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ABSTRACT

This paper investigates the use of graph-spectral methods
for learning the modes of structural variation in sets of graphs.
Our approach is as follows. First, we vectorise the adja-
cency matrices of the graphs. Using a graph-matching method
we establish correspondences between the components of
the vectors. Using the correspondences we cluster the graphs
using a Gaussian mixture model. For each cluster we com-
pute the mean and covariance matrix for the vectorised ad-
jacency matrices. We allow the graphs to undergo struc-
tural deformation by linearly perturbing the mean adjacency
matrix in the direction of the modes of the covariance ma-
trix. We demonstrate the method on sets of corner Delaunay
graphs for 3D objects viewed from varying directions.

1. INTRODUCTION

Many shape-analysis problems in computer vision can be
abstracted using relational graphs. Examples include the
use of shock graphs[7] to represent the differential struc-
ture of boundary contours and view graphs. The main ad-
vantage of the graph-representation is that it captures the
structural variation of shape in a parsimonious way. How-
ever, there are a number of limitations to the use of graph-
representations. First, they are notoriously susceptible to the
effects of noise and clutter. Hence, the addition or loss of
a few nodes and edges can result in graphs of significantly
different structure. Second, it is difficult to characterise and
hence learn the distribution of structural variations in sets
of graphs. As a result it is not possible to construct pattern-
spaces associated with the modes of structural variations for
graphs.

The ability to learn the modes of variation of the adja-
cency matrix is an important one. The reason for this is that
it allows the statistical significance of changes in the edge-
structure of graphs to be assessed. This is crucial capability
in measuring the similarity of graphs, or in matching them
to one-another. There have been several previous attempts
to solve this problem. One of the earliest of these was to ex-
tend the concept of string edit distance to graphs. Here Fu
and his co-workers[5] introduced edit costs associated with
the re-labelling, insertion and deletion of edges. However,

the costs were selected on an ad-hoc basis and there was no
method for learning the edit costs. Moreover, the theory un-
derlying graph-edit distance lacks the formality and rigour
of that for strings. However, some steps have recently been
taken by Bunke[1], who has shown the relationship between
edit distance and the size of the maximum common sub-
graph. Christmas, Kittler and Petrou[2] have taken a prob-
abilistic approach to the problem. They develop a Gaussian
model for edge structure, which is used to compute compat-
ibility function for relaxation labelling. Again, there is no
methodology for learning the model from data.

The aim in this paper is to overcome this problem by
developing statistical methods for analysing the modes of
structural variation in sets of graphs. We pose the problem
as that of estimating a covariance matrix for the edge-sets
of the graphs. To do this we require a means of vectoris-
ing the graphs. We do this using correspondence matches
to permute the adjacency matrices onto a standard reference
order. We estimate the required correspondences using a
recently reported EM algorithm[4], in which the correspon-
dences are located using a singular value decomposition in
the maximisation step. The standardised adjacency matri-
ces are vectorised by stacking the columns to form long-
vectors. We model the pattern-space for the standardised
long-vectors using a Gaussian mixture model. The EM al-
gorithm is used to make maximum likelihood estimates for
the mean-vectors and covariance matrices for the mixture
components.

From the covariance matrices for the standardised vec-
tors, there are a number of ways in which to construct pattern-
spaces. The simplest of these is to construct an eigenspace
by projecting the standardised adjacency matrix long-vectors
onto the leading eigenvectors of the covariance matrix. The
distribution of graphs so produced can be further simplified
by fitting a manifold or a mixture model. However, here we
use the eigenvectors of the covariance matrix to construct a
linear model for variations in the adjacency matrices. To do
this we borrow ideas from point distribution models. Here
Cootes and Taylor[3] have shown how to construct a linear
shape-space for sets of landmark points for 2D shapes. We
use a variant of this idea to model variations in the long-
vectors for the standardised covariance matrices. We com-
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mence by computing the leading eigenvectors for the cluster
covariance matrices. The graphs deformed by displacing the
mean adjacency matrix long-vectors in the directions of the
leading eigenvectors of the covariance matrix. Our method
allows the pattern of edge-deformations to be learned and
applied at the global level. In principal edge edit costs can
be obtained from our model via a process of averaging the
deformations. In this way we construct a generative model
of graph-structure. This model may be both fitted to data
and sampled.

2. BACKGROUND
In this paper we are concerned with the set of graphs

����������	� � ����
��	� � � ����

. The � th graph is denoted by

��
�������
�����
��
.

where
��


is the set of nodes and
��
�����
�����


is the edge-
set. Our approach in this paper is a graph-spectral one. For
each graph

��

we compute the adjacency matrix  
 . This

is a ! ��
 ! � ! ��
 ! matrix whose element with row index " and
column index # is

 
$� " � # �%�'&�( if
� " � # �*)+��


otherwise

�
(1)

To construct our generative model of variations in graph
structure, we will convert the adjacency matrices into long-
vectors where the entries have a standardised order. To do
this we need to permute the order of the rows and columns
of the adjacency matrices. We represent the set of corre-
spondences between the nodes in pairs of graphs using a
correspondence matrix. For the graphs indexed � and , , the
correspondence matrix is denoted by - 
/. 0 . The elements of
the matrix convey the following meaning

- 
/. 01� " � # �%�2& ( if " )3��
 and # )3�$0 are in correspondence4
otherwise

(2)
To recover the correspondence matrices, we use the EM al-
gorithm recently reported by Luo and Hancock [4]. This
algorithm commences from a Bernoulli model for the cor-
respondences indicators which are treated as missing data,
From this distribution an expected log-likelihood function
for the missing correspondence indicators is developed. In
the maximisation step a singular value decomposition method
is used to recover the correspondence matrix which satisfy
the condition

- 
/. 05� " � # �%�76�8�9%:;6=<>@?BA�C  �D
 -E 0 -EDGF (3)

In other words, the maximum likelihood correspondence
matrices are those that maximise the correlation of the two
adjacency matrices.

2.1. Preclustering
To establish initial clusters, we perform pairwise cluster-
ing using the pairwise distance between spectral feature-

vectors extracted from the graphs. From the adjacency ma-
trices  
�� � � ( � � � H at hand, we can calculate the eigen-
values I 
 by solving the equation !  
�J I 
=K ! � 4

and
the associated eigenvectors LNM
 by solving the system of
equations  
 L M
 � I M 
 L M
 . We order the eigenvectors ac-
cording to the decreasing magnitude of the eigenvalues, i.e.! I �
 !POQ! I �
 !RO �	�	� ! IRS T/U=S
 ! � With the eigenvalues and eigen-
vectors of the adjacency matrix to hand, the spectral decom-
position for the adjacency matrix of the graph indexed � is

 
�� S T/U=SV W X � I
W 
 L
W
 � L

W
 � D (4)

Our vector of spectral features is constructed from the or-
dered eigenvalues of the adjacency matrix. For the graph
indexed � , the vector is Y 
Z�[� I �
 � I � 
 �	� � � � I]\
 � D . For the
pair of graphs indexed � and , , the squared Euclidean dis-
tance between the spectral feature vectors is ^ � 
/. 0 �_� Y 
�JY 0�� D � Y 0GJ Y 0�� . From the set of distance, we can construct
a pairwise representation of the affinity of different graphs.
The affinity is captured using an

H`�aH
matrix whose ele-

ment with row � and column , is b2c dfe
/. 0 �hgi<�j C Jlk ^ � 
/. 0 F �
We apply a pairwise clustering method to the matrix b .

The initial set of clusters are defined by the eigenmodes
of the link-weight matrix b . Here we follow Sarkar and
Boyer [6] who have shown how the positive eigenvectors of
the matrix of link-weights can be used to assign objects to
perceptual clusters. Using the Rayleigh-Ritz theorem, they
observe that the scalar quantity x

¯ m b x
¯

is maximised when
x
¯

is the leading eigenvector of b . Moreover, each of the
subdominant eigenvectors corresponds to a disjoint pairwise
cluster. They confine their attention to the same-sign posi-
tive eigenvectors (i.e. those whose corresponding eigenval-
ues are real and positive, and whose components are either
all positive or are all negative in sign). If a component of a
positive same-sign eigenvector is non-zero, then the corre-
sponding object belongs to the associated cluster of segmen-
tal entities. The eigenvalues I �=� I �n� � � � of b are the solutions
of the equation ! b J I K ! � 4 where

K
is the ! � ! � ! � ! iden-

tity matrix. The corresponding eigenvectors x
¯ o=p � x¯ o/q �	� � � are

found by solving the equation b x
¯ o/r � I W x

¯ o/r . With this
notation, the set of positive same-sign eigenvectors is rep-
resented by s �ut	v ! I M O 4xw C � x¯ yM � " � O 4�z " �R{ x

¯ yM � " ��|4�z "�F �f} .
To develop our pairwise clustering method further, we

require a cluster membership indicator ~ W M which convey
the following meaning

~ W M �'& ( if node " belongs to cluster
v4

otherwise
(5)

We use the iterative maximum likelihood algorithm for pair-
wise clustering recently developed by Robles-Kelly and Han-
cock [8]. The resulting estimated weight matrix �b can be
used to calculate the leading eigenvectors and eigenvalues.
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We initialise the cluster memberships using the compo-
nents of the same-sign positive eigenvectors and set

~ W � � ! x
¯ yM � " � !� W � T�� ! x¯ yM � " � ! (6)

3. GRAPH CLUSTERING
We use the pairwise clusters to seed our EM algorithm.
For each cluster, we identify the modal graph. This is the
graph for which , M � 6�8�9%:;6=< W ~ W M . The modal graphs
for the different clusters are used to establish a reference
order for the nodes. We use the correspondence matrices
to permute the node-order of the graphs into the reference
order for the different clusters. For the graph indexed � ,
the permuted adjacency matrix relevant to the cluster

v
is� M
 � - D
/. 0 �  
 - 
/. 0 � .

Once the adjacency matrices have been permuted, then
we can convert them into pattern-vectors. We do this by
stacking the columns of the adjacency matrix to form a long-
vector. For the graph-indexed � and the cluster

v
the long-

vector is ,
� M
 �'� � M
 � ( � ( � � � MW � ( ���n� �	� � � � � M
 �	�E�
�R�1� . Us-

ing the pairwise cluster-membership indicators we can com-
pute the mean long-vectors and the covariance matrices for
each cluster. These will be used to seed our EM algorithm.
For the cluster indexed

v
, the mean-vector is� c dfeM � 
V
 X � ~ 
 M � M
 (7)

while the covariance matrix is� c dfeM � 
V
 X � ~ 
 M ��� M
 J � M �i��� M
 J � M � D (8)

With this initialisation to hand, we use a Gaussian mixture
model to iteratively recover improved estimates of the mean
long-vector and the associated covariance matrix. We com-
mence by assuming that the long-vectors are drawn from the
Gaussian distribution
 ��� M
 ! � M � � M �� (�����R��� q�� ! � ! gi<�j�� J (� ��� M
 J � M � D ��� � ��� M
 J � M ��� (9)

In the maximisation step of the algorithm, the mean long-
vector and the covariance matrices for each of the clusters
are updated. The updated mean is� c \�� � eM � 
V
 X ��� � � ) v ! � M
 � � c \ eM � � c \ eM �1� M
 (10)

While the updated estimate of the covariance matrix is� � !#" ��$% &('V )�*
�,+.-	/103254 6 � ! $%87 � � ! $%97
: %)<; - : %)>= 6 � ! $% ; - : %)>= 6 � ! $% ; '

(11)
In the expectation step the a posteriori cluster membership
probabilities are updated using the Bayes rule. The update
equation is

+.-	/103254 6 � ! $% 7 � � ! $% 7
: %) ; & ? ) %�@ - : %) 4 6 � !#" ��$% 7 � � ! $% ;� %�A�B ? ) %�@ - : %) 4 6 � !#" ��$% 7 � � ! $% ;
(12)

where C 
 M � (H

V
 X ��� � � ) v ! � c \ eM � � c \ eM �f� M
 � (13)

4. MODAL ANALYSIS
Our aim is to use the covariance matrix delivered by the EM
algorithm to analyse the modes of variation for the long-
vectors representing the adjacency matrices of the graphs.
To do this we use a simple linaer model which has been
used to great effect in represent the modes of variations for
sets of point patterns.

We commence by computing the eigenvalues and eigen-
vectors for the covariance matrix

� M . The eigenvaluesI �=� I �n�	� � � � are found by solving the polynomial equation! � M J I K ! � 4
, where

K
is the identity matrix. The as-

soiciated eigenvectors D�M� � D]M� �	� � � are found by solving the
linear eigenvector equation

� M D]M0 � I 0 D]M0 From the eigen-
vectors we construct a modal matrix. The eigenvectors are
ordered in decreasing eigenvalue order to form the columns
of the modal matrix E M �u� D]M� ! D]M� ! � � � � ! D]M\ � . The linear de-
formation model allows the components of the adjacency
matrix long-vectors to undergo displacement in the direc-
tions of the eigenvectors of the covariance matrix. For the
long-vector of the graph

��

and the cluster indexed

v
, the

displaced vector is given byF� M
 � � MHG E MJI y
 M (14)

The degree of displacement for the different vector compo-
nents is controlled by the vector of parameters I 
 M .

The linear deformation model may be fitted to data. This
is done by searching for the least squares parameter vector.
Suppose that the model is to be fitted to the graph with stan-
dardised adjacency matrix

� 

. The least-squares parameter

vector satisfies the conditionI y
 M �76�8�9%:HK LM ��� M
 J � M J E MNI � D ��� M
 J � M J E MNI � (15)

The solution is

I y
 M � (� � E DM E M � � � E DM<O � M
 J � M P (16)

5. EXPERIMENT
We present experiments on graphs extracted from 2D im-
ages of 3D objects which undergo gradual changes in view-
ing direction. The graphs are constructed by first detect-
ing corners in the images, and then triangulating them us-
ing a Delaunay graph. The images used in our study are
taken from a turntable sequence of a model house in the
CMU/VASC database.
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In figure 1, we show example images from the CMU
/VASC sequence, which contains 10 frames in total. In Fig-
ure 2, we show the graphs extracted from the images. We
use 9 of the 10 graphs in the sequence for the purposes of
training the linear model. The ����� graph in the sequence
is retained for testing (recognition) and is matched to the
model. The top-left panel of Figure 3 shows the modal
graph. This graph is the one which has the largest cluster
membership probability in the pre-clustering step. The top-
right panel shows the test graph which is generated from the
����� image in the sequence. The mean graph is displayed in
bottom-left panel. This graph is generated using the method
described in section 4. The model fitting result is shown in
the bottom-right panel. In the lower two panels of the figure,
the darkness of the edges is proportional to the magnitude
of the corresponding element of the adjacency matrix. In
the case of the mean-graph, this quantity is proportional to
the number of times the corresponding edge appears in the
training data. It is interesting to note the similarities and dif-
ferences in the structure of the mean and modal graphs. In
the first instance, all the strong edges in the mean graph are
common with the modal graph. Second, in the mean graph
edges are pruned away from the high degree nodes. Hence,
the learning process would appear to locate common salient
structure, but remove ephemeral detail.

Fig. 1. CMU sequence
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Fig. 2. Training graphs for the CMU sequence

6. CONCLUSIONS
In this paper, we have presented a framework for leaning
a linear model of the modes of structural variation in sets
of graphs. We commence by locating correspondences be-
tween the nodes in different graphs and using the corre-
spondence order to vectorise the adjacency matrices. We
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Fig. 3. Modal graph, test graph, mean graph and fitted graph
for the CMU sequence

cluster the vectors using the EM algorithm. From the eigen-
modes of the cluster covariance matrices we construct a lin-
ear model of the modes of structural variation in the graphs.

There are a number of ways in which we intend to de-
velop this work. First, we aim to integrate the correspon-
dence and clustering steps into a single process. Second,
we aim to use the cluster covariance matrices to construct
piecewise subspace models for the graphs.
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