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ABSTRACT 
 

At least 32 joint related degrees of freedom need to be estimated 
to reliably track the human body in 3D. The particle filter is 
robust to distracting clutter by maintaining multiple hypotheses 
for each of these joint angles. Real-time tracking is difficult 
however with the computational overhead of such a large search 
space. This paper optimizes this search space utilizing feedback 
from a Continuous Human Movement Recognition (CHMR) 
system and improves the robustness and efficiency of each 
particle calculation using a novel body model. The joint angles 
are estimated for the next frame using a Particle filter with 
forward smoothing. A new paradigm enables the temporal 
segmentation of continuous motion into dynemes. Using HMM, 
the CHMR system attempts to infer the human movement skill 
that could have produced the observed sequence of dynemes. 
Hundreds of movement skills, from gait to saltos, are 
successfully tracked and recognized. 
 
 

1.  INTRODUCTION 
 

      Research into tracking, recognizing and understanding full 
body human motion has so far been mainly limited to gait or 
frontal posing. This paper describes a framework for tracking, 
recognizing and quantifying full body human motion, free of 
joint markers, set-up procedures and hand-initialization, over a 
larger range of motion than previously attempted by considering 
hundreds of different movement skills.  
      Robust tracking of the full human body in 3D is enhanced 
by predicting the joint angles for the next frame to stabilize the 
tracking. This calculation of joint angles, for the next frame, 
was cast as an estimation problem, which was solved using a 
Particle filter. 
      The Particle Filter was developed to address the problem of 
tracking contour outlines through heavy image clutter [4, 5]. The 
filter’s output at a given time-step, rather than being a single 
estimate of position and covariance as in a Kalman filter, is an 
approximation of an entire probability distribution of likely joint 
angles. This allows the filter to maintain multiple hypotheses 
and thus be robust to distracting clutter. 
      With about 32 degree of freedom (DOFs) to be determined 
for each frame, there is the potential of exponential complexity 
evaluating such a high dimensional search space. MacCormick 
[7] proposed Partitioned Sampling and Sullivan [11] proposed 
Layered Sampling to reduce the search space by partitioning it 
for more efficient particle filtering. Although Annealed Particle 
Filtering [2] is an even more general and robust solution, it 
struggles with efficiency which Deutscher [3] improves with 
Partitioned Annealed Particle Filtering. This paper optimizes 

the huge search space related to calculating many particles for 
over 32 DOFs by utilizing feedback from the CHMR system. A 
novel body model is also engaged to improve the robustness and 
efficiency of each calculation for the remaining particles. 
      Recognizing and quantifying human movement requires 
spatial segmentation followed by temporal segmentation (Fig. 
1). The spatial segmentation is essentially a tracking process 
which determines a motion vector encapsulating a set of joint 
angles (and other biomechanical parameters) for each frame. 
The temporal segmentation is a CHMR system which attempts 
to infer the movement skill that could have produced the 
observed sequence of motion vectors. 
 

 
Fig. 1. Overview of segmentation of human motion. 

 

Where the tracking process utilizes a body model and a 
kinematic model, the CHMR system draws on a dyneme-model, 
skill-model, and a semantic-model (Fig. 5). Where the tracking 
process stochastically enhances spatial segmentation with a 
particle filter, the CHMR system stochastically enhances 
temporal segmentation with a HMM. The tracking is further 
stabilized and optimized by feeding back information from the 
CHMR system (Fig. 1). 
 

2.  TRACKING 
 

      Various approaches for tracking the whole body have been 
proposed in the image processing literature. They can be 
distinguished by the representation of the body as a stick figure, 
2D contour or volumetric model and by their dimensionality 
being 2D or 3D. Joint angles are able to be more directly 
estimated by mapping human body models directly onto a given 
image. Volumetric 3D models have the advantage of being more 
generally valid with self occlusions more easily resolved. Most 
volumetric approaches model body parts using generalized 
cylinders [8] or super-quadratics [9]. Some extract features [12] 
and others fit the projected model directly to the image [8]. 
 

2.1 Body Model 
 

      Cylindrical and quadratic body models, used in previous 
studies, do not contour accurately to the body, thus decreasing 
tracking stability. No study has yet utilized a color 3D texture 
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map of the entire body, which would enable body parts to be 
tracked more accurately to further stabilize tracking. In a novel 
approach to body part representation proposed in this paper, 3D 
regions are sized and texture mapped from each body part by 
extracting features during the initialization phase.  
    Anthropometric data [10] is used as a Gaussian prior for the 
initial body-part proportions with left-right symmetry of the 
body used as a stabilizing guide. Initially a low accuracy is set 
for each body-part with the accuracy increasing as structure from 
motion resolves the relative proportions. For example, a low 
color and high radius accuracy is initially set for pixels near the 
edge of a body part, high color and low radius accuracy for other 
near side pixels, and a low color and low radius accuracy is set 
for far side pixels. The ongoing temporal resolution following 
self occlusions enables increasing radius and color accuracy. 
Breathing, muscle flexion and other normal variations of body 
part radius are accounted for by the radius elasticity parameter. 

 
2.2 Kinematic Model 

 
The kinematic model tracking the position and orientation of a 
person relative to the camera, entails projecting 3D body model 
parts onto a 2D image with three chained homogeneous 
transformation matrices: 

 

               p (x, b ) = Ii (x, Ci (x, Bi (x, b )))  (1) 
 

where x is a parameter vector calculated for optimum alignment 
of the projected model with the image, B is the Body frame of 
reference transformation, C is the Camera frame of reference 
transformation, I is the Image frame of reference transformation, 
b is a body-part surface point, p is a pixel in 2D frame of video. 

  Joint angles are used to track the location and orientation of 
each body part, with the range of joint angles being constrained 
by limiting the degrees of freedom (DOF) associated with each 
joint. A simple motion model of constant angular velocity for 
joint angles is used in the kinematical model. Each DOF is 
constrained by anatomical joint-angle limits, body-part inter-
penetration avoidance and joint-angle equilibrium positions 
modeled with Gaussian stabilizers around their equilibria. To 
stabilize tracking, the joint angles are estimated for the next 
frame. The calculation of joint angles, for the next frame, is cast 
as an estimation problem which is solved using a Particle filter 
(Condensation algorithm). 

 
2.3 Particle Filter 
 
      The Particle Filter is a considerably simpler algorithm than 
the Kalman Filter. Moreover despite its use of random 
sampling, which is often thought to be computationally 
inefficient, the Particle Filter can run in real-time. This is 
because tracking over time maintains relatively tight 
distributions for shape at successive time steps and particularly 
so given the availability of accurate learned models of shape and 
motion from the human-movement-recognition (CHMR) system. 
 

The particle filter has  
•  three probability distributions in problem specification:  

1. Prior density p(x) for the state x 
  � joint angles in previous frame  

2. Process density p(xt|xt-1)  
   � kinematic and body models 

3. Observation density p(z|x) 
      � image in previous frame 

•  one probability distribution in the solution specification:  
1. State Density p(xt|Zt) � joint angles in next frame 

 
      When tracking through background clutter or occlusion, a 
joint angle may have N alternate possible values (samples) s 
with respective weights w, where 

prior density  p(x)  ≈  St-1 = {(s(n),w(n)), n=1..N} = a sample 
set 

 
For the next frame, a new sample is selected, śt = st-1 by finding 
the smallest i for which c(i) ≥ r, where c(i) = ∑tw(i) and r is a 
random number {0,1}. 

      A joint angle, s
( )n

t in the next frame is predicted by sampling 

from the process density, p(xt|xt-1 = ś
( )n

t ) which encompasses 

the kinematic model, body model and cost function 
minimization. In this prediction step both edge and region 
information are used. The edge information is used to directly 
match the image gradients with the expected model edge 
gradients. The region information is also used to directly match 
the values of pixels in the image with those of the body model’s 
3D color texture map. 

 

      The prediction step involved minimizing the cost functions:  
 

edge error Ee using edge information: 
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region error Er using region information: 
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where it represents the image at time t,  mt the model gradients 
at time t,  ne is the number of edge values summed, ve is the 
edge variance, nr is the number of region values summed, vr is 
the region variance, pj is the image pixel coordinate of the jth 
surface point on a body part. 
      Performance is enhanced by minimizing the area of body 
part being tracked, based on angular speed and occlusion. 
 
      The new position in terms of the observation density, p(zt|xt) 
is then measured and weighed with forward smoothing: 
•  Estimate weights wt = p(zt|xt = st) 
•  Normalize weights ∑nw(n) = 1 
•  Smooth weights wt over 1..t, for n trajectories 
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a 

•  Replace each sample set with its n trajectories {(st,wt)} for 
1..t 

•  Re-weight all w(n) over 1..t 
Trajectories tend to merge within 10 frames 

� O(Nt) storage prunes down to O(N) 
 

In this paper, feedback from the CHMR system utilizes the 
large training set of skills to achieve an even larger reduction of 
the search space. In practice, human movement is found to be 
most efficient, with minimal DOFs rotating at any one time. The 
equilibrium positions and physical limits of each DOF further 
stabilize and minimize the dimensional space. With so few 
DOFs to track at any one time, a minimal number of particles 
are required, significantly raising the efficiency of the tracking 
process. Such highly constrained movement results in a sparse 
domain of motion projected by each motion vector. 

 
3.  DYNEMES 

 
      A new paradigm has been developed for the temporal 
segmentation of continuous motion into dynemes. As the 
phoneme is a phonetic unit of human speech, so is the dyneme a 
dynamic unit of human motion. An alphabet of dynemes has 
been determined by deconstructing hundreds of movement skills 
into their correlated lowest common denominator of basic 
movement.  
      For example, a Centre of Mass (COM) category of dyneme 
is illustrated in Fig. 3a where each running step is delimited by 
a COM minima. A full 360o rotation of the principle axis during 
a cartwheel in Fig. 3b illustrates another dyneme category of 
rotation from the vertical. 
 

 

 
 
 
 
 
 
Fig. 3. A sequence of COM parameters during running and a 

sequence of principle-axis parameters thru a cartwheel. 
 

      The pronunciation of the English language is constructed 
from approximately 50 phonemes. This work has so far 
determined about 35 principle dynemes with the expectation of 
more dynemes being realized in future research. 
 

4. SKILL RECOGNITION 
 

To simplify the design, it is assumed that the CHMR system 
contains a limited set of possible human movement skills. This 
approach restricts the search for possible skill sequences to 
those skills listed in the skill model, which lists the candidate 
skills and provides dynemes – a set of basic units, individual 
granules of human movement – for the composition of each 
skill. The current skill model contains hundreds of skills where 
the length of the skill sequence being performed by a person is 
unknown. If M represents the number of human movement 
skills in the skill model, the CHMR system could hypothesize 
MN possible skill sequences for a skill sequence of length N. 

However these skill sequences are not equally likely to occur 
due to the biomechanical constraints of human motion.  
 

 
Fig. 4. Stochastic Prediction and Recognition of a Movement 

Skill given the Motion Vector for each Frame. 
 
      A generative probabilistic model that encapsulates this 
sequence of steps is used. Given an observed sequence of 

motion vectors y 1
T

 the recognition process attempts to find the 

skill sequence ŝ 1

N
that maximizes this skill sequence’s 

probability: 

    ŝ
N
1 =

1

arg max
Ns

p(s
N
1 | y

T
1 ) ≡

1

arg max
Ns

p(y
T
1 | s

N
1 ) p(s

N
1 )    (4) 

This approach applies Bayes’ law and ignores the denominator 
term to maximize the product of two terms: the probability of 
the motion vectors given the skill sequence and the probability 
of the skill sequence itself. The CHMR framework described by 
this equation is illustrated below in Figure 5 where, using 
motion vectors from the tracking process, the recognition 
process uses the dyneme, skill, semantic and activity models to 
construct a hypothesis for interpreting a video sequence. 
 
 

 
Fig. 5. Human Movement Recognition system. The dyneme, 
skill and semantic and activity models construct a hypothesis for 
interpreting a video sequence. 
 

In the tracking process, motion vectors are extracted from the 
video stream. In the recognition process, the search hypothesizes 
a probable movement skill sequence using four models: 
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•  the dyneme model models the relationship between the 
motion vectors and the dynemes. 

•  the skill model block defines the possible movement skills 
that the search can hypothesize, representing each 
movement skill as a linear sequence of dynemes; 

•  the semantic model models the semantic structure of 
movement by modeling the probability of sequences of 
skills simplified to triplets and pairs; and 

•  The activity model defines the possible human movement 
activities that the search can hypothesize, representing each 
activity as a linear sequence of skills. 

 
5. PERFORMANCE 

 
Hundreds of skills were tracked and classified using a 1.8GHz, 
640MB RAM Pentium IV platform processing 24 bit color 
within the Microsoft DirectX 8.1 environment under Windows 
XP. The video sequences were captured with a JVC DVL-9800 
digital video camera at 30 fps, 720 by 480 pixel resolution. 
      Each person moved in front of a stationary camera with a 
static background and static lighting conditions. Only one 
person was in frame at any one time. Tracking began when the 
whole body was visible which enables initialization of the body 
model. However, an elongated trunk with disproportionate short 
legs is the body-model consequence of the presence of a skirt – 
the body model failed to initialize for tracking due to the 
variance of body-part proportions exceeding an acceptable 
threshold. 
      Particle filter tracking also failed for loose clothing. Even 
with smoothing, joint angles surrounded by baggy clothes 
permutated thru unexpected angles within an envelope 
sufficiently large as to invalidate the tracking.  
      Motion blurring lasted about 10 frames on average with the 
effect of perturbing joint angles within the blur envelope. 
Forward smoothing of the particle filter did not produce an 
acceptable result throughout the blurring sequence. Given a 
reasonably accurate angular velocity, it was possible to de-blur 
the image sufficiently to alleviate this problem (Fig. 6). 
 

   
A      B      C 

Fig. 6. A: particle filter tracking through motion blur of right 
calf and foot segments during a flick-flack (back-handspring).  
B: 3 alternative particles (knee angles) for the right calf 
location. 
C: Motion-blur corrected particle filter tracked location. 
 

      The skill error rate quantifies CHMR system performance 
by expressing, as a percentage, the ratio of the number of skill 
errors to the number of skills in the reference training set. 
Depending on the task, CHMR system skill error rates can vary 
by an order or magnitude. The CHMR system was tested on a 
training set of 840 movement patterns, from walking to twisting 
saltos. An independent testing set of 200 skills were evaluated. 
Both the training and testing skill sets were performed by the 

same people. These were successfully tracked, recognized and 
evaluated with their respective biomechanical components 
quantified where a skill error rate of 4.5% was achieved. 

 
6. CONCLUSIONS AND FUTURE RESEARCH 

 
In this paper, it was demonstrated that this approach was able to 
successfully track and classify diverse motion patterns in real-
time, free of joint markers, set-up procedures and hand-
initialization, to detect human movement skills with a skill error 
rate of 4.5%. Hundreds of movement skills, from walking to 
twisting saltos, were successfully tracked, recognized and 
evaluated with their respective biomechanical components 
quantified. The results suggest that this approach has the 
potential to guide clinicians and coaches toward analyzing 
movement and quantifying improvement utilizing non-invasive 
biomechanical analysis. 
      Future studies aim to extend the dyneme, skill, semantic and 
activity models and also to improve the robustness and accuracy 
of the system, especially the poorly observable depth DOFs, by 
applying to the Particle filter, inflated posteriors and dynamics 
for sample generation and then reweighing the results. 
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