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ABSTRACT

At least 32 joint related degrees of freedom need to be estimated
to reliably track the human body in 3D. The particle filter is
robust to distracting clutter by maintaining multiple hypotheses
for each of these joint angles. Real-time tracking is difficult
however with the computational overhead of such a large search
space. This paper optimizes this search space utilizing feedback
from a Continuous Human Movement Recognition (CHMR)
system and improves the robustness and efficiency of each
particle calculation using a novel body model. The joint angles
are estimated for the next frame using a Particle filter with
forward smoothing. A new paradigm enables the tempora
segmentation of continuous motion into dynemes. Using HMM,
the CHMR system attempts to infer the human movement skill
that could have produced the observed sequence of dynemes.
Hundreds of movement skills, from gait to sdatos, are
successfully tracked and recognized.

1. INTRODUCTION

Research into tracking, recognizing and understanding full
body human motion has so far been mainly limited to gait or
frontal posing. This paper describes a framework for tracking,
recognizing and quantifying full body human motion, free of
joint markers, set-up procedures and hand-initialization, over a
larger range of motion than previously attempted by considering
hundreds of different movement skills.

Robust tracking of the full human body in 3D is enhanced
by predicting the joint angles for the next frame to stabilize the
tracking. This calculation of joint angles, for the next frame,
was cast as an estimation problem, which was solved using a
Particlefilter.

The Particle Filter was developed to address the problem of
tracking contour outlines through heavy image clutter [4, 5]. The
filter's output at a given time-step, rather than being a single
estimate of position and covariance as in a Kalman filter, is an
approximation of an entire probability distribution of likely joint
angles. This alows the filter to maintain multiple hypotheses
and thus be robust to distracting clutter.

With about 32 degree of freedom (DOFs) to be determined
for each frame, there is the potential of exponential complexity
evaluating such a high dimensional search space. MacCormick
[7] proposed Partitioned Sampling and Sullivan [11] proposed
Layered Sampling to reduce the search space by partitioning it
for more efficient particle filtering. Although Annealed Particle
Filtering [2] is an even more general and robust solution, it
struggles with efficiency which Deutscher [3] improves with
Partitioned Annealed Particle Filtering. This paper optimizes
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the huge search space related to calculating many particles for
over 32 DOFs by utilizing feedback from the CHMR system. A
novel body model is also engaged to improve the robustness and
efficiency of each calculation for the remaining particles.

Recognizing and quantifying human movement requires
spatial segmentation followed by temporal segmentation (Fig.
1). The spatial segmentation is essentially a tracking process
which determines a motion vector encapsulating a set of joint
angles (and other biomechanical parameters) for each frame.
The temporal segmentation is a CHMR system which attempts
to infer the movement skill that could have produced the
observed sequence of motion vectors.

Segmentation

Particle Hidden Markov
Filter Models

Fig. 1. Overview of segmentation of human motion.

Where the tracking process utilizes a body model and a
kinematic model, the CHMR system draws on a dyneme-model,
skill-model, and a semantic-model (Fig. 5). Where the tracking
process stochastically enhances spatial segmentation with a
particle filter, the CHMR system stochastically enhances
temporal segmentation with a HMM. The tracking is further
stabilized and optimized by feeding back information from the
CHMR system (Fig. 1).

2. TRACKING

Various approaches for tracking the whole body have been
proposed in the image processing literature. They can be
distinguished by the representation of the body as a stick figure,
2D contour or volumetric model and by their dimensionality
being 2D or 3D. Joint angles are able to be more directly
estimated by mapping human body models directly onto a given
image. Volumetric 3D models have the advantage of being more
generally valid with self occlusions more easily resolved. Most
volumetric approaches model body parts using generalized
cylinders [8] or super-quadratics [9]. Some extract features [12]
and othersfit the projected model directly to the image [8].

2.1 Body Model

Cylindrical and quadratic body models, used in previous
studies, do not contour accurately to the body, thus decreasing
tracking stability. No study has yet utilized a color 3D texture
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map of the entire body, which would enable body parts to be
tracked more accurately to further stabilize tracking. In a novel
approach to body part representation proposed in this paper, 3D
regions are sized and texture mapped from each body part by
extracting features during the initialization phase.
Anthropometric data [10] is used as a Gaussian prior for the
initial body-part proportions with left-right symmetry of the
body used as a stabilizing guide. Initially a low accuracy is set
for each body-part with the accuracy increasing as structure from
motion resolves the relative proportions. For example, a low
color and high radius accuracy is initially set for pixels near the
edge of a body part, high color and low radius accuracy for other
near side pixels, and alow color and low radius accuracy is set
for far side pixels. The ongoing temporal resolution following
self occlusions enables increasing radius and color accuracy.
Breathing, muscle flexion and other normal variations of body
part radius are accounted for by the radius elasticity parameter.

2.2 Kinematic Model

The kinematic model tracking the position and orientation of a
person relative to the camera, entails projecting 3D body model
parts onto a 2D image with three chained homogeneous
transformation matrices:

p(x,b) =li(x, Gi(x, Bi(x,b))) @

where x is a parameter vector calculated for optimum alignment
of the projected model with the image, B is the Body frame of
reference transformation, C is the Camera frame of reference
transformation, | is the Image frame of reference transformation,
b is a body-part surface point, p isapixel in 2D frame of video.

Joint angles are used to track the location and orientation of
each body part, with the range of joint angles being constrained
by limiting the degrees of freedom (DOF) associated with each
joint. A simple motion model of constant angular velocity for
joint angles is used in the kinematical model. Each DOF is
constrained by anatomical joint-angle limits, body-part inter-
penetration avoidance and joint-angle equilibrium positions
modeled with Gaussian stabilizers around their equilibria. To
stabilize tracking, the joint angles are estimated for the next
frame. The calculation of joint angles, for the next frame, is cast
as an estimation problem which is solved using a Particle filter
(Condensation algorithm).

2.3 ParticleFilter

The Particle Filter is a considerably simpler algorithm than
the Kaman Filter. Moreover despite its use of random
sampling, which is often thought to be computationally
inefficient, the Particle Filter can run in rea-time. This is
because tracking over time maintains relatively tight
distributions for shape at successive time steps and particularly
so given the availability of accurate learned models of shape and
motion from the human-movement-recognition (CHMR) system.

The particle filter has
e three probability distributions in problem specification:

1. Prior density p(x) for the state x
= joint anglesin previous frame
2. Process density p(X|Xt-1)
= kinematic and body models
3. Observation density p(z|x)
= image in previous frame
e one probability distribution in the solution specification:
1. State Density p(x{Z:) = joint anglesin next frame

When tracking through background clutter or occlusion, a
joint angle may have N alternate possible values (samples) s
with respective weights w, where

prior density p(x) = Su={(s”,w™), n=1..N} = a sample
set

For the next frame, anew sample is selected, st = s-1 by finding
the smallest i for which ¢ > r, where ¢ = Yw® and r is a
random number {0,1}.

(n)

Ajoint angle, s, " in the next frame is predicted by sampling

from the process density, p(XiXt1 = s’f")) which encompasses
the kinematic model, body model and cost function
minimization. In this prediction step both edge and region
information are used. The edge information is used to directly
match the image gradients with the expected model edge
gradients. The region information is also used to directly match
the values of pixelsin the image with those of the body model’s
3D color texture map.

The prediction step involved minimizing the cost functions:

edge error Ec using edge information:

1
Ee(S) =

— S (0 () F m(xy,§)°

e'e X,y
+05(5-5) c;XS-5) ~mins, (2

region error E; using region information:

1
E(S) =—— 2 ([P ()] -1yl (S’

Ny Ve j=1

+Eo(§) - min§ 3)
where i; represents the image at time t, m; the model gradients
a timet, neisthe number of edge values summed, ve is the
edge variance, n, is the number of region values summed, v; is
the region variance, p; is the image pixel coordinate of the jth
surface point on a body part.

Performance is enhanced by minimizing the area of body
part being tracked, based on angular speed and occlusion.

The new position in terms of the observation density, p(z|x:)
is then measured and weighed with forward smoothing:
e Estimate weights wt = p(zx: = &)
«  Normalize weights Y, w®™ =1
e Smooth weights wt over 1..t, for n trajectories
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e Replace each sample set with its n trajectories { (s,wi)} for
1.t
«  Reweight all w™ over 1..t
Trajectories tend to merge within 10 frames
=  O(Ny) storage prunes down to O(N)

In this paper, feedback from the CHMR system utilizes the
large training set of skills to achieve an even larger reduction of
the search space. In practice, human movement is found to be
most efficient, with minimal DOFs rotating at any onetime. The
equilibrium positions and physical limits of each DOF further
stabilize and minimize the dimensional space. With so few
DOFs to track at any one time, a minimal number of particles
are required, significantly raising the efficiency of the tracking
process. Such highly constrained movement results in a sparse
domain of mation projected by each motion vector.

3. DYNEMES

A new paradigm has been developed for the tempora
segmentation of continuous motion into dynemes. As the
phoneme is a phonetic unit of human speech, so is the dyneme a
dynamic unit of human motion. An alphabet of dynemes has
been determined by deconstructing hundreds of movement skills
into their correlated lowest common denominator of basic
movement.

For example, a Centre of Mass (COM) category of dyneme
isillustrated in Fig. 3a where each running step is delimited by
a COM minima. A full 360° rotation of the principle axis during
a cartwheel in Fig. 3b illustrates another dyneme category of
rotation from the vertical.

a

Fig. 3. A sequence of COM parameters during running and a
sequence of principle-axis parameters thru a cartwheel.

The pronunciation of the English language is constructed
from approximately 50 phonemes. This work has so far
determined about 35 principle dynemes with the expectation of
more dynemes being realized in future research.

4. SKILL RECOGNITION

To simplify the design, it is assumed that the CHMR system
contains a limited set of possible human movement skills. This
approach restricts the search for possible skill sequences to
those skills listed in the skill model, which lists the candidate
skills and provides dynemes — a set of basic units, individua
granules of human movement — for the composition of each
skill. The current skill model contains hundreds of skills where
the length of the skill sequence being performed by a person is
unknown. If M represents the number of human movement
skills in the skill model, the CHMR system could hypothesize
M" possible skill sequences for a skill sequence of length N.

However these skill sequences are not equally likely to occur
due to the biomechanical constraints of human motion.

[n
skip fun
nop
= Ssiple
skills skills skills
frame 1 frame 3 frame 5 frame 7

skill identified

e

Fig. 4. Stochastic Prediction and Recognition of a Movement
Skill given the Motion Vector for each Frame.

as a skip

A generative probabilistic model that encapsulates this
sequence of steps is used. Given an observed sequence of

motion vectors yI the recognition process attempts to find the

skill  sequence sf' that maximizes this skill sequence's

probability:
. N, T, _ T,.N N
Si\l=afgmax p(sy |y, ) =argmax p(y, [s; )p(s; ) (4

N N

S S

This approach applies Bayes' law and ignores the denominator
term to maximize the product of two terms: the probability of
the motion vectors given the skill sequence and the probability
of the skill sequence itself. The CHMR framework described by
this equation is illustrated below in Figure 5 where, using
motion vectors from the tracking process, the recognition
process uses the dyneme, skill, semantic and activity models to
construct a hypothesis for interpreting a video sequence.

TRACKING RECOGNITION
PROCESS PROCESS
feature motion hypothesis
extraction Vectors, search
spatial temporal
segmentation segmentation

DYNEME SKILL SEMANTIC| [ACTIVITY
MODEL MODEL MODEL MODEL
dynemes= skills= triplets [ |activities=>

motion-vector] | dyneme & pairs = skill-
sequences seguences of skills seguences

Fig. 5. Human Movement Recognition system. The dyneme,
skill and semantic and activity models construct a hypothesis for
interpreting a video sequence.

In the tracking process, motion vectors are extracted from the
video stream. In the recognition process, the search hypothesizes
a probable movement skill sequence using four models:
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e the dyneme modd models the relationship between the
motion vectors and the dynemes.

e the skill model block defines the possible movement skills
that the search can hypothesize, representing each
movement skill as alinear sequence of dynemes,

e the semantic modd models the semantic structure of
movement by modeling the probability of sequences of
skills simplified to triplets and pairs; and

e The activity model defines the possible human movement
activities that the search can hypothesize, representing each
activity as alinear sequence of skills.

5. PERFORMANCE

Hundreds of skills were tracked and classified using a 1.8GHz,
640MB RAM Pentium IV platform processing 24 bit color
within the Microsoft DirectX 8.1 environment under Windows
XP. The video sequences were captured with a JVC DVL-9800
digital video camera at 30 fps, 720 by 480 pixel resolution.

Each person moved in front of a stationary camera with a
static background and static lighting conditions. Only one
person was in frame at any one time. Tracking began when the
whole body was visible which enables initialization of the body
model. However, an elongated trunk with disproportionate short
legs is the body-model consequence of the presence of a skirt —
the body model failed to initialize for tracking due to the
variance of body-part proportions exceeding an acceptable
threshold.

Particle filter tracking also failed for loose clothing. Even
with smoothing, joint angles surrounded by baggy clothes
permutated thru unexpected angles within an envelope
sufficiently large as to invalidate the tracking.

Motion blurring lasted about 10 frames on average with the
effect of perturbing joint angles within the blur envelope.
Forward smoothing of the particle filter did not produce an
acceptable result throughout the blurring sequence. Given a
reasonably accurate angular velocity, it was possible to de-blur
the image sufficiently to aleviate this problem (Fig. 6).

A
Fig. 6. A: particle filter tracking through motion blur of right
calf and foot segments during a flick-flack (back-handspring).
B: 3 dternative particles (knee angles) for the right calf
| ocation.
C: Moation-blur corrected particle filter tracked location.

The skill error rate quantifies CHMR system performance
by expressing, as a percentage, the ratio of the number of skill
errors to the number of skills in the reference training set.
Depending on the task, CHMR system skill error rates can vary
by an order or magnitude. The CHMR system was tested on a
training set of 840 movement patterns, from walking to twisting
saltos. An independent testing set of 200 skills were eval uated.
Both the training and testing skill sets were performed by the

same people. These were successfully tracked, recognized and
evaluated with their respective biomechanical components
quantified where a skill error rate of 4.5% was achieved.

6. CONCLUSIONSAND FUTURE RESEARCH

In this paper, it was demonstrated that this approach was able to
successfully track and classify diverse motion patterns in real-
time, free of joint markers, set-up procedures and hand-
initialization, to detect human movement skills with a skill error
rate of 4.5%. Hundreds of movement skills, from walking to
twisting saltos, were successfully tracked, recognized and
evaluated with their respective biomechanical components
quantified. The results suggest that this approach has the
potential to guide clinicians and coaches toward analyzing
movement and quantifying improvement utilizing non-invasive
biomechanical analysis.

Future studies aim to extend the dyneme, skill, semantic and
activity models and also to improve the robustness and accuracy
of the system, especially the poorly observable depth DOFs, by
applying to the Particle filter, inflated posteriors and dynamics
for sample generation and then reweighing the results.
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