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ABSTRACT states, only the mixing weights; ;. > 0 are state-dependent with

Zszl w;jr = 1. It has been demonstrated that tying pdfs as de-
scribed in Eq. (1) significantly reduces the number of parame-
ters in the system while achieving similar modeling capabilities as
Continuous Densities HMMs (CDHMMS) where pdfs are untied

This paper describes and evaluates the Maximum Mutual In-
formation criterion (MMI) for online unconstrained-style hand-
written digit recognition based on Hidden Markov Models (HMMs).
The study focuses on determining the best MMI optimization sche
and the HMM parameters that exhibit the most discriminative ca- =

pabilities in the context of Tied Mixture Density Hidden Markov plied to speech and handwriting recognition, showing improve-

Models (TDHMM.S)‘ where all HMM states share a pool of Gaus- . ment from the Maximum Likelihood Estimation (MLE)-based frame-
sians. The experimental results show that the second-order opti- ; .
ork on a variety of tasks ranging from small vocabulary to large-

mization scheme is the most efficient and that although means andW

. : . vocabulary tasks [4]. Most successes of discriminative training,
covariance matrix are shared by all models, they contribute the . .
AR however, have been realized in the context of CDHMMs, where
most to discrimination.

the output densities attached to each state cover a localized region
of the feature space. Such an architecture, where models are well-
1. INTRODUCTION separated from each other is quite appropriate for a discriminative

. . . . training scheme. It remains unclear whether discriminative train-
Online handwriting recognition has recently received a renewed ing is effective in a highly-tied system such as a system based on
interest as exemplified by its widespread use in handheld computrpHMMs.

ers and Personal Digital Assistants (PDAs). Although tremendous s paper thus concentrates on evaluating MMI training of a
progress has been made in handwriting recognition, the recogni-rp\MM-based system targeting unconstrained-style handwriting
tion of unconstrained-style handwriting where the writer freely rocqgnition digits. This multi-writers digit recognition task pro-

writes with his/her own style remains a challenging problem, re- yjges the ideal framework to study the effectiveness of the MMI
quiring complex models and powerful hardware. The problem tyaining in this context. The goal of this exhaustive study is twofold:
is compounded when the recognizer is deployed on a platform g ging the best optimization algorithm to be used for MMI train-

with limited power and memory: the recognizer should be light ing in the context of TDHMMs and determining the best set of

and at the same time should exhibit high performance on freely- optimized parameters that provide the maximum performance.
written handwriting to be useful. In a HMM-based framework, a

lightweight recognizer can be obtained by parameters tying, where
parameters are fully or partially shared by all models, and, as
demonstrated in various studies, discriminative training can sig-
nificantly improve a system with a smaller number of parameters training consists of maximizing the mutual information be-

[1]. . . . ) ) tween a training toketX and its label/categorg’. We are given
Tied Mixture Density HMMs, also known as Semicontinuous body of training dat) = {Xi,..., X Xn} of N train-
HMMSs, use a single set of Gaussian kernels that is shared by all ! e

states [2]. Given a feature-vectar the probability density func-

HMM-based discriminative training has been successfully ap-

2. MAXIMUM MUTUAL INFORMATION TRAINING OF
TDHMMS

ing tokens, with a sequence of labgls., ..., £, ..., Lx }, where
Ly is the label ofX,, and £,, belongs to the set of categories

tion (pdf) b;; (x) of statej and characte€’; is given by {C4, Cy, ...,Cr}. The MMI objective functionM () to be opti-
X mized is
bij(x) = Y wijeR(X, py, Bi), (1) N M
kz::l M) =D [ log P(Xn|La; A) —log > P(Xn|Ci; \)P(Cy)
n=1 i=1
whereR(x, u., X%) is k-th Normal density with meam, and 2)
covariance matrixX®,, taken from a codebook ak Normal den- where )\ represents the set of all parameters in the system. In

sities. The means and the covariance matrices are shared by altontrast to MLE which is aimed at estimating probabilities, the
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optimization of the mutual information objective function in Eq. and
(2) realizes a discrimination between the likelihood of the correct

N M Ty
model and the probability of the data. In the context of this paper, U = 22 A% (D6(i n 8
the prior probability of clas$>(C;) is assumed to be uniform. " ; ; jeq;gzl ¥k ()00, m) ®
N M T,
2.1. MMI Optimization algorithms Uyp = Z Z Z o g (1) 9)
(3 nt lij

One reason behind the popularity of MLE training in HMM is the

powerful Baum-Welch optimization algorithm which has guaran- wjith §(i,n) = 1if £, = C; and zero otherwise. The occupancy

teed convergence to a local minimum. Empirical evidence shows ~, and the anti-occupancy, of the Gaussiark are defined re-

that good parameter estimates are usually obtained after a smalkpectively as:

number of iterations. A similar algorithm, called the extended N

Baum-Welch algorithm (EBW), adapted to the MMI situation has n .

been proposed [5] and extensively used. Te = Z Z Z iz (£)3(i, ) (10)
We implemented a first- and second-order optimization gradi- n=t

ent descent technique, in the context of a TDHMM-based system,

and compared it to the EBW technique. The details of the opti- N M T
mization algorithms are described below. In this paper, all opti- Te=2_> > A (11)
mizations are done within the Viterbi training framework. n=1i=1 el t=1

where

2.1.1. Extended Baum-Welch Algorithm
Wik N (Xnt, By, V)

Although the EBW version described in this section uses the Viterbi Vi (t) = ZK WistR (Xt f11, 1) 12)
path to gather parameter sufficient statistics, it is still referred as =17 e
EBW. We let®] represents the sequence of states within the model and
of charactelC; as found by the Viterbi algorithm, given theth _

o ; n P(X,n|C:) n
training tokenX,, = {Xn1, ..., Xnt, ...Xn1, } Of lengthT},. Given Vi) = W%jk(t)- (13)
a parameten,;;, belonging to the HMM of character;, statej, =1 P(XalC1)
and mixturek, the EBW re-estimates the parameters as One of the critical issues in EBW is the choice of the parameter

oM D. Inthis paper, we followed the approach in [6], where the choice
,\k< <)+D> i mad hat the weigh S : oy
5 B ik \ axin 3) is made so that the weights estimation remains positive.
ijk =

OM(A
D11 Aijt ( mfﬂ) + D)

with a sufficiently large constari®. The algorithm can be applied
straightforwardly for all variables with property that, \;;. =
1. This includes the mixing weighi;;,. However, there is no
closegl-form solu_tlon for this algorithm when applied to means and Nijk = Aijk + n@@ﬁ;tif_kk) (14)
covariance matrix. J

Fortunately, it has been shown that by considering a continu- where a smalh > 0 is the learning rate. When applied to mix-
ous Gaussian distribution as a limit of a discrete probability func- ing weights, a softmax transformation is used, thatus;, =
tion, a re-estimation formula, can be computed [6]. het, 3k Rt ;_"P:jg('z)_ —, ensuring the mixing weight remains positive dur-
andz,: be a component of the meapg, covariance matrix, 2ei=1 "EPAEg L) . .

- - ing optimization and its summation equals one.

and feature-vectax,., respectively. The re-estimation formulae,
adapted to the TDHMM context and using the Viterbi path statis-
tics are as follows:

2.1.2. Gradient Descent

The gradient descent approach is an iterative process that updates
the parametek; ;;, according to:

2.1.3. Second-Order Gradient Descent

R (O — ©4) + Dy, The second order gradient descent refers to the quickprop algo-
e (=71 D (4) rithm [7] that has received widespread use in Neural-Network-
based systems. The quickprop algorithm combines a gradient de-
_ ) scent technique and the Newton algorithm, and uses an approx-
S = (W — W) J:D(Ek +mi) —m} (5) imation of the Hessian matrix. The parameter set is updated as
(Ve = k) + D follows:
where R .
vow o Nk = Mg+ [GHE RS )
Or = Z Z Z TntYige(£)0(2,n) (6) wherey is a learning rate andlis the ldentity matrix. The Hessian
n=1i=1jedn t=1 matrix is assumed to be diagonal and is approximated by
N M Ty
CAEED 3D DD SR LA @) LV Pl v ik S
n=1i=1jed} t=1 62>\1;jk - Ai]'k(T) — )\i]-k(T — 1) '
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The quickprop algorithm replaces the approximated Hessian eters contribute the most to performance. The parameters of the
by zero whenever its sign does not change at learning tiraed TDHMMSs considered were the mixing weights (MIX), the means
7 — 1 which indicates that the Hessian is not sufficiently posi- of Gaussians (MNS) and covariance matrices of Gaussian distribu-
tive definite. Compared to the first-order gradient descent and thetions (COV), assumed to be diagonal. These parameters were ini-

EBW, the quickprop algorithm appears to be less sensitive to thetialized by MLE, prior to MMI training; the parameters untrained
choice of learning parameters issue as it makes use of the Hessiarby MMI remained at their ML-estimated values.

3. EXPERIMENTAL RESULTS

3.1. Comparison of Optimization Algorithms

We performed a number of experiments to evaluate the perfor-

mance of the three algorithms. The task chosen for the evalua-

tion was the classification of online unconstrained-style handwrit-
ten digit recognition using TDHMMs. The comparison focuses

on optimizing the mixing weights parameters since they are not
shared across all models, and thus are conjectured to provide th
most discriminative capability in TDHMM-based systems.

The training set for this experiment is composed of 1000 iso-
lated digits written by various writers. We use a codebook size
of 100 with one state per HMM. The codebook was initially gen-
erated by a K-means clustering procedure and re-estimated whe
training all models by MLE. MMI training was carried out from
the MLE-trained HMM models for about 40 iterations (an itera-
tion is one pass over the whole training data).
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Fig. 1. Comparison of the EBW, gradient descent and
quickprop for mixing weight optimization. The curve shows
the MMI objective function versus the number of iterations.

Fig. 1 shows the comparison of the three optimization algo-
rithms in terms of the objective function versus the number of it-
erations. The three optimization methods are all clearly efficient.
The EBW algorithm exhibits the highest growth rate during the
first iterations but then it tails off quickly. However, the quickprop
algorithm displays the highest growth as the number of iteration
increases, leading us to conclude that the quickprop optimization
is the most efficient in this context.

3.2. Parameter Discriminability

Having concluded that quickprop is the most efficient algorithm, a

We used 5000 tokens for training and 3500 for testing. The

TDHMMs share a codebook of 160 Gaussians with one state per

HMM, generated as described in the section (3.1). Parameter up-
dates in MMI training was carried out for 100 iterations using
quickprop.

MIX Only —+— MNS Only ———COV Only

MIX & MNS —»—MNS & COV —6—MIX, MNS & COV
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Fig. 2. Evolution of the MMI objective function versus the
number iterations for various parameters.

Fig. 2 shows the evolution of the MMI objective function (on
the training set) versus the number of MMI iterations for various
parameters and Fig. 3 shows the performance on the training set.
As seen in these figures, means and covariance optimization is the
most effective in the growth of the MMI objective function and
exhibits the highest increase in recognition rate on the training
set. The mixing weight optimization shows little improvement to
the objective function and actually results in a small decrease in
recognition rate. This is rather counter-intuitive in the context of

MIX Only —+—MNS Only —=—COV Only

MIX & MNS —>—MNS & COV —&— MIX, MNS & COV

Recognition rate (%)

Iterations

Fig. 3. Recognition rate on training set versus the number

series of experiments was carried out to determine which param-Of iterations for various parameters.
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TDHMMs as mixing weights are the only parameters which are

than means and mixture weights optimization. This result is sim-

not shared across models and are therefore expected to carry moriar to the TDHMMs case but the relative improvement from the

discriminative capability than the means and covariance matrix.
The best result is achieved, as expected, when mixing weights,

MLE-based system is much larger: The best result shows an im-
provement on recognition rate from 93.71% on MLE to 96.20%

means, and the covariance matrices are updated at the same timeon MMI, which is equivalent to 40% error rate reduction. Clearly,

Table 1. Recognition results of MMI-trained TDHMMSs on
the testing set.

\ ML result | 95.40 % \
Parameters updated in ..
MMI training Recognition rate
MIX only 95.49 %
MNS only 95.86 %
COV only 96.14 %
MIX & MNS 95.60 %
MNS & COV 96.20 %
MIX, MNS & COV 96.29 %

Performance on the testing set is shown in Table 1. From the
baseline MLE-based system, MMI training improves the recogni-
tion rate on the testing set from 95.40% to 96.29% when all HMM

MMI training is more effective when applied to an untied system.

4. CONCLUSIONS

We have described a study of the Maximum Mutual Information
approach aimed at online unconstrained handwritten digit recogni-
tion using Tied Mixture Density HMMs. The study evaluated three
optimization algorithms, namely Extended Baum-Welch, gradi-
ent descent and the quickprop algorithm. It was shown that al-
though Extended Baum-Welch has the highest initial growth rate,
the quickprop algorithm is more efficient in the long run. Opti-
mization of various HMM parameters shows that mixing weight
optimization has less effect in increasing the performance and co-
variance matrix optimization contributes the most. The same ex-
periment, carried out on a Continuous Density HMMs system,
confirms that covariance matrix optimization is also the most ef-
fective in an untied system.

5. ACKNOWLEDGEMENTS

parameters are updated. This is equivalent to 19% relative error

rate reduction, realized from an already high performing baseline.
The parameter that contributes the most is the covariance matrix;
the means and the mixing weights have slightly lesser contribution
to discrimination.

3.3. The Effect of Parameter Tying in MMI Training

As previously argued, tied systems may inhibit the discriminative
power of the MMI algorithm. In order to test this hypothesis, the

same set of experiments were carried on the CDHMM-based sys
tem, using a similar number of Gaussians as the TDHMM-based

system; each state pdf has its own set of 16 Gaussian distributions.

Table 2. Recognition results of MMI-trained CDHMMs on
the testing set.

\ ML result \ 93.71% \
Parameters updated in .
MMI training Recognition rate
MIX only 94.17 %
MNS only 94.66 %
COV only 96.00 %
MIX & MNS 94.83 %
MNS & COV 96.20 %
MIX, MNS & COV 95.94 %

The results in Table 2 show the best performance on the test-
ing set. Itis clear that the mixing weights have less discriminating

power than the means and covariances. The most discriminative
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