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ABSTRACT database at the shot level. Characterizing video content within

a shot has traditionally be done by the traditional method using

Rey-frame based video indexing (KFVI) techniques, where a few
epresentative frames are chosen for video representation, and for
imilarity matching between shots [5]. Although the KFVI method

. - is relatively easy to implement, it produces a representation which

tegrat_e the TFM W't.h a self-raining ne'ural '?etwor" stru_cture_ to may not be adequate to capture video content since it does not take

adaptively capture different degrees of visual importance in a video into account temporal information. Instead, the similarity match-

sequence. Fprward and backward signal pr.opagatlon is the key Ir\ng between videos is based on the spatial content of the predefined
this automatic relevance feedback method in order to enhance re1ev-f
: y-frames.

trieval accuracy. In view of this, we propose a video representation based on

a template-frequency model (TFM) that takes into account spatio-
1. INTRODUCTION temporal information. We view video data as a collection of visual

templates, so that the video characterization is the analysis of the

Incorporating relevance feedback (RF) for improving retrieval ac- probability of the templates occurring in a video sequence. Com-

curacy is increasingly important for multimedia application [1] [2] pared to the KFVI technique, that relies on a few representative

[8]. While many RF models have been successfully developed for frames in its key-frame selection algorithms, the TFM differenti-

still-image applications, we have seen few for video database ap-ates the degrees of importance among frames by effectively incor-

plications. The difficultly is that RF requires video representation porating temporal information.

to capture sequential information to allow analysis. While there LetC = {g, € R”|r = 1,2, ..., R} be a set of visual tem-

are limited studies on relevance feedback for video retrieval [1][2], plates that have been generated by an optimization process, such as

where theaudio-visualinformation is utilized for characterizing  the learning vector quantization algorithms [6]. Also let video in-

spatio-temporal information within the video sequence, the appli- 1aryal 7. be described by a set of descriptds, = {(Z1, f1), ...
cation of RF to video files is, however, a time-consuming process .~ I TS

since users have to play each of the retrieved video files, which arel@ms fm), -, (Tar; far)}, wherez ,, € W_) is a feature vector of
usually large, in order to provide relevance feedback. In practice, hem-th video framef,.,, e.g., the color histogram, which may be
this is more difficult for retrieval on Internet databases. In this OPtained during the shot segmentation process [7]. Our goal here
paper, we suggest implementing the RF in an automatic fashion.!S t0 analyze the degree of importance of each visual template
We first propose video representation based on template-frequencyo the videol;. So, if the templatgy,. presents many times in the
modeling (TFM) that emphasizes both spatial and temporal infor- video sequencég;, it should be regard as important, and associated
mation to allow the RF to effectively analyze the dynamic con- with a weight of high value. In this way, the video intervalcan

tent of the video. We then adopt the self-training neural network be described by a weight vectar,; = {w?l, ...,w?r, ey wfR},

[3] to implement the auto_matig RF. Since neurgl network mod- \yhere the weightv;, is associated with the templagg.. To ob-

els perform well at matching given patterns against a large NUM- 5in the weight vector, each video frame is first mapped through

ber of possible templates, we adopt this organization for similarity 32 _, ~ gych that each frame is represented by a set of template
matching in video retrieval. We associate the TFM parameters to |5pg|s:

the network weights to reorganize the parameters through a signal
propagation process within the network. This process allows the
improvement of retrieval accuracy, while minimizing user interac-
tions.

This paper is organized as follows: Section 2 describes video
indexing using TFM. Section 3 presents automatic relevance feed-
back network for video retrieval. Section 4 shows the results of - N N
applying the method to the video database of CNN news. L = afg:nin(ﬂwm ) (2)

This paper presents an automatic relevance feedback method fo
improving retrieval accuracy in video database. We first demon-
strate a representation based on a template-frequency model (TFM
that allows the full use of the temporal dimension. We then in-

Jmo = T = {15 LR @)

wherel?*m i = 1,...,n are the labels of the top best match

717

templates, e.g.,

2. VIDEO INDEXING USING TEM The resulting labels{l %", l?ﬁ}’é, s ?*”;]}, Vm, of all frames
from the mapping of the entire video interdglare used to obtain

Video database may be organized into three levels: shot, scenethe weight parameterw;. = freq;., where freg;, stands for
and story. In this work, we apply retrieval algorithms to video the row frequency of templatg,. in the video interval; (i.e., the
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number of times the templagg, is mentioned in the content of the Query Video
videoI;). We also employ a weighting criterion demonstrated in Templates Templates
[8] to improve the weight parameter by:

Videos

Wiy = %}i{;qﬁ x log N /n, (3)
where N denotes the total number of videos in the systems, and
n, denotes the number of videos in which the index templgte
appears.

It suffices here to note that only a few from the large number
of templates is used for indexing an input video sequence (i.e., if

the templatey . does not appear in the viddg thenw;, = 0), so

that the weight vectad; is very sparse and only non-zero elements Fig. 1. Automatic relevance feedback network (ARFN)
are kept.
3. SELF-ORGANIZING RELEVANCE FEEDBACK second and the third layers, which allows the network to find tem-

plates that appear to be relevant on the basis of initial ranking, and
As we observed in the previous discussion, the TFM models a Use those templates to refine the video ranking.
video by using numerical weight parametets,, » = 1,..., R To be precise, leb, = {wq-|r = 1,..., R} denote the set of
each of which characterizes a degree of importance of visual tem-the query’s weight components, obtained by converting the video
plates presented in the video. These weight parameters will be re-query v, into a set of templates. Letesg,.q)_, ) denote the
organized on a per query basis. At this point, a video cluster that message sent along the connectjof?), ()} from ther-th query
maximizes the similarity within the cluster, while also maximizing node to ther-th video template node. Also, |enesgr<,,)_)j(“>
the s_epar_a_tlon frc_)nj_thg other cIusFers, can_be formed based 0N CONgenote the message sent along the conne({ﬂéﬁ,j(”)} from
tent !der}tlflers, tanitialize the ranklng for aincoming query. This  ther-th video template node to theth video node;j € [1, N].
ranking is then adopted to re-organize the degree of importance ofy i thatmesg, ).,y iS a one-to-one correspondence, while

the vi_sual _t(.amplates Fhrough the following process. First, the pro- mesg, ) (v iSaone-to-many correspondence. First, each query
cess identifies ‘effective templates’ that are the common templates T

among videos in a retrieved set. Then, those templates considere{fMPlate node is assigned a fixed activation lenl =1lre

to be the most significant for re-weighting the existing templates |1, £l- Then, its signal to the video template node is attended by
of the initially submitted query are weighted, to improve the per- Normalized query template weights,., as follows:

formance of ranking. In other words, we allow the templates that @

are not referred to by the initially submitted query (i®,, = 0, MESY,.(a) (1) = Ap'" X War 4)
r € [1, R]), but are common among the top-ranked videos (i.e.,

the potentially relevant videos), to “expand”. This results in reor- ~ ——=r— ifg, €,

ganization of the degree of importance of the query’s templates for Wqr = OV i wir ow ()

better video similarity measuring.

This process is in the same spirit as the user-controlled rel- ~ When asignal reaches the video template nodes, only the video
evance feedback techniques widely used in information retrieval template nodes connected to the query template nodes are acti-
applications, whereby a set of significant items specified by the vated. These nodes might send new signals out, directing towards
user is added to the initial query, and used to re-weight the querythe video nodes, which are again attenuated by normalized video
components [8]. In this work, we similarly adopt this query re- template weightso;, derived from the weights);.., as follows:
formulation scheme for the expanding of queries to improve rank-

ing. However, our goal here is to minimize user involvement, by MeSY,.(t)_, j(v) = MESY,(q) _p(t) X Wjr (6)

proposing the adoption of a self-learning model [3]. As neural

networks perform well at matching given patterns against a large =it if g, €,

number of possible templates, we use this structure for selecting Wy = { VIR v, (7)

relevant videos. Fig. 1 shows a neural network architecture for 0 0.W.

automatic video ranking. As aresult, some signals reach a video node, anddtieation
levelof this video node (associated to the vide9 is given by the

3.1. Signal Propagation Process sum of the signals (the standard cosine measure),

. i R
The network is comp_osed of three layers: one f_or the query tem- a§v) _ Z mesg,m_ 8)
plates, one for the video templates, and the third for the videos =1

themselves. Each node communicates to its neighbors via the link-

ing connections. The query template nodes initiate the inference R )
. - A . R D1 WarWir

process by sending signals to the video template nodes. The video = Zr:l WqrWjr = - = 9)

template nodes then themselves generate signals and send to the \/Zr:l wgr\/zm w3,

video nodes. Upon receiving this stimulus, the video nodes, in o ] _ _

their turn, generate new signals directed back to the video template ~ This finishes the first round of signal propagation. The net-

nodes. This process might repeat itself several times, between thevork output (i.e.,ag”), j = 1,...,N) is the desired ranking of

-2



Query
Template

¢ ;q)

l

Video Videos
Templates

a
o

t éq)

|

\/

o

Query
Template

f;GI)

i

L X JON |
A

Lo

O®O

A\

(a
Video Videos
Templates

=

4

i)
o

@
)

Y

Query
Template

éq)

7R

™)

X LX)
' X Yef |

@K\i

—~
O
~

Video Videos
Templates

4

fgL?)

I
..

o>

o9

L X X X J
|
@
«

o

y
O

X}

(©

the videos for retrieval. The process, however, does not stop here.
The network continues the ever-spreading activation process after
the first round of propagation. This time, however, a minimum ac-
tivation threshold is defined such that the video nodes below this
threshold send no signals out. Thus, the activation level at-the
video template node is obtained from the input from the activating
video nodes as:

1
(zr, i)

ol =

(10)

Iy = wgr + Z a;U)u_er + 3 Z ag-v)u_JjT (12)
jE€Pos jENeg

g.“) is the activation of the j-th videdPos is the set of j's

such thatz§”> > 1, andNeg is the set of j's such thaig.”) < -,
wherer is a threshold value. The activation process is allowed to
continue flowing forwards and backwards between the video tem-
plate nodes and the video nodes, inducing an order to the videos,
based on the corresponding node activations at each stage.

In other words, we allow the network to automatically expand
the query templates analogous to the relevance feedback model
[8]. The signal propagation process is directly related to the deriva-
tion of new weights of query templates, thereby a new template
appearing in the most highly activated videos, regardless of if they
appeared in the original query, may become active and may acti-
vate other videos. This modifies the initial vector ranking in the
retrieval process.

Fig. 2 graphically describes the spreading activation process.
Fig. 2(a) shows two query templates sending signals to the video
template node$a, b}. This means that the video nodgg:; d, e}
are activated (the application of the threshold is omitted for the
purpose of illustration.). Fig. 2(b) shows the signals propagating
backward to the video template layers. At this tinfe,g andh
are the newly activated nodes. After re-calculation of the node
activations, the video template nodes send signals forward to the
video nodes as shown in Fig. 2(c). This results in a new ranking,
which includes a new video node,We see that the network then
utilizes new video template nodg to find more relevant video
nodes.

wherea

4. EXPERIMENTAL RESULTS

In the experiments, the test video data was obtained from the Infor-
media Digital Video Library Project [9]. This is the CNN broad-
cast news, which includes full news stories, new headlines, and
commercial break sections. This video results in 844 video shots,
segmented by the color histogram based a shot boundary detection
algorithm [7]. A 48-bin histogram computed on HSV color space
is used for both shot segmentation and indexing algorithms.

We compared the TFM indexing technique with the KFVI, and

Fig. 2. Signal propagation; (a) signals from the two query tem- applied the automatic relevance feedback network (ARFN) to im-
plates are sent to the video template nodes, and then three viderove retrieval accuracy. The KFVI uses a histogram vector gen-
nodes{c, d, e} are activated; (b) the signal propagates back from erated from a middle frame of the video shot as a representative
the third layer to the second layer, resulting in more activated video video shot. Similarity measure used is the normalized Euclidean
temple nodes; (c) signal propagates back to the third layer. Thismetric. Inthe TFM case, a total of 5,000 templates are genetated.
results in the activation of new video nodes by expanding the orig- Each video shot is described by its associated weight vector. This

inal query template and the activated video nodes in (b)

IHere, the template library was generated and obtimized from his-
togram vectors of the videos within the test set.
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was generated by the template models, using neighborheed cialized neural network, which can satisfy these requirements. Un-

[cf. (1)]. We then associated the weight vectors with ARFN. This like previous RF attempts, we incorporated a self-learning neural

video database results in a network with 5,844 nodes and 14,800network to implement an automatic RF scheme, which requires

connections. no user input for its adaptation. Based on the simulation study,
A total of 25 queries were made and the judgments on the rele- this adaptive system, utilizing the TFM and automatic-RF retrieval

vance of each video to each query shot were evaluated. In generalarchitecture, can be effectively applied to a video database, with

the relevance judgment of videos is difficult because two video promising results.

clips may be related in terms of the story context, and not just

visual similarity. We were aware of this fact in this experiment, 6. REFERENCES

so we employed as a criterion a very subjective judgment of rel-

evance: only retrieved video shots from the ‘same’ stories were [1] R. Wang, M. R. Naphade, and T. S. Huang, “Video retrieval

judged to be relevant. and relevance feedback in the context of a post-integration

Table 1 shows precision results as a function of top matches, model,” IEEE Int. Workshop on Multimedia Signal Process-
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tained by the KFVI, and the third column results were obtained by
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letting the activation spread for one, three, and twenty iterations, ; .
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increase by more than 11%, and is particularly significant in the [4] H.S.Chang, S. Sull, and S. U. Lee, “Efficient video indexing
top 10 to 16 retrievals. Second, it stabilized very quickly. Third, scheme for content based retrievdEEE Trans. On Circuits

allowing many iterations meant that the performance deteriorates ;4 Systems for Video Tectio. 9, pp. 1269-1279, 1999.
gradually. Finally, our results were achieved by simply allowing ' '

the activation flow automatically, with no user input. [5] A. K. Jain, A. Vailaya, and W. Xiong, “Query by video clip,”
Multimedia Systems Journalol. 7, pp. 369-384, 1999.
# top | KFVI TFM [6] S. Haykin, Neural networks: a comprehensive foundation
matches Prentice Hall, Upper Saddle River, New Jersey, 1999.
ORF 1RF 3 RF 20 RF [7] U. Gargi, R. Kasturi, and S. H. Strayer, “Performance char-
1 100.0 100.0 0.00 0.00 0.00 acterization of video shot-change detection methotsZE
2 98.0 100.0 0.00 0.00 0.00 Trans. On Circuits and Systems for Video Technalogi 10,
4+ Te700 o700 | o0 | +zo0 | 200 ro. 1 pp. 113, Feb. 2000
. . +1. +2. -2.
5 28.40 96.00 1080 +1.60 160 [8] G. Salton, E. A. Fox, and E. Voorheers, “Advance feedback
5 74'00 94.67 +O.67 +2.00 _1'33 methods in information retrievalJournal of the American So-
= 71'43 90'29 +2'29 +3'43 +1’ 14 ciety for Information Sciengé/ol. 36, pp. 200-210, 1985.
8 68.50 89.00 +3.00 +2.50 +1.50 [9] Informedia Digital Video Library Project at Carnegie Mellon
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10 64.40 82.80 +5.60 +5.60 +4.80
11 61.45 80.36 +6.18 +6.18 +5.09
12 60.00 77.67 +7.33 +7.67 +7.00
13 57.85 74.77 +8.62 +10.15 | +8.31
14 56.86 72.00 +9.43 +11.14 | +9.71
15 54.93 69.33 +9.87 +11.20 | +10.13
16 53.25 67.75 +9.50 +11.00 | +10.00

Table 1. Average Precision Rate, APR (%) obtained by ARFN
and KFVI, using 25 video shot queries. ARFN results are quoted
relative to the APR observed with cosine measure at 0 RF.

5. CONCLUSION

Video database applications require suitable indexing techniques
to capture the time-varying nature of video data, together with a
high performance retrieval strategy, In this paper we proposed a
template-frequency model (TFM) and its integration with a spe-
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