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ABSTRACT

This paper presents an automatic relevance feedback method for
improving retrieval accuracy in video database. We first demon-
strate a representation based on a template-frequency model (TFM)
that allows the full use of the temporal dimension. We then in-
tegrate the TFM with a self-training neural network structure to
adaptively capture different degrees of visual importance in a video
sequence. Forward and backward signal propagation is the key in
this automatic relevance feedback method in order to enhance re-
trieval accuracy.

1. INTRODUCTION

Incorporating relevance feedback (RF) for improving retrieval ac-
curacy is increasingly important for multimedia application [1] [2]
[8]. While many RF models have been successfully developed for
still-image applications, we have seen few for video database ap-
plications. The difficultly is that RF requires video representation
to capture sequential information to allow analysis. While there
are limited studies on relevance feedback for video retrieval [1][2],
where theaudio-visualinformation is utilized for characterizing
spatio-temporal information within the video sequence, the appli-
cation of RF to video files is, however, a time-consuming process
since users have to play each of the retrieved video files, which are
usually large, in order to provide relevance feedback. In practice,
this is more difficult for retrieval on Internet databases. In this
paper, we suggest implementing the RF in an automatic fashion.
We first propose video representation based on template-frequency
modeling (TFM) that emphasizes both spatial and temporal infor-
mation to allow the RF to effectively analyze the dynamic con-
tent of the video. We then adopt the self-training neural network
[3] to implement the automatic RF. Since neural network mod-
els perform well at matching given patterns against a large num-
ber of possible templates, we adopt this organization for similarity
matching in video retrieval. We associate the TFM parameters to
the network weights to reorganize the parameters through a signal
propagation process within the network. This process allows the
improvement of retrieval accuracy, while minimizing user interac-
tions.

This paper is organized as follows: Section 2 describes video
indexing using TFM. Section 3 presents automatic relevance feed-
back network for video retrieval. Section 4 shows the results of
applying the method to the video database of CNN news.

2. VIDEO INDEXING USING TFM

Video database may be organized into three levels: shot, scene,
and story. In this work, we apply retrieval algorithms to video

database at the shot level. Characterizing video content within
a shot has traditionally be done by the traditional method using
key-frame based video indexing (KFVI) techniques, where a few
representative frames are chosen for video representation, and for
similarity matching between shots [5]. Although the KFVI method
is relatively easy to implement, it produces a representation which
may not be adequate to capture video content since it does not take
into account temporal information. Instead, the similarity match-
ing between videos is based on the spatial content of the predefined
key-frames.

In view of this, we propose a video representation based on
a template-frequency model (TFM) that takes into account spatio-
temporal information. We view video data as a collection of visual
templates, so that the video characterization is the analysis of the
probability of the templates occurring in a video sequence. Com-
pared to the KFVI technique, that relies on a few representative
frames in its key-frame selection algorithms, the TFM differenti-
ates the degrees of importance among frames by effectively incor-
porating temporal information.

Let C = {⇀
g r ∈ <P |r = 1, 2, ..., R} be a set of visual tem-

plates that have been generated by an optimization process, such as
the learning vector quantization algorithms [6]. Also let video in-
tervalIj be described by a set of descriptorsDIj = {(⇀

x1, f1), ...,

(
⇀
xm, fm), ..., (

⇀
xM , fM )}, where⇀

xm ∈ <P is a feature vector of
them-th video frame,fm, e.g., the color histogram, which may be
obtained during the shot segmentation process [7]. Our goal here
is to analyze the degree of importance of each visual template⇀

g r

to the videoIj . So, if the template⇀g r presents many times in the
video sequenceIj , it should be regard as important, and associated
with a weight of high value. In this way, the video intervalIj can
be described by a weight vector,⇀

v j = {w∃j1, ..., w∃jr, ..., w
∃
jR},

where the weightwjr is associated with the template⇀
g r. To ob-

tain the weight vector, each video frame is first mapped through
<P → C, such that each frame is represented by a set of template
labels:

fm ⇒ ρ(
⇀
x m) = {l⇀

x m
r∗,1, l

⇀
x m
r∗,2, ..., l

⇀
x m
r∗,η}, (1)

wherel
⇀
x m
r∗,i , i = 1, ..., η are the labels of the topη best match

templates, e.g.,

l
⇀
x m
r∗,1 = arg min

r
(||⇀xm − ⇀

g r||) (2)

The resulting labels,{l⇀
x m
r∗,1, l

⇀
x m
r∗,2, ..., l

⇀
x m
r∗,η}, ∀m, of all frames

from the mapping of the entire video intervalIj are used to obtain
the weight parameter:wjr = freqjr, wherefreqjr stands for
the row frequency of template⇀g r in the video intervalIj (i.e., the
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number of times the template⇀
g r is mentioned in the content of the

videoIj). We also employ a weighting criterion demonstrated in
[8] to improve the weight parameter by:

wjr =
freqjr

maxr freqjr
× log N/nr (3)

whereN denotes the total number of videos in the systems, and
nr denotes the number of videos in which the index template⇀

g r

appears.
It suffices here to note that only a few from the large number

of templates is used for indexing an input video sequence (i.e., if
the template⇀g r does not appear in the videoIj thenwjr = 0), so
that the weight vector̄vj is very sparse and only non-zero elements
are kept.

3. SELF-ORGANIZING RELEVANCE FEEDBACK

As we observed in the previous discussion, the TFM models a
video by using numerical weight parameters,wr, r = 1, ..., R
each of which characterizes a degree of importance of visual tem-
plates presented in the video. These weight parameters will be re-
organized on a per query basis. At this point, a video cluster that
maximizes the similarity within the cluster, while also maximizing
the separation from the other clusters, can be formed based on con-
tent identifiers, toinitialize the ranking for a incoming query. This
ranking is then adopted to re-organize the degree of importance of
the visual templates through the following process. First, the pro-
cess identifies ‘effective templates’ that are the common templates
among videos in a retrieved set. Then, those templates considered
to be the most significant for re-weighting the existing templates
of the initially submitted query are weighted, to improve the per-
formance of ranking. In other words, we allow the templates that
are not referred to by the initially submitted query (i.e.,wr = 0,
r ∈ [1, R]), but are common among the top-ranked videos (i.e.,
the potentially relevant videos), to “expand”. This results in reor-
ganization of the degree of importance of the query’s templates for
better video similarity measuring.

This process is in the same spirit as the user-controlled rel-
evance feedback techniques widely used in information retrieval
applications, whereby a set of significant items specified by the
user is added to the initial query, and used to re-weight the query
components [8]. In this work, we similarly adopt this query re-
formulation scheme for the expanding of queries to improve rank-
ing. However, our goal here is to minimize user involvement, by
proposing the adoption of a self-learning model [3]. As neural
networks perform well at matching given patterns against a large
number of possible templates, we use this structure for selecting
relevant videos. Fig. 1 shows a neural network architecture for
automatic video ranking.

3.1. Signal Propagation Process

The network is composed of three layers: one for the query tem-
plates, one for the video templates, and the third for the videos
themselves. Each node communicates to its neighbors via the link-
ing connections. The query template nodes initiate the inference
process by sending signals to the video template nodes. The video
template nodes then themselves generate signals and send to the
video nodes. Upon receiving this stimulus, the video nodes, in
their turn, generate new signals directed back to the video template
nodes. This process might repeat itself several times, between the

Fig. 1. Automatic relevance feedback network (ARFN)

second and the third layers, which allows the network to find tem-
plates that appear to be relevant on the basis of initial ranking, and
use those templates to refine the video ranking.

To be precise, let⇀v q = {wqr|r = 1, ..., R} denote the set of
the query’s weight components, obtained by converting the video
queryvq into a set of templates. Letmesgr(q)→r(t) denote the
message sent along the connection{r(q), r(t)} from ther-th query
node to ther-th video template node. Also, letmesgr(t)→j(v)

denote the message sent along the connection{r(t), j(v)} from
the r-th video template node to thej-th video node,j ∈ [1, N ].
Note thatmesgr(q)→r(t) is a one-to-one correspondence, while
mesgr(t)→j(v) is a one-to-many correspondence. First, each query

template node is assigned a fixed activation levela
(q)
r = 1, r ∈

[1, R]. Then, its signal to the video template node is attended by
normalized query template weights̄wqr, as follows:

mesgr(q)→r(t) = a(q)
r × w̄qr (4)

w̄qr =

( wqrqPR
r=1 w2

qr

if ⇀
g r ∈ vq

0 o.w.
(5)

When a signal reaches the video template nodes, only the video
template nodes connected to the query template nodes are acti-
vated. These nodes might send new signals out, directing towards
the video nodes, which are again attenuated by normalized video
template weights̄wjr derived from the weightswjr, as follows:

mesgr(t)→j(v) = mesgr(q)→r(t) × w̄jr (6)

w̄jr =

( wjrqPR
r=1 w2

jr

if ⇀
g r ∈ vj

0 o.w.
(7)

As a result, some signals reach a video node, and theactivation
levelof this video node (associated to the videovj) is given by the
sum of the signals (the standard cosine measure),

a
(v)
j =

XR

r=1
mesgr(t)→j(v) (8)

=
XR

r=1
w̄qrw̄jr =

PR
r=1 wqrwjrqPR

r=1 w2
qr

qPR
r=1 w2

jr

(9)

This finishes the first round of signal propagation. The net-
work output (i.e.,a(v)

j , j = 1, ..., N) is the desired ranking of
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(a)

(b)

(c)

Fig. 2. Signal propagation; (a) signals from the two query tem-
plates are sent to the video template nodes, and then three video
nodes{c, d, e} are activated; (b) the signal propagates back from
the third layer to the second layer, resulting in more activated video
temple nodes; (c) signal propagates back to the third layer. This
results in the activation of new video nodes by expanding the orig-
inal query template and the activated video nodes in (b)

the videos for retrieval. The process, however, does not stop here.
The network continues the ever-spreading activation process after
the first round of propagation. This time, however, a minimum ac-
tivation threshold is defined such that the video nodes below this
threshold send no signals out. Thus, the activation level at ther-th
video template node is obtained from the input from the activating
video nodes as:

a(t)
r =

1�PR
r=1 l2r

�1/2
(10)

lr = wqr + α
X

j∈Pos

a
(v)
j w̄jr + β

X
j∈Neg

a
(v)
j w̄jr (11)

wherea
(v)
j is the activation of the j-th video,Pos is the set of j’s

such thata(v)
j > τ , andNeg is the set of j’s such thata(v)

j < −τ ,
whereτ is a threshold value. The activation process is allowed to
continue flowing forwards and backwards between the video tem-
plate nodes and the video nodes, inducing an order to the videos,
based on the corresponding node activations at each stage.

In other words, we allow the network to automatically expand
the query templates analogous to the relevance feedback model
[8]. The signal propagation process is directly related to the deriva-
tion of new weights of query templates, thereby a new template
appearing in the most highly activated videos, regardless of if they
appeared in the original query, may become active and may acti-
vate other videos. This modifies the initial vector ranking in the
retrieval process.

Fig. 2 graphically describes the spreading activation process.
Fig. 2(a) shows two query templates sending signals to the video
template nodes{a, b}. This means that the video nodes:{c, d, e}
are activated (the application of the threshold is omitted for the
purpose of illustration.). Fig. 2(b) shows the signals propagating
backward to the video template layers. At this time,f , g andh
are the newly activated nodes. After re-calculation of the node
activations, the video template nodes send signals forward to the
video nodes as shown in Fig. 2(c). This results in a new ranking,
which includes a new video node,i. We see that the network then
utilizes new video template nodef , to find more relevant video
nodes.

4. EXPERIMENTAL RESULTS

In the experiments, the test video data was obtained from the Infor-
media Digital Video Library Project [9]. This is the CNN broad-
cast news, which includes full news stories, new headlines, and
commercial break sections. This video results in 844 video shots,
segmented by the color histogram based a shot boundary detection
algorithm [7]. A 48-bin histogram computed on HSV color space
is used for both shot segmentation and indexing algorithms.

We compared the TFM indexing technique with the KFVI, and
applied the automatic relevance feedback network (ARFN) to im-
prove retrieval accuracy. The KFVI uses a histogram vector gen-
erated from a middle frame of the video shot as a representative
video shot. Similarity measure used is the normalized Euclidean
metric. In the TFM case, a total of 5,000 templates are generated.1

Each video shot is described by its associated weight vector. This

1Here, the template library was generated and obtimized from his-
togram vectors of the videos within the test set.
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was generated by the template models, using neighborhoodη = 5
[cf. (1)]. We then associated the weight vectors with ARFN. This
video database results in a network with 5,844 nodes and 14,800
connections.

A total of 25 queries were made and the judgments on the rele-
vance of each video to each query shot were evaluated. In general,
the relevance judgment of videos is difficult because two video
clips may be related in terms of the story context, and not just
visual similarity. We were aware of this fact in this experiment,
so we employed as a criterion a very subjective judgment of rel-
evance: only retrieved video shots from the ‘same’ stories were
judged to be relevant.

Table 1 shows precision results as a function of top matches,
averaged over all 25 queries. The second column results were ob-
tained by the KFVI, and the third column results were obtained by
the TFM. In the ARFN case, we show the results of three tests:
letting the activation spread for one, three, and twenty iterations,
with τ = 0.1, α = 0.95 andβ = 0.05, respectively [cf. (11)].
We observed that the TFM performed substantially better than the
KFVI for every setting of the number of top matches (the average
precision was higher by more than 18%). The following observa-
tions were also made from the results: First, the ARFN was very
effective in improving retrieval performance—average precision
increase by more than 11%, and is particularly significant in the
top 10 to 16 retrievals. Second, it stabilized very quickly. Third,
allowing many iterations meant that the performance deteriorates
gradually. Finally, our results were achieved by simply allowing
the activation flow automatically, with no user input.

# top
matches

KFVI TFM

0 RF 1 RF 3 RF 20 RF
1 100.0 100.0 0.00 0.00 0.00
2 98.0 100.0 0.00 0.00 0.00
3 93.33 98.67 +1.33 +1.33 -1.33
4 87.00 97.00 +1.00 +2.00 -2.00
5 78.40 96.00 +0.80 +1.60 -1.60
6 74.00 94.67 +0.67 +2.00 -1.33
7 71.43 90.29 +2.29 +3.43 +1.14
8 68.50 89.00 +3.00 +2.50 +1.50
9 67.11 86.67 +2.67 +3.11 +2.67
10 64.40 82.80 +5.60 +5.60 +4.80
11 61.45 80.36 +6.18 +6.18 +5.09
12 60.00 77.67 +7.33 +7.67 +7.00
13 57.85 74.77 +8.62 +10.15 +8.31
14 56.86 72.00 +9.43 +11.14 +9.71
15 54.93 69.33 +9.87 +11.20 +10.13
16 53.25 67.75 +9.50 +11.00 +10.00

Table 1. Average Precision Rate, APR (%) obtained by ARFN
and KFVI, using 25 video shot queries. ARFN results are quoted
relative to the APR observed with cosine measure at 0 RF.

5. CONCLUSION

Video database applications require suitable indexing techniques
to capture the time-varying nature of video data, together with a
high performance retrieval strategy, In this paper we proposed a
template-frequency model (TFM) and its integration with a spe-

cialized neural network, which can satisfy these requirements. Un-
like previous RF attempts, we incorporated a self-learning neural
network to implement an automatic RF scheme, which requires
no user input for its adaptation. Based on the simulation study,
this adaptive system, utilizing the TFM and automatic-RF retrieval
architecture, can be effectively applied to a video database, with
promising results.
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