy anincreasingly important rolein humaniden-
tification due, primarily, to their universality and uniqueness. Face
recognition systems have good performance with canonical views
at high resolution and good lighting conditions. Current iris recog-
nition systemsare designed to work when the subjectsare placed at
relatively close distancesfrom the imaging system. A possibleal-
ternativeis gait or simply, the way a person walks. While medical
studies[1] haveshownthat gait isindeed aunique signature of hu-
mans, al the componentsconsidered, psychophysica evidence[2]
a so pointsto theviability of gait recognition. Gait, anon-intrusive
biometric, can be captured by camerasplaced at adistance. 11lumi-
nation changesare not a causefor serious concern. In particular, it
might even beattempted in night-time conditionsusing IR imagery.
The potential applicationsof gait analysis/recognition systemsin-
clude access control, surveillance and activity monitoring and ki-
nesiology.

We know from our experiencethat gait and posture provide us
with cuesto recognize people. Consider afamiliar personwalking
at a sufficiently large distance so that the faceis not clearly visible
to the naked eye. To recognizethe person, we may try to combine
information such as posture, arm/leg swing, hip/upper body sway
or some unique characteristic of that person. Generally speaking,
information may be fused in two ways. The data available may be
fused and a decision can be made based on the fused data or each
signal/feature can be matched separately, using possibly different
techniques and the decisions made may be fused. The former is
called data fusion while the latter is decision fusion. Kokar et al.
[3] have shownthat decision fusionisaspecial caseof datafusion.
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Note however, that the converserel ationship need not betrue. Con-
sequently, data fusion, which tends to be more complex to imple-
ment, need not be a bottleneck.

In this paper, we investigate different techniques to combine
classification results of multiple measurements extracted from the
gait sequencesand demonstratetheimprovement in recognition per-
formance. Threesetsof featuresare extracted from the sequenceof
binarized images of the walking person. Firstly, weinvestigatethe
swinginthehandsandlegs. Sincegaitisnot completely symmetric
in that the extent of forward swing of handsand legsisnot equal to
theextent of the backward swing, webuild theleft and right projec-
tion vectors. To match these time-varying signals, Dynamic Time
Warping (DTW) is employed. Secondly, fusion of leg dynamics
and height combines results from dynamic and static sources. A
hidden Markov model is used to represent the leg dynamics [4].
While the above two components consider the side view, the third
case exploresfrontal gait. We characterize the performance of the
recognition system using the cumulative match scores computed
using the aforesaid matrix of similarity scores[5]. Asinany recog-
nition system, wewould liketo obtain the best possibleperformance
in terms of recognition rates. Combination of evidences obtained
isnot only logical but also statistically meaningful. We show that
combining evidence using simple strategies such as Sum, Product
and MIN rulesimprovesthe overall performance.

The paper is organized as follows: section 2 discusses differ-
ent featuresviz. hand and leg swing, leg dynamics, and height, foot
dominanceandfrontal gait. Section 3 presentsthe experimentsper-
formed on different datasets and Section 4 concludesthe paper.

2. METHODOLOGY

We assumethat, within the field of view of the stationary camera,
only one person is present. Thetask of tracking is thus smplified.
Background subtraction [6] is used to convert the video sequence
into a sequenceof binarized imagesin which a bounding box en-
capsulatesthe walking subject. All the features of interest are ex-
tracted from the af oresaid sequenceof binarized images. Threeas-
pectsof gait are discussed: Motion of thehandsand legs, dynamics
of thelegsaloneandfrontal gait. We addresstheissueof foot dom-
inanceaswell. Different strategies such as Sum, Product and MIN
rules[7], asapplicablein each of the casesare used.

The left and right projection vectors are constructed from the
image sequence to study the motion of the hands and legs. Dy-
namic timewarping is used to match the two vector sequencessep-
arately. The overall similarity score is taken to be the sum of the
two scores. Secondly, the truncated width vector captures the leg
dynamics. A hidden Markov model (HMM) is usedto describethe
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Fig. 1. lllustrating the generation of (a) left projection vector, (b)
right projection vector and (b) width vector.

motion of the leg within awalk cycle. In the evaluation phase, the
absolutevalue of theforward log probability isrecorded asthe sim-
ilarity score. Thesescoresareweighted by afactor that dependson
the height of the subject. Thirdly, frontal gait sequencesare rep-
resented using the width vector, suitably normalized for apparent
changesin the height as the subject approachesthe camera. A set
of width vectorsarebuilt for thesideview and thetwo are matched,
separately, using DTW. Again, the Sum ruleis usedto combinethe
two similarity scores.

2.1. Motion of thearmsand legs

In thefour-limb system, we seek to find aconsistent pattern by sys-
tematically analyzing (a) all thefour limbs and (b) apair of limbs.
If thedegreeof coupling between, say, thelegsissignificantly more
than thecoupling betweentheright leg andleft hand, thenwewould
assign ahigher weight to the similarity score obtained by compar-
ing the leg motion in the reference and test pattern. We first con-
sider the arms and legs of the subject. While it is tempting to as-
sume that gait is a symmetric activity, there exists an asymmetry
between the forward and backward swing of the limbs. Maintain-
ing this dichotomy, we build the left and right projection vectors
asfollows. Given abinarized image, wefirst align the box so that
the subject isin the center of the bounding box. The left and right
projection vectors are computed as illustrated in Figure 1 (a) and
(b).

After feature selection and extraction, the next logical step is
matching. Direct frame-by-frame matchingisnot arealistic scheme
sincehumansmay slightly alter the speed and style of walking with
time. Instead of restricting the framesof possiblematches, it would
beprudent to allow asearchregion at eachtimeinstant during eval-
uation. Dynamic Time Warping (DTW) provides a mathematical
framework [8] for non-linear time normalization during matching.
We form two matrices of similarity scoresby matching theleft and
right projection vectorsinthegallery (reference/training) with those
in the probe (testing) set, separately.

The overall similarity scoreisthe sum of the similarity scores
obtained the two sets of projection vectors. If the estimation errors
of the different classifiers are assumed to be uncorrelated and un-
biased, then variance reducesto o2 = o2 /C.

Like hand dominance (right/left handedness), foot dominance
(right/left leggedness) also exists. While matching therefore, we
may assume that improperly aligned (i.e. right/left leg forward)
reference and test sequences affects the performance. Thisis an
issue becauseit is not possibleto distinguish between the left/right
limbs from 2-D binarized silhouettes. Supposethere are five (half)
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Fig. 2. Eigen-smoothing: (a) Overlapped raw width vectors for
several gait cycles (b) Smoothed width vectors. X-axis represents
the magnitude. Y-axis representsthe row position in the image.

cyclesin both the gallery and probe sequencesfor aparticular sub-
ject. To account for foot-dominance, we match the first four half
cyclesof thetwo sequencesand generate amatrix of similarity sco-
res. Then, wematchthegallery sequencewith aphase-shifted probe
sequence to generate another matrix of similarity scores. Of the
two phase-shifted test sequences, only onecan provideamatch that
isin-phaseunlessthe subject doesnot exhibit foot dominance. With-
out lossof generality, wemay assumethat foot dominanceexistsin
al subjects. Then one of the two test sequencesis a better match
unless corrupted by noise. Therefore, the two similarity scoresare
combined using the MIN rule.

2.2. Legdynamics

Previously, both the hands and legs were considered while select-
ing the features. If the movement of the handsis restricted (if the
subject is carrying an object in his’her hands) or if the sequence
is excessively noisy in the torso region dueto a systematic failure
in background subtraction, then leg dynamics carries information
about thesubject’sgait. We construct a’width vector’ (width of the
outer contour of the binarized silhouette) of size N x 1 from each of
theimagesof size N x M inthe sequence, asillustrated in Figure
1(c). Resistanceto noiseis provided in two stages. While apart of
thenoiseisremoved during the computation of thewidth vector us-
ingthe spatial correlation of pixels, eigen decomposition and width
vector reconstruction utilizes the temporal nature of the data. The
sequence of width vectors W = {Wy,k = 1,2,..., F'} where
W, representsthewidth vector of size NV x 1, attimet = k, isstan-
dardized and the scatter matrix computed. Eigen decomposition
yields the eigen vectors, the largest K of which areretained. The
projections of the width vectors on the X — largest eigen vectors
yield coefficients that are in turn, used to reconstruct the gait se-
quence by summing the appropriately weighted /K — largest eigen
vectors. Figure 2 illustrates the effect of ’ eigen-smoothing’ on the
gait sequence.

A cursory examination of the width vectors suggests that the
leg region may exhibit amore consistent pattern compared to other
parts of the body such as the arms. At the same time, the gross
structure of the body, as contained in the say, the height is also use-
ful in discriminating between subjects. While leg dynamics con-
centrate on the variation of the width vector in the horizontal di-
rectionin theleg region alone, the height of the subject variesin an
orthogonal direction. Thewidth vector istruncated so that only the
information about the leg is retained. This sequence of truncated
width vectors is the first feature set, say set .4. We estimate the
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Fig. 3. ldentification rates for USF Database: Effect of fusion of
left and right projection vectors. Gallery in al the experimentsis
sequencesfrom surface: grass, shoetype: A, cameraview: right.

height of the subject from the image sequence using robust statis-
tics. The estimated height of the individualsforms the second fea-
ture set, say set B. Euclidean distance is used to compare the fea-
tureset B of estimated height of the subjectsinthe probeand gallery
sets.

To compare the truncated width vectorsthat contain the infor-
mation about leg dynamics, weuseanHMM. ThereexistsaMarko-
vian dependencebetween frames sincethe way humansgo through
the motion of walking has limited degrees of freedom. K-means
clusteringisusedtoidentify 'key frames' or’stances duringahalf-
cycle. We found that a choice of ¥ = 5 isjustified by the rate-
distortion curve. We project the sequence of images on the stance
set creatingas — D vector (Frame-to-Stance Distance or FSD) rep-
resentation for each frame and use these samplesto train an HMM
model using the Baum-Welch algorithm [9]. The Viterbi algorithm
is used in the evaluation phase to compute the forward probabili-
ties. The absolute valuesof the log probability valuesare recorded
asthe similarity scores.

If thedecisionsmadeare statistically independent, wemay write
thefinal error probability Pe = H(C::l 738. In practice, however
it is difficult to validate this assumption. Instead, we use the low
correlation of decisions across feature sets as corroboration to the
hypothesisthat the errorsin the two feature sets, the leg dynamics
and the height, are uncorrelated. We use the product rule to com-
bine the scoresto compute the overall similarity scores.

2.3. Frontal gait

Hitherto, we have studied gait in its canonical view so that the ap-
parent motion of thewalking subjectismaximal. Thisdoesnot pre-
clude the possibility of using other viewsranging from the frontal
view to any arbitrary angle of viewing. Evenin the frontal view
where the apparent leg/arm swing is the least, there may be sev-
eral cuesthat can be used toward human recognition. More specif-
ically, the head posture, hip sway, oscillating motion of the upper
body among other features may pave the way for recognition. As
before, to focus our attention on gait, we extract the outer contour
of the subject from the binarized gait sequencein the form of the
width vector, suitably normalized for an apparent changein height
asthe subject approachesthe stationary camera.

For matching these sequences, we use the DTW techniquefor
similar reasons as outlined in section 2.1. When both the frontal
and fronto-parallel (side) gait sequences are available, it is natu-
ral to combine these two orthogonal views before making the fi-

Table 1. Cumulative match scoresat rank 1 and rank 5 for CMU
dataset: Combining leg dynamicsand height using Sum rule

Feature CMSatrank 1 | CMSatrank 5
Leg dynamics 92 100
Fusion: leg dynamics 96 100
and height

Table 2. Cumulative match scores at rank 1 and rank 5 for CMU
dataset: effect of frontal and sidegait fusion

Feature CMSatrank1 | CMSatrank 5
Frontal Gait 92 96
Side gait 92 96
Frontal and side 96 96

nal decision about theidentity of the subject. One way to combine
multiple views is through the use of 3-D models. Currently, 3-D
modelshave been built using sequencescapturedinside thelab un-
der controlled conditions.[10] takesthe visual hull approach while
Bobick et al. extract parameters insensitive to the angle of view-
ing [11]. We adopt the decision fusion approach and combine the
matching scores obtained by matching the frontal and side gait se-
guencesseparately using the Sum rule.

3. EXPERIMENTS

We report our experiments using the following datasets.

e CMU Dataset (http://hid.ri.cmu/edu)
consists of 25 subjectswalking on a treadmill. Seven cam-
eras are mounted at different angles and we use two of the
viewsfor our experiments, viz. thefrontal andthesideviews.
Thefirst half of the gait sequenceis used for training while
the second half is used for testing.

e MIT dataset (http://www.ai.mit.edu/people/llee/HID)
consists of side view of outdoor gait sequences of 25 sub-
jects collected on four different days. Four experimentsare
designed. Data from three days provides the training data
and datafrom the fourth day is used as the test sequences.

e UMD dataset (http://degas.umiacs.umd.edu/hid)
contains outdoor gait sequences captured by two cameras
(frontal andsideviews). 44 subjectsarerecordedin two ses-
sions. We train with the video data collected from the first
session and test with that of the second session.

e USF dataset (http://marathon.csee.usf.edu/GaitBaseline/)
consists of outdoor gait sequencesof 71 subjectswalking
aonganelliptical path ontwo different surfaces(Grass and

Table 3. Cumulative match scoresat rank 1 and rank 5 for UMD
dataset: effect of frontal and sidegait fusion

Feature CMSatrank1 | CMSatrank 5
Frontal Gait 66 86
Side gait 58 74
Frontal and side 85 95
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Table 4. Cumulative match scores at rank 1 and rank 5 for UMD
dataset: Foot dominance and effect of fusing evidence from two
gait sequences(each 4 half cycleslong), with one sequence being

Table 7. Cumulative match scoresat rank 1 and rank 5 for UMD

dataset: Combining leg dynamicsand height using Sum rule.

phase-shifted.
Feature CMSatrank1 | CMSat rank 5
First sequence 68 84
Phase shifted sequence 70 88
Fusion 77 89

Feature CMSatrank 1 | CMSatrank 5
Leg dynamics 31 65
Fusion: leg dynamics 49 72
and height

Table5. USF Dataset: 7 probe setswith the common gallery being
G,A,R consisting 71 subjects. The numbersin the bracketsare the

number of subjectsin each probe set.

Experiment Probe Difference
A GAL (7)) View
B G,B,R (41) Shoe
C G,B,L (41) Shoe, View
D CAR(70) Surface
E C,B,R (44) Surface, Shoe
F CA.L (70) Surface, View
G C,B,L (44) | Surface, Shoe, View

Concrete) wearing two different types of footwear (A and
B). Two cameras, R and L capture that data. Seven experi-
ments are set up5.

Table 1 shows that while the leg dynamics, by itself hasrich
information fusion can only improve the performance. Results ob-
tained using theleg dynamicsin the casesof UMD andMI T datasets
are shown in Tables 6 and 7 respectively. Table 4 shows that foot
dominanceis present and that fusing classification results from out
of phasegait sequencesincreases the identification rate. Figure 3
suggeststhat asymmetry about avertical axisin the side view may
be addressed by considering the two halves of the body on either
side of the vertical axis. The results of matching left and the right
projection vectors separately were combined using the Sum rule.
Tables 2 and 3 show that the performance of frontal gait recogni-
tion can be enhanced by using the side view aswell.

We observe, in Figure 3 that the right projection vector which
capturesthe forward swing outperforms the left projection vector.
This suggeststhat, in this database, the forward swing of the hands
and legstends has alesser degree of variability with time (between
the gallery and probe sequences). MIT dataset, unlike the other
datasetshasalow frame rate. Secondly, errorsin background sub-
traction necessitate frame-dropping. This could be areason for the
poor performance.

Table 6. Cumulative match scores at rank 1 and rank 3 for MIT
dataset: Combining leg dynamics and height by adding the simi-

larity scores.
Evaluation Scheme | CMSatrank1l | CMSat rank 3
Day 1vs. Days2,3,4 29 50
Day 2vs. Days1,3,4 50 100
Day 3vs. Days1,2,4 20 54
Day 4 vs. Days1,2,3 30 52

4. CONCLUSION

Different featuresthat affect gait such asthe swing of the handsand
legs, the sway in the body asobservedin frontal gait, static features
like height were systematically analyzed. Starting with dynamic
time warping which isavariant of template matching, amore gen-
eralized scheme, the HMM was chosen for matching. The matri-
ces of similarity scores between the gait sequencesin the gallery
and probe sets were computed. Sum, Product and MIN rules were
used to combinethe decisionsmade using the separatefeatures. As
expected, the overall recognition performanceimproved dueto fu-
sion. Experiments were conducted on four different datasets, each
dataset presented different types of challenges.
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