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ABSTRACT

This paper presents a novel fuzzy neural network (FNN)
approach to detect malignant mass lesions on
mammograms. The mammograms were obtained from
the digital database for screening mammography (DDSM)
at the University of South Florida. Six-hundred-seventy
regions of interest (ROIs) were extracted from 100
mammograms and are randomly divided into two groups:
training and testing sets. Entropy, uniformity, contrast,
and maximum co-occurrence matrix elements are
calculated at sizes of 256x256 and 768x768, respectively.
The differences of these features (feature differences)
from these two image sets with the above mentioned sizes
are computed for each feature, and they are discriminant
in differentiating between malignant masses and normal
tissues regardless of lesion shape, size, and subtlety. After
training, the FNN can correctly detect all malignant
masses on mammograms in the testing group. The true
positive fraction (TPF) is 0.92 when the number of false
positives (FP) is 1.33 per mammogram; and 1.0 when the
FP is 2.15 per mammogram.

1. INTRODUCTION

Breast cancer is one of the most prevalent cancers among
women and is the leading cause of death for women in the
age group of 15 to 54 [1]. One out of eight women will
develop breast cancer during her lifetime in US.
Mammography is one of the most effective tools in early
detection of breast cancers [2]. Although significant
progress has been made in breast cancer control by
periodic mammogram screening, a considerable number
of lesions are still missed due to a variety of factors
including poor image quality, benign appearance of
lesions, eye fatigue factor, and oversight of radiologists
[3]. Mass lesions can be of different types and shapes,
and the size varies from lmm to several centimeters [4].
The presence of other structures makes the image
background very complex for human and machine to
distinguish malignant mass lesions from normal breast
tissues.
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Numerous attempts have been made to detect mass
lesions on mammograms, such as image enhancement and
template-matching techniques [5]; fuzzy pyramid linking
algorithm [6]; and nonlinear bilateral subtraction
technique [7]. These approaches require breasts to be
symmetrical or lesions with typical shape. The presence
of cancer causes the disturbance in the homogeneity of
tissues and can result in architectural distortions in the
surrounding breast parenchyma. As a result, texture
measures of mammograms may be used as mass
classification features. Local edge characteristics and
textural features are used to identify spiculated masses [8].
By using statistical features from pairs of breasts, an area
(A,) under the receiver operating characteristics (ROC)
curve of 0.823 was achieved [9]. A sensitivity of 92% for
isolating malignant masses at 1.8 false positives per image
was reported [11]. Fuzzy neural networks (FNN) provide
a new way to interpret vague and incomplete data or
knowledge. A fuzzy system adaptively infers and
modifies its fuzzy associations from representative
samples. Fuzzy logic based system can handle, to a
reasonable extent, uncertainties in various applications,
particularly in decision-making process under different
kinds of risk, subjective judgment, vagueness, and
ambiguity [10]. Image background can be of fuzzy nature
because of the presence of some fatty tissues and blood
vessels. In this paper, we will study a new set of features
for the detection of mass lesions and studied the feasibility
of using a FNN in the detection/classification process.

2. MATERIALS AND METHODS

Mammograms were downloaded from the DDSM. The
mammograms were obtained with DBA M2100
ImageClear scanner. Sampling rate of the scanner was 42
microns per pixel. Gray level was 16 bits. Downloaded
files were converted to gray level of 8 bits. Sub-images
with sizes 128 x 128, 256 x 256, 512 x 512, 768 x 768,
1024 x 1024, and 1280 x 1280 were obtained as the
regions of interests (ROIs) from each mammogram. For
mammograms with malignant masses, all ROIs enclosed
or overlapped the mass lesions. The ROIs were used to

ICASSP 2003




study the effect of sample image size on texture features.
The regions containing only normal tissues were also
extracted randomly. Five to seven regions were selected
from each mammogram. Two sample images were
obtained from each of these regions with sizes 256 x 256
and 768 x 768, respectively. The sample image with size
256 x 256 p enclosed the whole small mass lesion or part
of the large lesion. The sample image with size 768 x 768
enclosed the small image and its surrounding area.
Entropy (E), uniformity (U), contrast (v), and maximum
co-occurrence matrix element were calculated for each
ROL

Texture features were computed for each ROI and
fuzzified as the inputs of the fuzzy neural network. Based
on co-occurrence matrix, entropy (E), uniformity (U), and
contrast (v) and maximum co-occurrence matrix element
(CMypax) Were computed.

2.1. Co-occurrence Matrix (CM) and Features

Grey-level co-occurrence matrix was calculated from
angular matrices [14]. Pgq is the angular matrix at 6
degrees (0°, 45°, 90°, 135°) and calculated for a distance
of d between two pixels; a and b are the gray levels for
these two pixels (k,I) and (m,n). The sum of the four
angular matrices is expressed as:

Pa (a,b) = [po“,d + p45“,d + p90”,d + p135“,d] (1
The co-occurrence matrix (Cj) is calculated by dividing Py
by the total number of pixel pairs in the P4 calculation. In
this research, d = 1 is used for the co-occurrence matrix
calculation. Follows are the features extracted from CM.
2.2.1 Maximum co-occurrence matrix element (CM,.x)

CM .. = max(c;) )
1] :

where c;jjis an element of the co-occurrence matrix (Cj).
2.2.2. Contrast (v)

v=22=N’c 3)

where c;jjis an element of the co-occurrence matrix (Cj).
2.2.3. Entropy (E)

E = —ZZCU logc, 4)
i

where cjjis an element of the co-occurrence matrix (Cj).
2.2.4. Uniformity (U)

U=2.2. )
i

where cjjis an element of the co-occurrence matrix (Cj).

2.3. Structure of the Fuzzy Neural Network

A four-layer feed-forward fuzzy neural network is used in
this study. The first layer is the input layer consisting of 4
neurons. All features are normalized. The neurons in this
layer are regular neurons.

m—1
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where [ is the fuzzification coefficient. The value of
B <[0,]] is determined experimentally, and r; is the

relative coefficient.

The output from the second layer is used to calculate
the input values for the third layer. Neurons in the third
layer are the maximum fuzzy neurons.

if a; /22‘ yEZJ *9" ‘ZO (6)

Y 0 otherwise

o :{12|y[/2] -0.|/a,
The number of fuzzy neurons in the third layer is
determined during the training process. Each neuron in
this layer represented a unique separable mass lesion
pattern. The training algorithm determines o and 0 for
each fuzzy neuron. There are N fuzzy neurons in this
layer. These neurons are divided into two classes:
positive malignant mass lesion class (Mass) and normal
tissue class (Normal). The maximum output from each
class is obtained in the fourth layer and used as an input
for a competitive neuron in the fourth layer.

The output function for the third layer is expressed as:

N-1
Bl _ (3]
Yej =max(s;") (7)

where y.; is the output of a fuzzy neuron in the third layer.
The subscript ¢ represents class index. If ¢ is 0, it is the
normal tissue class. If ¢ is 1, it is the mass lesion class.
The fourth layer has two maximum neurons and one
competitive neuron with two inputs.

k
so” = Max(y;))
®)

!
(4] — (3]
Sy —A;[:%x(yc,j

where s, and s; are inputs to the competitive neuron.
There are k neurons for malignant mass lesion class
(Mass) and 1 neuron for normal class (Normal). The
output of the fourth layer is defined as:
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w1 if (si! —SE‘”)ZT],
yo= . -0
0 otherwise
where Ty is the activation threshold of the competitive
neuron. If y equals one, it indicates that there is a
malignant mass lesion.

2.4. Network Training

A set of inputs is applied to neurons in the first layer. The
fuzzified output from each neuron in the first layer is fed
to neurons in the second layer, where the sum is obtained
after multiplied by respective weights and a fuzzification
factor, and generated the output. Outputs from the second
layer are fed to all FNN neurons in the third layer. If there
is not a match with an existing class, create a new neuron
with a defaulta. The maximum outputs from the third
layer for each class are obtained in the fourth layer. After
adjusting the decision threshold (Tvy), a class is chosen. If
misclassified, adjust a for that misclassified neuron; also
create a new neuron for the new pattern with the minimum
input as the parameterf. Register the new neuron’s index
in the correct class. Re-train the neural network. Repeat
these steps until all training sets are applied without
requesting any weight modification.

3. RESULTS AND DISCUSSION

Entropies were 67% and 60% greater for ROIs with
malignant mass than the ROIs with normal tissues at size
of 128 x 128, 256 x 256 pixels, respectively (Fig. 1).
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Fig. 1. Entropy (E) versus ROI size. Data are means * standard
deviations 52 ROIs with malignant masses (Mass) 44 normal
ROIs (Normal).

Uniformities of ROIs with normal tissues were greater
than those of ROIs with malignant masse with sizes of
128 x 128 and 256 x 256 (Fig. 2). It was similar for all
ROIs with sizes of 768 x 768 and above. Contrast showed
a similar pattern as for entropy (Fig. 3). Entropy
difference was calculated by subtracting entropy of 768 x
768 from the one of 256 x 256. Entropy difference was
greater for smaller lesions than that of lesions than that for
larger lesions (Fig. 4). The contrast difference showed
similar pattern (Fig. 5).

The entropy difference was positive for images with
malignant masses while it was negative for normal images
(Fig. 6). Contrast difference showed similar pattern as for
entropy difference. The performance of the FNN was
evaluated by the curve of a free-response receiver
operating characteristic (FROC) [11]. The true positive
fraction was plotted against the number of false positives
per mammogram (FP) (Fig. 7). TPF was computed as TP/
(TP+FN). The TP is the number of true positives and FN
is the number of false negatives. The number of FP per
mammogram is 1.33 at a TPF of 0.92 and 2.15 at TPF 1.
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Fig. 2. Uniformity (U) versus ROI size. Data are means +
standard deviations 52 ROIs with malignant masses (Mass) and
44 normal ROIs (Normal).
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Fig. 3. Contrast (v) versus ROI size. Data are means + standard
deviation for52 ROIs with malignant masses 44 normal ROIs.
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Fig. 4. Entropy difference (AE) versus lesion size of malignant
masses. A total of 52 malignant masses are shown. The lesion
size is calculated as (axb)"2. The variables a, b are the long and
short axes of a malignant mass lesion, respectively. Entropy
difference is calculated as (Ess- E763)/ E 7.

Some of these false positives could be benign masses in
mammograms. The above result is better than most
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published approaches for mass detection [7],[ 9], [12],
[13].

The texture features used in this study appear to be very
promising in distinguishing ROIs with malignant masses
from those with normal tissues. Although a false positive
of 2.15 per mammogram may not be adequate to be used
as a primary tool for the detection of mass lesions, this
classifier identified all malignant masses and can be used
as a new assistant tool for radiologists for pre-screening of
potential positive areas. Other modifications
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Fig. 5. Contrast difference (Av) versus lesion size of malignant
masses.
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Fig. 6. Entropy difference (AE) for ROIs with malignant masses
(Mass) and normal tissues (Normal). The error bars are standard
deviations. For malignant masses, the number of samples is 52.
The number of samples is 618 for normal tissues.
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Fig.7. Free-response receiver operating characteristic (FROC)
for the fuzzy neural network. The curve was obtained by
adjusting the decision parameter in the fourth layer. True-
positive fraction is computed as TP/(TP+FN), where TP is the
number of true positives and FN is the number of false negatives
(malignant mass lesions classified as normal tissues). FP is the
number of false positives.
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