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ABSTRACT 

 
Video shot boundary detection is an important step in 
many video processing applications. We observe that 
video shot boundary is a multi-resolution edge 
phenomenon in the feature space. In this paper, we 
expanded our previous temporal multi-resolution analysis 
(TMRA) work by introducing the new feature vector 
based on motion. Further we employ the support vector 
machine (SVM) to refine the classification of shot 
boundaries. The resulting framework has been tested on 
the MPEG 7 video data set, and has been shown to have 
good accuracy for both the detection of abrupt and 
gradual transitions as well as their boundaries. It also has 
good noise tolerance characteristics. 
 
 
 

1. INTRODUCTION 
 
The rapid accumulation of huge amount of digital video data in 
archives has led to many video applications. These applications 
should have the ability to represent, index, store and retrieve 
video efficiently. Since video is a time-based media, it is very 
important to break the video streams into basic temporal units 
called shots [1]. The temporal partitioning of video is generally 
called video segmentation or shot boundary detection [1][3][5]. 
To fulfill the task of partitioning the video, video segmentation 
needs to detect the joining of two shots in the video stream and 
locate the position of these joins. These joins appear to be of two 
different types, abrupt transition (CUT) and gradual transition 
(GT), based on the techniques used in the editing process [2]. 

Due to the presence of these types of transitions and the wide 
varying lengths of GTs, the task of detecting the type and 
location of transitions in video is very complex. In fact, the 
detection of the transitions of video is a temporal multi-
resolution problem. Information across resolutions will be used 
to detect as well as locate both the CUT and GT transition 
points. Since wavelet is well known for its ability to model sharp 
discontinuities and to process signals according to scales [7], we 
employ Canny-like B-Spline wavelets in this multi-resolution 
analysis. The resulting system, based on color feature, provides a 
general framework to detect both CUTs and GTs effectively [8]. 
However, even though the system shows very high recall rates, it 
suffers from poor precision. This is because the system is 
sensitive to luminance/motion noises and threshold selection. 

The other major problem is the flash and camera/object motion, 
resulting in many falsely detected transitions. 

In this paper, we extend our previous TRMA system [8] to 
incorporate new motion-based feature vector and use SVM to 
improve the accuracy of the classification of shot transitions. 
Tests show that the resulting system is able to improve the 
precision of shot boundary detection while retaining high recall. 
This paper discusses the above extensions. 

The rest of this paper is organized as follows. Section 2 
presents the related work. Section 3 describes our previous 
TMRA framework, while Sections 4 and 5 describe the 
extensions. Section 6 discusses the experimental results, and 
Section 7 presents the conclusion and outlines of future work.  

 
2. RELATED WORK  

Much work has been done on detecting the CUTs and GTs. 
Zhang et al. [3] developed one of the most successful early 
methods, called twin-comparison method, which detects CUTs 
and GTs by applying different thresholds based on differences of 
color histograms between successive frames. They extended 
their method to work directly on the compressed domain by 
comparing DCT coefficients [6]. These, together with most 
existing methods, suffer a lot from threshold selection and noise 
[1]. 

There are other approaches to tackle this problem. Hampapur 
et al. [2] proposed the model-based method by studying the 
video production techniques, utilizing different models for 
different editing effects. Yu & Wolf [5] used wavelet to 
decompose every frame into low-resolution and high-resolution 
components. They extracted edge spectrum average feature in 
the high-resolution component to detect fade, and applied double 
chromatic difference on the low-resolution component to 
identify the dissolve transitions. 

Our approach differs from these previous works in the 
following ways. First, we measure the difference between the 
sets of frames instead of only on every two successive frames.  
Second, we perform multi-resolution analysis on the temporal 
domain instead of only in the spatial domain as is done in most 
existing multi-resolution methods. Third, in our previous work 
[8], our system suffered from poor precision because of the noise 
presence in the multi-resolution wavelet coefficients, and there 
was no means to automatically select a threshold value to 
eliminate this noise.  Our active TMRA method overcomes the 
above constraints.  

 
3. THE TMRA FRAMEWORK 

This section discusses the existing temporal multi-resolution 
approach (TRMA) to detect shot boundaries. 
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3.1 Video Representation  
We model video according to the content of the video frames in 
the stream. The feature for representing the content of video 
frames could be of any type: color, shape, texture or motion. 
Thus a video can be modeled in N-dimensional spaces of 
different features. For example, we can choose DC64 color 
histogram as our feature space. The DC64 color histogram is 
computed by extracting the DCT DC value for each macroblock 
in the video frame. The value can be quantized levels, say, 64 
values to form the DC64 color histogram. 

By empirically observing GTs, we find that different types of 
GTs exist like fade in/fade out, dissolve, wipe and morph etc. 
Moreover, the length of the transition may vary greatly too. 
Different shot transitions have different characteristics, so it is 
hard to use just one single feature and single algorithm to 
capture all the characteristics of all kinds of shot transitions 
efficiently. It is observed that different types of shot transitions 
are observable at different resolutions in the feature space. For 
example, we could see CUTs both in a fine resolution (between 
two successive frames) and a coarse observation (across several 
frames), while GT only shows up clearly as a transition in a 
coarse resolution. So the transition must be defined with respect 
to different resolutions. By viewing the video at multiple 
temporal resolutions, the detection of CUTs and GTs can be 
unified. Figure 1 shows a multi-resolution analysis map based on 
DC64 feature for a video stream. The Figure clearly shows the 
locations of the CUT and GT. Note that the transition 
corresponds to GT only shows up as a local maxima at low-
resolution scale of 4. 

By making this fundamental observation that a video shot 
boundary is a multi-resolution phenomenon, we can characterize 
the transitions with the following features: the scale of the 
transition, the strength of the transition, and the singularity of the 
transition point. 
 
3.2 Applying Wavelet 
Wavelet provides a good mathematical basis for video analysis. 
In the analysis, we need to construct a scale space. The Gaussian 
scale-space approach is widely adopted. This is because the 
Gaussian function is the unique kernel which satisfies the 
causality property as guaranteed by the scaling theorem. It states 
that no new feature points are created with increasing scale [4]. 
Because the first order derivative of the Gaussian function could 
be a mother wavelet, one can easily show that the sharper 
variation points of the signal correspond to the local maxima of 
the wavelet transform. Thus a maxima detection of the wavelet 
transform is equivalent to boundary detection. If the mother 
wavelet is the Canny wavelet, which is the first order derivative 
of the Gaussian, then 
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From the right side of Equation (4), we can see that the 
resulting output is a smoothed signal generated by a Gaussian 
filter that calculates the first order derivatives. The detailed 
derivation of Equations (1-4) can be found in [8]. The local 
maxima of the resulting signal will indicate where the transitions 
happen, and the magnitude of the maxima will show the strength 
of the transitions. Since the analysis of video involves the 
processing of huge amount of data, the choice of a suitable 
kernel that facilitates fast processing is important. To achieve 
this, we select the Canny-like B-spline wavelets since they have 
fast algorithm independent of the resolution, and carry the good 
features of Canny [4]. Figure 1 shows the multi-resolution 
coefficients after the transformation for the DC64 feature space.  
 

  
Figure 1: Multi-resolution waveform of a video with 1CUT & 1 GT. 
 

4. MODIFIED TMRA 
This section discusses the extension to the TMRA framework, 
by incorporating new motion-based feature and employing 
adaptive thresholding to make the system more dynamic. 

  
4.1 Motion-Based Feature Vector 

The previous TRMA approach [8] employed only the DC64 
color histogram features. Large-scale tests showed that the 
TRMA method outperformed the Twin-Comparison method, and 
was able to achieve an F1 value of 0.86 and 0.77 for CUT and 
GT detection respectively. The test, however, also showed that 
the use of only color histogram-based features has difficulties in 
improving both the recall and precision of the shot boundary 
detection at the same time. In addition, it has difficulty in 
locating precise boundary of GT due to the flash and 
camera/object motions. To overcome this problem we construct 
a motion-based feature using the motion-vectors of MPEG 
compressed stream. 

The new feature is called the MA64 direction histogram. It is 
computed using the motion vectors for each macroblock and 
quantizing the angle values to 60 bins. Since the motion vectors 
tend to be sparse, a 3x3 median filtering is applied to the motion 
vectors. Also boundary blocks are not considered in the 
formation of the feature vectors, as they tend to be erroneous. 
The last 4 bins contain the macroblock type counts of forward 
predicted, backward predicted, intra and skip macroblocks. 

Both the DC64 and MA64 features are used in the multi-
resolution wavelet analysis framework to detect shot transitions. 
 
4.2 Adaptive Thresholding 
The problem of choosing the appropriate thresholds is a key 
issue to all shot boundary detection methods, including TRMA. 
Heuristically chosen global threshold is not suitable as the shot 
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content changes from scene to scene. Adaptive thresholds are 
better than a simple global threshold. Here we use a sliding 
window method to calculate the thresholds. Our system has one 
weighting factor which can be adaptively adjusted based on the 
sliding window size and the standard deviation of DC64 feature 
of the neighborhood frames. For different video clips, their 
standard deviations (STD) are different. Also, the choice of 
sliding window size is also very important. We choose the 
sliding window size as the sum of max interval of peak points 
and max interval of valley points: 

( ) ( )
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Where Np and Nv respectively denote the number of the peak 
and valley points; Di

(p) and Di
(v) give the interval of the 

neighborhood peak and valley points. 
At each sliding window position, we calculate the average 

magnitude of the feature point and use that as the dynamic 
threshold for that point. Figure 2 shows the adaptive threshold 
for the wavelet coefficients. Our tests show that the adaptive 
threshold removes most of the noise peak points due to 
brightness/contrast variations, blurring and small motions.  

 
Figure 2: Adaptive threshold for wavelet coefficients 
 
4.3 Locating Potential Transitions 
The goal of video segmentation is not only to detect the 
occurrence of a transition, but also to locate the exact positions 
of the CUT/GT to segment the video. Here we analyze both the 
color and motion characteristics of the video stream using the 
DC64 and MA64 features simultaneously. The idea is to use the 
low resolution wavelet coefficients (we use the DC64 feature at 
resolution 3) to help in detecting the occurrence of the transition, 
while examining the high resolution information (we use MA64 
feature at resolution 0) to locate the start and end of the 
transition. 

To locate potential transitions, we start with resolution 3 (the 
4th scale) of the wavelet analysis as at this resolution, most CUTs 
as well as GTs would show up as local maxima. The use of 
resolution 3 also ensures that no GT is lost in the analysis. In 
general, not only the true transitions, but many noise and object 
motions will also show up as local maxima in the multi-
resolution wavelet analysis. As wavelet transform is a smoothing 
kind of function, part of the noise would have already been 
removed in the lower resolutions. Also, most noise would be 
severely degraded as we move from high to low resolution 
space. Thus by tracing the local maxima from the high to a low 
resolution scale in the DC64 feature space, we can eliminate 
most of the maxima that correspond to noise. However, many 
maxima correspond to fast camera/object motions will still 
remain. 

After we have identified the local maxima points at the 3rd 
lower resolution, we use these local maxima points as the anchor 
points. We trace up to the higher resolution of the motion-based 
MC64 wavelet coefficients. As the motion vector is sensitive to 

changes in scene contents, we expect the beginning and end of 
the GTs to show up as clear local maxima in the MA64 feature 
space at resolution 0. They thus provide the basis to locate the 
transition boundaries precisely as illustrated in Figure 3. 

 

 
Figure 3: Locating transition boundaries using multi-resolution 

 
5. ATMRA 

The use of modified TRMA has improved the precision of the 
results by about 6% over the TRMA system (see results in Table 
1). However, we found that there are still too many false 
transitions. This is because of noise as well as various kinds of 
object and camera motions, which are hard to be captured by 
using generic heuristic methods as is done previously. Hence, to 
further filter out the noise across all types of video content, we 
introduce an additional elimination-verification step based on 
machine learning. This active learning based system (ATMRA) 
is based on SVM. This section discusses the overall ATMRA 
system and the features to be extracted for SVM training.  

 
5.1 Feature Selection 
In order to accurately classify the potential transitions into the 
types of CUT and GT, and to filter out those due to noise and 
motions, we need to further characterize the transitions. As we 
expect the changes during a gradual transition to be relatively 
smooth, in principle, we expect the mean absolute differences 
(MAD) of DC64 and MA64 for the “true” transitions (CUT/GT) 
to be consistent. In other words, at the “true” CUT and GT 
points, we expect the MADs to be consistent across both DC64 
and MA64 feature space. If the MAD changes are not consistent 
across DC64 and MA64, it implies that it is a wrong transition 
caused by noise or camera/object motion. 

Based on this analysis, we derive the following features to 
capture the consistency among the features during the 
transitions. First, we derive four kinds of quadratic differences to 
measure the various distances between the mean absolute 
differences of feature vectors at each potential transition. They 
are represented as -- QMADbefore (similarity before the 
transition), QMADinter (similarity within the transition), 
QMADafter (similarity after the transition) and QMADba 
(similarity before and after the transition): 
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Where start and end represents the beginning and ending frame 
number of the potential transition. k represents the computing 
range (2≤k≤9), fi denotes the feature, which in this case, the 
DC64 and MA64 features. r

kC  is the normalization factor. 
Next we compute the ratios of QMADs defined as:  

),max(1 int afterbeforeer QMADQMADQMADratio =   (10) 

baer QMADQMADratio /2 int=    (11) 
The ratios are used to better differentiate between different types 
of transitions. Finally, we also compute the counts of intra and 
skip macroblocks. This is used to capture the motion information 
within the transitions.  

The above set of features is then used to train the SVM 
model. 
 
5.2 Support Vector Machine (SVM) 
Given the set of training data consisting of both positive and 
negative examples, we derive the above set of features for each 
transition. We train an SVM-based classifier to classify the 
remaining potential transitions into three classes of CUTs, GTs 
and false transitions. 

We collected a large variety of training data in different 
genres (home video, animation, news etc.) from the MPEG-7 
dataset. The dataset consists of about 5,000 transitions (positive 
and negative). We randomly selected 20~30 % of dataset as the 
training data and randomly chose 15~20% of remaining dataset 
as the validating data. We used SVM model for multi-class 
classification. Currently, we only classified a transition into the 
types of: CUT, GT or False. Of course, we can further classify 
the GT into other fine types such as dissolve, fade in/out, morph 
etc. 

After training and validating the SVM model, we use this 
SVM model to classify the potential transitions and eliminate 
false transitions caused by flash and camera/object motions. 
 

6. EXPERIMENTAL RESULTS 
 

The effectiveness of the algorithm was evaluated on the MPEG -
7 test dataset using the precision, recall and F1 measures, which 
are widely used in the field of information retrieval. There is a 
total of about 13 hours of video, which contains about 5,256 
CUTs and 1,085 GTs. 

For comparison purpose, we tuned a Twin-Comparison 
method (Twin-Comp) [3] by selecting the best possible 
thresholds, and used that to provide the baseline performance. 
We compared the results of the Twin-comparison method with: 
(a) the original TRMA method [8]; (b) the modified TRMA (M-
TRMA) as described in Section 4; and (c) ATRAM described in 
Section 5. Table 1 summarizes the results. 

Table 1. Comparison of results 
 CUT   GT   

Pr. Re. F1 Pr. Re. F1 
Twin-Comp Mth 0.40 0.92 0.56 0.15 0.58 0.24 
TRMA 0.77 0.98 0.86 0.65 0.97 0.77 
MTRMA 0.88 0.95 0.91 0.77 0.91 0.83 
ATRMA 0.96 0.93 0.94 0.88 0.89 0.88 

 

From the table, we can see that the basic TRMA method 
outperforms the Twin-Comparison method by a large margin, 
especially for gradual transitions. The use of motion features in 
MTRMA improves the performance of TRMA by 4% and 5% in 
F1 measure for CUT and GT respectively. Finally, the use of 
active learning based on SVM (ATRMA) further improves the 
performance over TRMA by 8% and 11% in F1 measure for 
CUT and GT respectively. 

We have participated in this year’s TREC [9] and tested the 
system on the TREC-2002 Shot boundary detection corpus 
containing approximately 2,000 transitions. The tests again 
demonstrate that ATRAM out-performs the original TRMA 
method by over 10% in F1 value. 
  
7. CONCLUSION AND FUTURE WORK  
In this paper, it is shown that a temporal video sequence can be 
modeled as a trajectory of points in the multi-dimensional 
feature space. By studying different types of transitions in 
different resolutions, it is observed that the shot boundary 
detection is a temporal multi-resolution phenomenon. The tests 
show that the ATMRA framework offers a general and novel 
approach to flexibly and accurately probe the structure and 
content of digital video. It results in very high F1 performance 
for both the CUT and GT detections. Our future work includes: 
(a) to improve the gradual transition detection and frame recall; 
and, (b) to investigate the use of other features to analyze the 
video data, especially at the semantic level.  
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