
DISCRIMINATIVE TRAINING OF TIED MIXTURE DENSITY HMMS FOR ONLINE
HANDWRITTEN DIGIT RECOGNITION

Roongroj Nopsuwanchai

Computer Laboratory,
University of Cambridge,
Cambridge, CB3 0FD, UK
Email: rn225@cam.ac.uk

Alain Biem

IBM T. J. Watson Research Center,
P.O. Box 218, Yorktown Heights,

New York, 10598, USA
Email: biem@us.ibm.com

ABSTRACT

This paper describes and evaluates the Maximum Mutual In-
formation criterion (MMI) for online unconstrained-style hand-
written digit recognition based on Hidden Markov Models (HMMs).
The study focuses on determining the best MMI optimization scheme
and the HMM parameters that exhibit the most discriminative ca-
pabilities in the context of Tied Mixture Density Hidden Markov
Models (TDHMMS), where all HMM states share a pool of Gaus-
sians. The experimental results show that the second-order opti-
mization scheme is the most efficient and that although means and
covariance matrix are shared by all models, they contribute the
most to discrimination.

1. INTRODUCTION

Online handwriting recognition has recently received a renewed
interest as exemplified by its widespread use in handheld comput-
ers and Personal Digital Assistants (PDAs). Although tremendous
progress has been made in handwriting recognition, the recogni-
tion of unconstrained-style handwriting where the writer freely
writes with his/her own style remains a challenging problem, re-
quiring complex models and powerful hardware. The problem
is compounded when the recognizer is deployed on a platform
with limited power and memory: the recognizer should be light
and at the same time should exhibit high performance on freely-
written handwriting to be useful. In a HMM-based framework, a
lightweight recognizer can be obtained by parameters tying, where
parameters are fully or partially shared by all models, and, as
demonstrated in various studies, discriminative training can sig-
nificantly improve a system with a smaller number of parameters
[1].

Tied Mixture Density HMMs, also known as Semicontinuous
HMMs, use a single set of Gaussian kernels that is shared by all
states [2]. Given a feature-vectorx, the probability density func-
tion (pdf) bij(x) of statej and characterCi is given by

bij(x) =

K∑
k=1

wijkℵ(x, µk,Σk), (1)

whereℵ(x, µk,Σk) is k-th Normal density with meanµk and
covariance matrixΣk taken from a codebook ofK Normal den-
sities. The means and the covariance matrices are shared by all

states, only the mixing weightswijk > 0 are state-dependent with∑K
k=1 wijk = 1. It has been demonstrated that tying pdfs as de-

scribed in Eq. (1) significantly reduces the number of parame-
ters in the system while achieving similar modeling capabilities as
Continuous Densities HMMs (CDHMMS) where pdfs are untied
[3].

HMM-based discriminative training has been successfully ap-
plied to speech and handwriting recognition, showing improve-
ment from the Maximum Likelihood Estimation (MLE)-based frame-
work on a variety of tasks ranging from small vocabulary to large-
vocabulary tasks [4]. Most successes of discriminative training,
however, have been realized in the context of CDHMMs, where
the output densities attached to each state cover a localized region
of the feature space. Such an architecture, where models are well-
separated from each other is quite appropriate for a discriminative
training scheme. It remains unclear whether discriminative train-
ing is effective in a highly-tied system such as a system based on
TDHMMs.

This paper thus concentrates on evaluating MMI training of a
TDHMM-based system targeting unconstrained-style handwriting
recognition digits. This multi-writers digit recognition task pro-
vides the ideal framework to study the effectiveness of the MMI
training in this context. The goal of this exhaustive study is twofold:
finding the best optimization algorithm to be used for MMI train-
ing in the context of TDHMMs and determining the best set of
optimized parameters that provide the maximum performance.

2. MAXIMUM MUTUAL INFORMATION TRAINING OF
TDHMMS

MMI training consists of maximizing the mutual information be-
tween a training tokenX and its label/categoryC. We are given
a body of training dataD = {X1, ..., Xn, ..., XN} of N train-
ing tokens, with a sequence of labels{L1, ...,Ln, ...,LN}, where
Ln is the label ofXn andLn belongs to the set of categories
{C1, C2, ..., CM}. The MMI objective functionM(λ) to be opti-
mized is

M(λ) =

N∑
n=1

(
log P (Xn|Ln; λ)− log

M∑
i=1

P (Xn|Ci; λ)P (Ci)

)
(2)

whereλ represents the set of all parameters in the system. In
contrast to MLE which is aimed at estimating probabilities, the
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optimization of the mutual information objective function in Eq.
(2) realizes a discrimination between the likelihood of the correct
model and the probability of the data. In the context of this paper,
the prior probability of classP (Ci) is assumed to be uniform.

2.1. MMI Optimization algorithms

One reason behind the popularity of MLE training in HMM is the
powerful Baum-Welch optimization algorithm which has guaran-
teed convergence to a local minimum. Empirical evidence shows
that good parameter estimates are usually obtained after a small
number of iterations. A similar algorithm, called the extended
Baum-Welch algorithm (EBW), adapted to the MMI situation has
been proposed [5] and extensively used.

We implemented a first- and second-order optimization gradi-
ent descent technique, in the context of a TDHMM-based system,
and compared it to the EBW technique. The details of the opti-
mization algorithms are described below. In this paper, all opti-
mizations are done within the Viterbi training framework.

2.1.1. Extended Baum-Welch Algorithm

Although the EBW version described in this section uses the Viterbi
path to gather parameter sufficient statistics, it is still referred as
EBW. We letΦn

i represents the sequence of states within the model
of characterCi as found by the Viterbi algorithm, given then-th
training tokenXn = {xn1, ...,xnt, ...xnTn} of lengthTn. Given
a parameterλijk belonging to the HMM of characterCi, statej,
and mixturek, the EBW re-estimates the parameters as

λ̂ijk =
λijk

(
∂M(λ)
∂λijk

+ D
)

∑
l=1 λijl

(
∂M(λ)
∂λijl

+ D
) (3)

with a sufficiently large constantD. The algorithm can be applied
straightforwardly for all variables with property that

∑
k λijk =

1. This includes the mixing weightwijk. However, there is no
closed-form solution for this algorithm when applied to means and
covariance matrix.

Fortunately, it has been shown that by considering a continu-
ous Gaussian distribution as a limit of a discrete probability func-
tion, a re-estimation formula, can be computed [6]. Letmk, Σk

andxnt be a component of the meansµk, covariance matrixΣk,
and feature-vectorxnt, respectively. The re-estimation formulae,
adapted to the TDHMM context and using the Viterbi path statis-
tics are as follows:

m̂k =
(Θk −Θk) + Dmk

(γk − γk) + D
(4)

Σ̂k =
(Ψk −Ψk) + D(Σk + m2

k)

(γk − γk) + D
−m2

k (5)

where

Θk =

N∑
n=1

M∑
i=1

Tn∑
j∈Φn

i ,t=1

xntγ
n
ijk(t)δ(i, n) (6)

Θk =

N∑
n=1

M∑
i=1

Tn∑
j∈Φn

i ,t=1

xntγ
n
ijk(t) (7)

and

Ψijk =

N∑
n=1

M∑
i=1

Tn∑
j∈Φn

i ,t=1

x2
ntγ

n
ijk(t)δ(i, n) (8)

Ψijk =

N∑
n=1

M∑
i=1

Tn∑
t=1

x2
ntγ

n
ijk(t) (9)

with δ(i, n) = 1 if Ln = Ci and zero otherwise. The occupancy
γk and the anti-occupancyγk of the Gaussiank are defined re-
spectively as:

γk =

N∑
n=1

M∑
i=1

Tn∑
j∈Φn

i ,t=1

γn
ijk(t)δ(i, n) (10)

γk =

N∑
n=1

M∑
i=1

Tn∑
j∈Φn

i ,t=1

γn
ijk(t) (11)

where

γn
ijk(t) =

wijkℵ(xnt, µk,Σk)∑K
l=1 wijlℵ(xnt, µl,Σl)

(12)

and

γn
ijk(t) =

P (Xn|Ci)∑M
l=1 P (Xn|Cl)

γn
ijk(t). (13)

One of the critical issues in EBW is the choice of the parameter
D. In this paper, we followed the approach in [6], where the choice
is made so that the weights estimation remains positive.

2.1.2. Gradient Descent

The gradient descent approach is an iterative process that updates
the parameterλijk according to:

λ̂ijk = λijk + η ∂M(λ)
∂λijk

(14)

where a smallη > 0 is the learning rate. When applied to mix-
ing weights, a softmax transformation is used, that is,wijk =

exp(αijk)∑K
l=1 exp(αijl)

, ensuring the mixing weight remains positive dur-

ing optimization and its summation equals one.

2.1.3. Second-Order Gradient Descent

The second order gradient descent refers to the quickprop algo-
rithm [7] that has received widespread use in Neural-Network-
based systems. The quickprop algorithm combines a gradient de-
scent technique and the Newton algorithm, and uses an approx-
imation of the Hessian matrix. The parameter set is updated as
follows:

ˆλijk = λijk + [ ∂2M(λ)

∂2λijk
+ µI]−1 ∂M(λ)

∂λijk
(15)

whereµ is a learning rate andI is the Identity matrix. The Hessian
matrix is assumed to be diagonal and is approximated by

∂2M(λ)

∂2λijk
≈

∂M(λ)
∂λijk

(τ)− ∂M(λ)
∂λijk

(τ − 1)

λijk(τ)− λijk(τ − 1)
. (16)
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The quickprop algorithm replaces the approximated Hessian
by zero whenever its sign does not change at learning timeτ and
τ − 1 which indicates that the Hessian is not sufficiently posi-
tive definite. Compared to the first-order gradient descent and the
EBW, the quickprop algorithm appears to be less sensitive to the
choice of learning parameters issue as it makes use of the Hessian.

3. EXPERIMENTAL RESULTS

3.1. Comparison of Optimization Algorithms

We performed a number of experiments to evaluate the perfor-
mance of the three algorithms. The task chosen for the evalua-
tion was the classification of online unconstrained-style handwrit-
ten digit recognition using TDHMMs. The comparison focuses
on optimizing the mixing weights parameters since they are not
shared across all models, and thus are conjectured to provide the
most discriminative capability in TDHMM-based systems.

The training set for this experiment is composed of 1000 iso-
lated digits written by various writers. We use a codebook size
of 100 with one state per HMM. The codebook was initially gen-
erated by a K-means clustering procedure and re-estimated when
training all models by MLE. MMI training was carried out from
the MLE-trained HMM models for about 40 iterations (an itera-
tion is one pass over the whole training data).
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Fig. 1. Comparison of the EBW, gradient descent and
quickprop for mixing weight optimization. The curve shows
the MMI objective function versus the number of iterations.

Fig. 1 shows the comparison of the three optimization algo-
rithms in terms of the objective function versus the number of it-
erations. The three optimization methods are all clearly efficient.
The EBW algorithm exhibits the highest growth rate during the
first iterations but then it tails off quickly. However, the quickprop
algorithm displays the highest growth as the number of iteration
increases, leading us to conclude that the quickprop optimization
is the most efficient in this context.

3.2. Parameter Discriminability

Having concluded that quickprop is the most efficient algorithm, a
series of experiments was carried out to determine which param-

eters contribute the most to performance. The parameters of the
TDHMMs considered were the mixing weights (MIX), the means
of Gaussians (MNS) and covariance matrices of Gaussian distribu-
tions (COV), assumed to be diagonal. These parameters were ini-
tialized by MLE, prior to MMI training; the parameters untrained
by MMI remained at their ML-estimated values.

We used 5000 tokens for training and 3500 for testing. The
TDHMMs share a codebook of 160 Gaussians with one state per
HMM, generated as described in the section (3.1). Parameter up-
dates in MMI training was carried out for 100 iterations using
quickprop.
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Fig. 2. Evolution of the MMI objective function versus the
number iterations for various parameters.

Fig. 2 shows the evolution of the MMI objective function (on
the training set) versus the number of MMI iterations for various
parameters and Fig. 3 shows the performance on the training set.
As seen in these figures, means and covariance optimization is the
most effective in the growth of the MMI objective function and
exhibits the highest increase in recognition rate on the training
set. The mixing weight optimization shows little improvement to
the objective function and actually results in a small decrease in
recognition rate. This is rather counter-intuitive in the context of
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Fig. 3. Recognition rate on training set versus the number
of iterations for various parameters.
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TDHMMs as mixing weights are the only parameters which are
not shared across models and are therefore expected to carry more
discriminative capability than the means and covariance matrix.
The best result is achieved, as expected, when mixing weights,
means, and the covariance matrices are updated at the same time.

Table 1. Recognition results of MMI-trained TDHMMs on
the testing set.

Performance on the testing set is shown in Table 1. From the
baseline MLE-based system, MMI training improves the recogni-
tion rate on the testing set from 95.40% to 96.29% when all HMM
parameters are updated. This is equivalent to 19% relative error
rate reduction, realized from an already high performing baseline.
The parameter that contributes the most is the covariance matrix;
the means and the mixing weights have slightly lesser contribution
to discrimination.

3.3. The Effect of Parameter Tying in MMI Training

As previously argued, tied systems may inhibit the discriminative
power of the MMI algorithm. In order to test this hypothesis, the
same set of experiments were carried on the CDHMM-based sys-
tem, using a similar number of Gaussians as the TDHMM-based
system; each state pdf has its own set of 16 Gaussian distributions.

Table 2. Recognition results of MMI-trained CDHMMs on
the testing set.

The results in Table 2 show the best performance on the test-
ing set. It is clear that the mixing weights have less discriminating
power than the means and covariances. The most discriminative
parameters in this case are the covariance matrices of Gaussian
distributions: the covariance matrix optimization improves the re-
sult of the baseline system from 93.71% to 96.00% and is far better

than means and mixture weights optimization. This result is sim-
ilar to the TDHMMs case but the relative improvement from the
MLE-based system is much larger: The best result shows an im-
provement on recognition rate from 93.71% on MLE to 96.20%
on MMI, which is equivalent to 40% error rate reduction. Clearly,
MMI training is more effective when applied to an untied system.

4. CONCLUSIONS

We have described a study of the Maximum Mutual Information
approach aimed at online unconstrained handwritten digit recogni-
tion using Tied Mixture Density HMMs. The study evaluated three
optimization algorithms, namely Extended Baum-Welch, gradi-
ent descent and the quickprop algorithm. It was shown that al-
though Extended Baum-Welch has the highest initial growth rate,
the quickprop algorithm is more efficient in the long run. Opti-
mization of various HMM parameters shows that mixing weight
optimization has less effect in increasing the performance and co-
variance matrix optimization contributes the most. The same ex-
periment, carried out on a Continuous Density HMMs system,
confirms that covariance matrix optimization is also the most ef-
fective in an untied system.
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