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ABSTRACT

A rohust and accuate image recaynizer for cephalonet-

ric landmaking is presented The recogrzer usesGini

Suppat Vector Machine (SVM) to model discrimiration
bourdariesbetweendifferent landnarksandalso between
the baclgrourd frames. Large Margin Classificationwith

nondinearkernelsallowsto extractrelevart detailsfrom the
landmaks, appoachinghumanexpertlevelsof recanition.

In conjunction with ProjectedPrincipal-Elige Distribution

(PPED)represetationasfeaturevectas, GiniSVM is able
todemastratemore than95%accurag for landnarkdetec-
tion on medicalceplalograns within areasonale location
tolerane value.

1. INTRODUCTION

In Cephaloretric landmak idertification, dentistsare re-
quiredto identify precefinedcharacteristianatomichland-
markson a cephalonetric radio-gaph (x-ray headfilm) to

diagrose cranialbonestructuresof their patients. A sam-
ple headfilm with eightdistinctlandmaksis shovnin Fig-

ure 1. Thedifficulty of identifying thesdandmarlsis com-
pourdedby variability of patientsskull structureandnature
of the radio-gaphimage,for which mostdentistshave to

usetheir expertisegaired throwgh several yearsof clinical

practice.Any competitve imagerecogition systemhasto

matchthe accuacgy closeto human perfamance,andthus
stringen requirenenton toleranes of location estimation
areimposed. For a typical orthodortic applicationa rea-
sonableolerancalistancedor identificationis arounnd 1mm,
which amourts to a resoldion of about4 pixés relative to

the sizeof theimageschoserin this work. In the Figure 1

a5mmtolerane bourdaryarourd thelandnmarkis shown.

*Thiswork wasperformedwhile theauthorwasat Universiy of Tokyo,
through an Academic Frontie's Studert Excharge Promotion Program
Scholashipandafellowshipfrom The Catdyst Foundaion, New York.

0-7803-7663-3/03/$17.00 ©2003 IEEE

Il-825

ProjectedPrincipal-ElgeDistribution (PPED) previously
called Principal Axis Projection(PAP) is an effective fea-
ture extraction tool that hasbeendesignedor sucha task
[2]. Theelegarce of this methodlies in its simplicity that
enablegeal-time imagerecoqition using dedicatechard
ware. In [2] [3] anassociatie memay back-el wasem-
ployed to detectthe landrrark positiors in medicalradio
grapts. Like mostmaximum likelihoad techniqiessucha
methodrequilescomplicatel paranetric modelsandhence
large amoun of training datato reliably mockl classdis-
tributions. The perfamane of suchclassifierdeterigates
furtherasthedegreeof classoverlapincreaseslf theaim of
arecogrizer wereto discriminatebetweerclassesit would
sufiiceto mocel thedecisionbowndariesvhichin mostaffine
casegequiremuchfewer paraméersto estimate.

Large Margin Classifierlike Supmrt Vector Machines
(SVMs)areonesuchclassifietthatis anattractive choicefor
implementirg a backend of animagerecogition system
because

1. They gereralizewell even with relatively few data
pointsin thetrainingsetandbourd onthegenealiza-
tion erra canbedirectly estimatedrom the training
data.

2. Theonly parametethatneedgo bechasenis apenéty
termfor classificationwhich actsasareguarizerand
determires a tradeoff betweenresolutionand gen-
eralizationperiormarce. Hencewe can contrd its
learningability.

3. Thealgoithmfinds,undergeneratonditiorsaunique
separatinglecisionsurfacethatprovidesthe bestout-
of-sampe performane

4. Thearchitetureis feed-brwardandis veryamenale
to parallelhardware implementation [4].

GiniSVM is a sparsdorm of multi-classlargemarmgin
probailistic logisticregression Usingacostfunctionbased
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Fig. 1. Eight landmark points used in cephalometric stud-
ies.

on a quadatic (Giini) form of cross-etropy [7], training
redu@sto solving a quadatic progammirg prodem un-
der linear constréants [7]. Like ary otherkerrel machine
GiniSVM operatdoy mappirg inputvectos into very high
dimensimal featue spacewherea maximalmamgin hyper
planecanbe foundthatlinearly separatethetrainingdata.
Therelevanceof suchhigh-dimersionalfeatureprocessing
is evident in this work whereGiniSVM is ableto easily
extractnondinearfeaturedrom training images especially
which areharcer to identify usinghumancognition

The paperis organizel asfollows. Section2 descriles
the PPEDfeatureextractionalgoithm. Section3 descriles
the Gini-SVM classifierarchitectue. Section4 descriles
expetimentsperformedusingboththe scheme®n the task
of cephalanetric landmak detection Section5 provides
conclwsionsandfinal remaks.

2. PROJECTED PRINCIPAL-EDGE
DISTRIBUTION

PPEDfeatue extractian triesto captue theinformationcon-
tentof animageby modding its edgedistributionalongdif-

ferentprindpal directiors or orientatios. For mostgenera
purposesfour suchdirectiors suffice to modelrelevart dis-
criminatay information.Detailsabou PPEDvecta gener
ationcanbefound in [2]. Herewe enlistonly the salient
stepsof featue extractian.

¢ Four principal directiors, horizantal(H), vertical(V),
clockwise45°(P45)andanti-clockvise45° (M45) are
chasenalongwhichedgedetectiorhasto beperfomed
asshown in Figure 2. The edgesalongthesedirec-
tionsareextractedusingfour 5x5pixel edgedetection
filters [2]. A winnertake-all thenselectsthe edge
with the maximum intensity
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Fig. 2. PPED feature generation algorithm.

e The maxinum edgeintensity are compared with a
threshdd valueto detecthepresencef anedge This
eliminateseffect of noiseandillumination biasin the
image.Thethreshdd for animageis compuedasthe
medianof all theedgeintensitiegpresentn theimage
detailsof which are providedin [2]. The detected
imageis thenstoredas a bitmapin one of the four
orientatins,shovn in Figure 2.

e PPEDcoeficientsarecomputedby projectirg thebit-
mapsalongdirectiors orthogonalto theprincipalaxes.
Additional featuee redictionis obtainedby averagirg
alongthe coeficients, resultingin 16 featuresalong
eachdirection for a 64x64 pixel image [2].

e The 16 coeficients for eachdirectiors arethencon-
catenatedo form a compaite 64 dimensionPPED
vector

The PPEDvectas, geneated by the above proedure
areusedasa front-endfor a GiniSVM classifierdescriled
below.

3. GINI-SUPPORT VECTOR MACHINE

In its basicform GiniSVM geneatescorditional probabil-
ities P(i|x) for aclass/landmi i,7 = 1, .., K giveninput
featurevecta x

P(ilx) = exp(fi(z))/ ) exp(fy(x)) 1)
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As with SVMs, dot productsin the expressiorfor f;(x)
in (1) corvertinto kerrel expansionsover thetrainingdata

x[m],m = 1, .., M bytransforning thedatato featue spacg6]

fix) =

w;.X + b;

SO x[m].x + b, )

20 Z)\:n K(x[m],x) + b;

whereK (-, -) dendesary symmetic positive-definiteker
nef thatsatisfiesthe Mercercondtion, suchasa Gaussian
radialbasisfunction or a polynomialspline[5].

The paraneter A? are determired by solving linearly
constraired qualratic progammingproddem [7] and pa-
rameter; is obtainedasalagrargianfor the constrant (4)

M 1 N N N
H, = Z[g DD XNQun AT +4C ) (wilm] = A7 /C)?

- " ©
subjectto constraints
YA =0 (4)
S = 0 (5)
’ A< Cyilm] (6)

Here Q;, = K(x[m],x[l]) representsthe kernelim-
agematrix, andthe additional parametes v andC' areob-
tainedby tuningthe performarce of GiniSVM on a cross-
validation set. The corstrainedoptimization prodem (3)
canbe solved by several standardquadatic progamming
techniques.

4. EXPERIMENTSAND RESULTS

For our expeliments130x-ray headfilms (70500 pixels)
weretakenfrom retention files at Departnentof Orthadon-
tics, the OsakaUniversity. A tenfold crossvalidation pro-
cedue wasadoptedo reliably evaluatethe perfomanceof
therecogrzer. 70 imageswerechoserfor training, 20 for
cross-alidationexpeaimentsand40imageswerechosento
evaluatethe performarce of the trainedrecogrizer. Such
selectionswere repeatedat rancbm for ten times and the
evaluation resultswerethenaveragel to obtainthefinal fig-
ure of merit. For all our experimentswe chosea Gaussian
kernel K (x,y) = exp((x —y)T(x — y)) dueits superior
convergencepropertiesduring training.

1K (x,y) = ®(x).®(y). Themap®(-) neednotbecomputel explic-
itly, asit only appeasin inner-productform.
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Fig. 3. Image of a GiniSVM kernel map depicting the dis-
criminatory power of PPED features for distinguishing be-
tween different cephalometric landmarks.

The suitability of PPEDvectos for GiniSVM canbe
obsened throughthetrainingkernelimagematrix shovn in
Figure 3. Thedistinctdiagoral patterngn theimageshov
that PPEDfeatue vectorscontainsuficient classdiscrimi-
natoryinformationwhich GiniSVM candirectly exploit.

The secondphaseof the experimentsincluded training
dataselection. For cephaloretric identification,the land-
markshaveto distinguishe from all theneighoringframes.
In anidealscenaricall the backgpundframes from theim-
agescanbeincludedin trainingin which casethesizeof the
setwould easilyexceed 108. SinceSVM training involves
modelingdecisionboundariesby classifyingthe worst ex-
amplescorrectlyit would suffice to presentonly the back-
grourd framesthat sene asworst exanples for landmak
identification. Following procedurewasadoged to extract
the negative sampledrom all thetrainingimages.

e For eachtrainingimagea templateof PPEDvectors
correspondirg to thelandmark frames wereextracted

e Theimagewasthenscannegbixel by pixel and64x&4
pixel frame was extraded. PPED vectas for each
framewascompued andits kerné distanceK (x,y)
was compued to extract the similarity metric to all
landmak PPEDvectos.

e Two PPEDvectas for eachlandmak were chosen
asngyaive candidites. The first onewith the high-
estkerrel scoreamorgstall framesthatwereatleast
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Table 1. Comparisa of GiniSVM (SVM) recogiition sys-
temwith a Nearest-Neighor (NN) classifiersystem

| Landmarks | Tolerane(5mm) | Tolerarce(1mm) |

S(SVM) 91% 87%
S(NN) 84% 79%
N (SVM) 100% 95%
N (NN) 92% 87%
0 (SVM) 100% 99%
O (NN) 95% 89%
Ar (SVM) 83% 79%
Ar (NN) 76% 67%
Pog(SVM) 100% 98%
Pog(NN) 85% 82%
Lb (SVM) 100% 99%
Lb (NN) 89% 81%
ANS (SVM) 98% 98%
ANS (NN) 92% 89%
PNS(SVM) 97% 96%
PNS(NN) 87% 81%

256x256 pixels away from the landmak. The sec-
ondonewith the highestkernelscoreamorgstall the
frameswithin 256xX256 pixels of thelandmark

Prior knowledge aboutappioximatelocationsof each
landmak were encodd into the kernel by concateating
normalized frame centroidcoordnatesto eachPPEDvec-
tor. This procedureresultedin a training setconsistingof
168Q 66 dimensiomal PPEDvectas. GiniSVM wastrain-
ing on thetraining setandall the training paraneterswere
tunedandoptimized usingthe cross-alidationset.

Evaluationof therecogizerwasperfamedby scanning
thetestimagespixel by pixel andextracting64x64 frames,
from which PPEDvectos weregenerate@ndclasscondi-
tional probabilitieswere compued using (1). The frame
with the highestlandmak classconditioral probalility out
of all theframesin theimagewaschasento bethelocation
estimatefor thatlandmark Any locationestimatethat ex-
ceededhe truelocationestimateby a tolerarce paraneter
wasconsideedanerra.

Table 1 compresthe performane of the GiniSVM
with a Nearest-Neighor Classifer, for two toleranceval-
uesof thelandmak identificationpoints. The superiomer
formanceof GiniSVM canbedirectly attributedto thedis-

criminart trainingof thelandmaks andthebaclgrourd frames.

The table also shavs that given a larger tolerancevalue
(5mm), morethan95% accurag canbe achieved for most
landmaks usingthe SVM recogiizer.

5. CONCLUSIONS

We demastratedherobustperfamanceof animagerecog

nizerusingPPEDfeatureswvith GiniSVM classifierfor the
task of Cephalomatric Landmark Idertification. Very ac-
curatelocationestimationof the landnark canbe obtaired

using the recoguizer which is compaable to perfomance
of expeat dertists for a similar task. The utility of such
atechniaie surpassebuman perfamanceespeciallywhen
high dimensioml noniinear featues have to be evaluged

for identification Sucha scenaricoccus during identifica-
tion of landmak orbitale 'O’ and’ANS’, whichtherecog

nizeris ableto identify with nearperfect accurag. Such
recogfizerscannow beusedfor real-timeimageprocessing
for which parallelarchitectuesalreadyexists [3] [4].
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