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     ABSTRACT 

 
This paper presents a novel fuzzy neural network (FNN) 
approach to detect malignant mass lesions on 
mammograms.  The mammograms were obtained from 
the digital database for screening mammography (DDSM) 
at the University of South Florida.  Six-hundred-seventy 
regions of interest (ROIs) were extracted from 100 
mammograms and are randomly divided into two groups: 
training and testing sets.  Entropy, uniformity, contrast, 
and maximum co-occurrence matrix elements are 
calculated at sizes of 256×256 and 768×768, respectively.  
The differences of these features (feature differences) 
from these two image sets with the above mentioned sizes 
are computed for each feature, and they are discriminant 
in differentiating between malignant masses and normal 
tissues regardless of lesion shape, size, and subtlety.  After 
training, the FNN can correctly detect all malignant 
masses on mammograms in the testing group.  The true 
positive fraction (TPF) is 0.92 when the number of false 
positives (FP) is 1.33 per mammogram; and 1.0 when the 
FP is 2.15 per mammogram. 

 
1. INTRODUCTION 

 
Breast cancer is one of the most prevalent cancers among 
women and is the leading cause of death for women in the 
age group of 15 to 54 [1].  One out of eight women will 
develop breast cancer during her lifetime in US. 
Mammography is one of the most effective tools in early 
detection of breast cancers [2].  Although significant 
progress has been made in breast cancer control by 
periodic mammogram screening, a considerable number 
of lesions are still missed due to a variety of factors 
including poor image quality, benign appearance of 
lesions, eye fatigue factor, and oversight of radiologists 
[3].  Mass lesions can be of different types and shapes, 
and the size varies from 1mm to several centimeters [4].  
The presence of other structures makes the image 
background very complex for human and machine to 
distinguish malignant mass lesions from normal breast 
tissues.  

Numerous attempts have been made to detect mass 
lesions on mammograms, such as image enhancement and 
template-matching techniques [5]; fuzzy pyramid linking 
algorithm [6]; and nonlinear bilateral subtraction 
technique [7]. These approaches require breasts to be 
symmetrical or lesions with typical shape.  The presence 
of cancer causes the disturbance in the homogeneity of 
tissues and can result in architectural distortions in the 
surrounding breast parenchyma.  As a result, texture 
measures of mammograms may be used as mass 
classification features.  Local edge characteristics and 
textural features are used to identify spiculated masses [8].  
By using statistical features from pairs of breasts, an area 
(Az) under the receiver operating characteristics (ROC) 
curve of 0.823 was achieved [9].  A sensitivity of 92% for 
isolating malignant masses at 1.8 false positives per image 
was reported [11].  Fuzzy neural networks (FNN) provide 
a new way to interpret vague and incomplete data or 
knowledge.  A fuzzy system adaptively infers and 
modifies its fuzzy associations from representative 
samples.  Fuzzy logic based system can handle, to a 
reasonable extent, uncertainties in various applications, 
particularly in decision-making process  under different 
kinds of risk, subjective judgment, vagueness, and 
ambiguity [10].  Image background can be of fuzzy nature 
because of the presence of some fatty tissues and blood 
vessels.  In this paper, we will study a new set of features 
for the detection of mass lesions and studied the feasibility 
of using a FNN in the detection/classification process. 
 

2. MATERIALS AND METHODS 
 
Mammograms were downloaded from the DDSM.  The 
mammograms were obtained with DBA M2100 
ImageClear scanner.  Sampling rate of the scanner was 42 
microns per pixel.  Gray level was 16 bits.  Downloaded 
files were converted to gray level of 8 bits.  Sub-images 
with sizes 128 × 128, 256 × 256, 512 × 512, 768 × 768, 
1024 × 1024, and 1280 × 1280 were obtained as the 
regions of interests (ROIs) from each mammogram.  For 
mammograms with malignant masses, all ROIs enclosed 
or overlapped the mass lesions.  The ROIs were used to 
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study the effect of sample image size on texture features.  
The regions containing only normal tissues were also 
extracted randomly.  Five to seven regions were selected 
from each mammogram.  Two sample images were 
obtained from each of these regions with sizes 256 × 256 
and 768 × 768, respectively.  The sample image with size 
256 × 256 p enclosed the whole small mass lesion or part 
of the large lesion.  The sample image with size 768 × 768 
enclosed the small image and its surrounding area.  
Entropy (E), uniformity (U), contrast (ν), and maximum 
co-occurrence matrix element were calculated for each 
ROI.   

Texture features were computed for each ROI and 
fuzzified as the inputs of the fuzzy neural network.  Based 
on co-occurrence matrix, entropy (E), uniformity (U), and 
contrast (ν) and maximum co-occurrence matrix element 
(CMmax) were computed. 

 
2.1. Co-occurrence Matrix (CM) and Features 
 
Grey-level co-occurrence matrix was calculated from 
angular matrices [14]. Pθ,d is the angular matrix at θ 
degrees (0ο, 45ο, 90ο, 135ο) and calculated for a distance 
of d between two pixels; a and b are the gray levels for 
these two pixels (k,l) and (m,n).  The sum of the four 
angular matrices is expressed as: 
    ][),( ,135,90,45,0 ddddd oooo ppppbap +++=  (1) 

The co-occurrence matrix (Cij) is calculated by dividing Pd 
by the total number of pixel pairs in the Pd calculation.  In 
this research, d = 1 is used for the co-occurrence matrix 
calculation.  Follows are the features extracted from CM. 
2.2.1 Maximum co-occurrence matrix element (CMmax) 

)(max
,max ijji
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   where cij is an element of the co-occurrence matrix (Cij). 
2.2.2. Contrast (ν) 
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   where cij is an element of the co-occurrence matrix (Cij). 
2.2.3. Entropy (E) 
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   where cij is an element of the co-occurrence matrix (Cij). 
2.2.4. Uniformity (U) 
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where cij is an element of the co-occurrence matrix (Cij). 
 
 
 

2.3. Structure of the Fuzzy Neural Network 
 
A four-layer feed-forward fuzzy neural network is used in 
this study.  The first layer is the input layer consisting of 4 
neurons.   All features are normalized. The neurons in this 
layer are regular neurons.   
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where β is the fuzzification coefficient.  The value of 
]1,0[∈β  is determined experimentally, and rj is the 

relative coefficient.   
The output from the second layer is used to calculate 

the input values for the third layer. Neurons in the third 
layer are the maximum fuzzy neurons.   
                                                                                       

                         
(6)                          

 
The number of fuzzy neurons in the third layer is 
determined during the training process.  Each neuron in 
this layer represented a unique separable mass lesion 
pattern.  The training algorithm determines α and θ for 
each fuzzy neuron. There are N fuzzy neurons in this 
layer.  These neurons are divided into two classes: 
positive malignant mass lesion class (Mass) and normal 
tissue class (Normal).  The maximum output from each 
class is obtained in the fourth layer and used as an input 
for a competitive neuron in the fourth layer.   

The output function for the third layer is expressed as: 
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where yc,i is the output of a fuzzy neuron in the third layer.  
The subscript c represents class index.  If c is 0, it is the 
normal tissue class.  If c is 1, it is the mass lesion class.  
The fourth layer has two maximum neurons and one 
competitive neuron with two inputs.   
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where s0 and s1 are inputs to the competitive neuron.  
There are k neurons for malignant mass lesion class 
(Mass) and l neuron for normal class (Normal).  The 
output of the fourth layer is defined as: 
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where Tf  is the activation threshold of the competitive 
neuron. If y equals one, it indicates that there is a 
malignant mass lesion. 
 
2.4. Network Training  
 
A set of inputs is applied to neurons in the first layer.  The 
fuzzified output from each neuron in the first layer is fed 
to neurons in the second layer, where the sum is obtained 
after multiplied by respective weights and a fuzzification 
factor, and generated the output. Outputs from the second 
layer are fed to all FNN neurons in the third layer.  If there 
is not a match with an existing class, create a new neuron 
with a defaultα. The maximum outputs from the third 
layer for each class are obtained in the fourth layer.  After 
adjusting the decision threshold (TV), a class is chosen.  If 
misclassified, adjust α for that misclassified neuron; also 
create a new neuron for the new pattern with the minimum 
input as the parameterθ.  Register the new neuron’s index 
in the correct class.  Re-train the neural network.  Repeat 
these steps until all training sets are applied without 
requesting any weight modification. 
 

3. RESULTS AND DISCUSSION 
 

Entropies were 67% and 60% greater for ROIs with 
malignant mass than the ROIs with normal tissues at size 
of 128 × 128, 256 × 256 pixels, respectively (Fig. 1).   

 
Fig. 1. Entropy (E) versus ROI size.  Data are means ± standard 
deviations 52 ROIs with malignant masses (Mass) 44 normal 
ROIs (Normal).  

Uniformities of  ROIs with normal tissues were greater  
than those of  ROIs with malignant masse with  sizes of 
128 × 128 and 256 × 256 (Fig. 2).  It was similar for all 
ROIs with sizes of 768 × 768 and above. Contrast showed 
a similar pattern as for entropy (Fig. 3).  Entropy 
difference was calculated by subtracting entropy of 768 × 
768 from the one of   256 × 256.   Entropy difference was 
greater for smaller lesions than that of lesions than that for 
larger lesions (Fig. 4).  The contrast difference showed 
similar pattern (Fig. 5). 

The entropy difference was positive for images with 
malignant masses while it was negative for normal images 
(Fig. 6).  Contrast difference showed similar pattern as for 
entropy difference.  The performance of the FNN was 
evaluated by the curve of a free-response receiver 
operating characteristic (FROC) [11].  The true positive 
fraction was plotted against the number of false positives 
per mammogram (FP) (Fig. 7).  TPF was computed as TP/ 
(TP+FN).  The TP is the number of true positives and FN 
is the number of false negatives.   The number of FP per 
mammogram is 1.33 at a TPF of 0.92 and 2.15  at TPF 1.    

  
Fig. 2. Uniformity (U) versus ROI size.  Data are means ± 
standard deviations 52 ROIs with malignant masses (Mass) and 
44 normal ROIs (Normal).    

 
Fig. 3. Contrast (ν) versus ROI size.  Data are means ± standard 
deviation for52 ROIs with malignant masses 44 normal ROIs. 
 

 
Fig. 4. Entropy difference (∆E) versus lesion size of malignant 
masses.  A total of 52 malignant masses are shown.  The lesion 
size is calculated as (a×b)1/2.  The variables a, b are the long and 
short axes of a malignant mass lesion, respectively.  Entropy 
difference is calculated as (E256- E768)/ E 768. 
 
Some of these false positives could be benign masses in 
mammograms.  The above result is better than most 
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published approaches for mass detection [7],[ 9], [12], 
[13]. 
The texture features used in this study appear to be very 
promising in distinguishing ROIs with malignant masses 
from those with normal tissues.  Although a false positive 
of 2.15 per mammogram may not be adequate to be used 
as a primary tool for the detection of mass lesions, this 
classifier identified all malignant masses and can be used 
as a new assistant tool for radiologists for pre-screening of 
potential positive areas.  Other modifications 

 
Fig. 5. Contrast difference (∆ν) versus lesion size of malignant 
masses. 

   

 
Fig. 6. Entropy difference (∆E) for ROIs with malignant masses 
(Mass) and normal tissues (Normal).  The error bars are standard 
deviations.  For malignant masses, the number of samples is 52.  
The number of samples is 618 for normal tissues. 

 
Fig.7. Free-response receiver operating characteristic (FROC) 
for the fuzzy neural network.  The curve was obtained by 
adjusting the decision parameter in the fourth layer.  True-
positive fraction is computed as TP/(TP+FN), where TP is the 
number of true positives and FN is the number of false negatives 
(malignant mass lesions classified as normal tissues).  FP is the 
number of false positives. 
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