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ABSTRACT

Several authors have addressed learning a classifier given a
mixed labeled/unlabeled training set. These works assume each
unlabeled sample originates from one of the (known) classes.
Here, we consider the scenario in which unlabeled points may
belong either to known/predefined or to heretofore undiscovered
classes. There are several practical situations where such data may
arise. We propose a novel statistical mixture model which views
as observed data not only the feature vector and the class label,
but also the fact of label presence/absence for each point. Two
types of mixture components are posited to explain label pres-
ence/absence. “Predefined” components generate both labeled and
unlabeled points and assume labels are missing at random. “Non-
predefined” components only generate unlabeled points – thus, in
localized regions, they capture data subsets that are exclusively un-
labeled. Such subsets may represent an outlier distribution, or new
classes. The components’ predefined/non-predefined natures are
data-driven, learned along with the other parameters via an algo-
rithm based on expectation-maximization (EM). There are three
natural applications: 1) robust classifier design, given a mixed
training set with outliers; 2) classification with rejections; 3) iden-
tification of the unlabeled points (and their representative compo-
nents) that originate from unknown classes, i.e. new class discov-
ery. We evaluate our method and alternative approaches on both
synthetic and real-world data sets.

1. INTRODUCTION

Several authors have proposed use of unlabeled data, along with
labeled data, when learning a statistical classifier e.g. [1], [2], [3].
For classifiers based on an underlying statistical model and max-
imum likelihood (ML) for model learning, it has been found that
augmenting a small pool of labeled data with a larger pool of un-
labeled data can improve accuracy in the estimation of the class-
conditional densities, and hence in classification1. These works
assume that no unlabeled samples are outliers. Moreover, they as-
sume all the data originate from one of the known classes, defined
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1Unlabeled data is not always helpful and in some cases can lead to
performance degradation. However, empirical studies do suggest that aug-
menting a small labeled corpus with a large unlabeled pool can lead to sig-
nificantly enhanced classification accuracy in certain domains [1],[2],[3].

for the given domain. However, the presence of unlabeled samples
may suggest that one or both of these assumptions is faulty – in
either case, the labeler may have had difficulty in labeling some
of the data. It is well-known that even a few outliers can have a
dramatic, deleterious effect on estimation.

When all data from a particular ground truth class are unla-
beled, we will say that the data set contains an unknown class.
This definition covers two different scenarios:
i) where the problem involves some classes that are defined for the
domain, but for which no labeled data has been made available,
e.g. character recognition where all training instances of ‘2’ and
‘z’ are left unlabeled due to uncertainty on the part of the data la-
beler. Likewise, the labeler may have randomly selected a subset
of points for labeling that happened not to include any instances
of ‘z’; ii) where the data includes examples from classes that have
not even been defined for the given domain, e.g. a galaxy data set
which includes unlabeled examples from a galaxy type that has not
yet been discovered by astronomers. In this case, the new galaxy
type is unknown, both with respect to the training set and more
generally.

There are several reasons why, in practice, some (often many)
samples may be missing labels. Providing labels is a time-
consuming activity that in some domains also requires expertise
and hence expense. Also, if outlier samples are present, these
may be difficult to label. There are also several scenarios where
unknown classes may arise. If a huge database (e.g. text, mul-
tispectral, scientific) starts out purely unlabeled, then an expert
may first need to choose the set of classes and then to label a
subset of the data. Since the size of the data set precludes ex-
haustive human exploration, it is quite possible the expert might
overlook some meaningful groups when defining the classes. Un-
known classes may also occur if there is uncertainty as to the origin
of the data set or to the environment from which it was obtained,
e.g. land use classes associated with multispectral data may de-
pend on whether the land is agrarian, urban, industrial, or military.
Unknown classes may also arise when there is disagreement or
subjectivity even in the definition of a core set of classes, e.g. the
choice of function classes for genes in molecular biology [4], or
text categorization. Finally, unknown classes may occur in sci-
entific domains when their existence is inconsistent with current
theory.

Data sets of this type – with mixed labeled/unlabeled sam-
ples and with some unknown classes – are relevant to a number of
tasks, including robust classifier learning, outlier detection, sam-
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ple rejection, and the emergent problem of new class discovery.
In this work, we propose a novel statistical mixture model, along
with ML learning and model-based inference, tailored for these
data sets and directly applicable to all of the aforementioned tasks.
In section 2, we develop our mixture model and ML learning. In
section 3, we identify several different inference rules based on
our model, useful in various tasks. In section 4 our experimental
results are reported. The paper concludes with discussion of some
related and future work.

2. MIXTURE MODEL AND EM ALGORITHM

Consider a data set
�����������
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is the unlabeled subset2.
Here,

,�-
is the set of known classes. This mixed labeled/unlabeled

data scenario was considered in [1],[2], and [3]. Unlike these
works, a key element in our approach is that we treat the fact of
‘missingness’ for unlabeled samples as observed data. Accord-
ingly, we redefine

� � �1�2���3	�� � 

, where now
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. Here we have introduced the new random observa-
tion A &B�<638:9C	�63?@97


, taking on values indicating a sample is ei-
ther labeled or missing the label. We propose a mixture model
that explains all the observed data, including the fact of label pres-
ence/absence. Two types of mixture components are posited, dif-
fering in the mechanism they use for generating label presence
or absence. “Predefined” components generate both labeled and
unlabeled points and assume labels are missing at random. “Non-
predefined” components only generate unlabeled points – thus, in
localized regions, they capture data subsets that are purely unla-
beled. Such subsets may represent an outlier distribution or new
classes.

Let DFE , G �IHJ	 ����� 	�K denote the G th mixture component,
with

K
the number of components. Let L;M�N0O denote the subset

of ‘predefined’ components, with the remaining subset denotedPL M�N0O . Let Q &B, -
be a random variable defined over the prede-

fined classes, with
�J��� �@&R,�-

the class label paired with
�

. LetS E denote the prior probability for component G with

TUE�V � S E �H
, W E the parameter set specifying component G ’s (component-

conditional) feature density, and let X ��� Y W E � denote this density.
We also define the probability that a class label is produced, given
that the sample-generating component is ‘predefined’, i.e. Z\[ A �6
8]9CY D_^2` , where Da^ generically denotes a predefined generating
component. Finally, the probability that Q �b�

given that the sam-
ple is generated by predefined component G and given that a label
is produced, i.e. Z\[ Q �c�7Y D E 	 A �d63ef9 ` 3. In summary, our
model is based on the parameter set g ���J� S E 
7	�� W E 
7	 L M�N0O 	� Z\[ A Y Da^�` 
�	�� Z\[ Q Y D E 	 A �h6#ei9 ` 
J
 .

Hypothesis for Random Generation of the Data
Our model hypothesizes that each sample from

�j�
is generated

independently, based on g , according to the following stochastic
generation process:

2For concreteness, in the subsequent development we will consider fea-
ture vectors k l=m )

.
3For concision, we do not explicitly indicate that n E l=o7M�N0O .

i) Select component Dhp according to
� S E 
 and then

�
using X ��� Y W�p � .

ii) If D p & L M�N0O , select q &r��6
8:9�	s63?@97

based on Z\[ A Y Da^2` .

iii) If D p & L M�N0O and q �h638:9
, select a label

�
based on Z\[ Q Y D p 	�638:9 ` .

Form the datum
��� 	#��	�6
8]t tu�

.
iv) If D p & PL M�N0O , form the datum

��� 	�6
?@9��
.

Note that with this model, we effectively have Z\[ A �h6
?@9CY DFv M ` �H
, i.e. non-predefined components ( DIv M ) deterministically ex-

plain missing labels, whereas predefined ones hypothesize labels
missing at random.

Joint Data Likelihood
Let w E �xH

if D E & L M�N0O , else w E �zy
. Then, the joint data

likelihood is

{ � �}|�~� ����� TUE�V � S EJX ��� Y W2E �����#H�� wJE �>� wJE�Z\[ 63?@9;Y D ^ ` �3�.�
|�~� ��� " TUE�V � w E S E X ��� Y W E � Z\[ 638:9<Y Da^2`iZ\[ Q �b����� ��Y D E 	�638:9 ` �

(1)
EM Algorithm
Before developing our learning algorithm based on EM [5], it is
informative to give a brief aside justifying our model and learning
approach. In particular, consider the

� w E 
 variables, which spec-
ify L M�N0O . We treat these 0-1 variables as parameters, to be learned.
However, there are two alternatives: i) we could allow components
to be predefined/nonpredefined in probability and, thus, learn the
parameters

� Z\[ D E & L M�NfO ` 
 ; ii) we could treat the
� w E 
 as miss-

ing data and estimate their expected values within the EM frame-
work. It turns out that neither of these approaches yields prac-
tically feasible learning. We illustrate for case i). The data set
in this case is generated by first randomly generating the prede-
fined/nonpredefined nature for each component – there are � T
such configurations. Then, for the chosen configuration, the data
is stochastically generated as described before. Unfortunately, this
model’s likelihood is obtained by averaging over the � T configu-
ration dependent likelihoods, with each such likelihood based on
(1). The expectation is measured with respect to the joint configu-

ration pmf
� Z\[ � ��� w ��	 � ��� w ��	 ����� 	 � T � w T ` � T~� V � Z\[ D E &

L M�N0O `i��� �#Hs� Z\[ D E & L M�N0O ` ��� ��� ����� 
 . The concomitant complexity
of learning (based e.g. on the EM algorithm) grows exponentially
with the number of components. This can be avoided by treating
the

� w E &�� ys	�H 
J

as parameters to be learned, as seen next.

2.1. Formulation

We perform an iterative optimization with each iteration consisting
of two steps: i) maximize

8:�J��{ �
over the natures

� w E 
 given the
remaining parameters in g held fixed; ii) using the EM algorithm,
maximize the remaining parameters, given the

� w E 
 held fixed.
Each step is nondecreasing in

8:�J��{ �
.

Optimization over Component Natures

There are several approaches to maximizing
8:�J��{��

over the
� w E &�2y5	�H2
�


. One choice, if
K

is not too large, is simply exhaustive
search over all � T configurations. A second method is to use a
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global optimization technique. As a computationally simple alter-
native, when exhaustive search is infeasible, we propose to iter-
atively select the

� w E 
 one component at a time, keeping the re-
maining ones held fixed. Each w E is chosen simply by evaluating8:�J��{ �

for the two cases, w7E ��ys	�H
and selecting the value yield-

ing the greater likelihood. Cycling over the components continues
until there are no further changes. This does not guarantee con-
vergence to a global, or even a local optimum. However, it does
guarantee ascent in

8]����{ �
.

EM Algorithm for the Remaining Parameters
Let

�r� g � � w E 
 . Further, denote the estimates after the � -th EM
iteration by

� ��� � . Our EM method optimizes
�

given fixed
� w E 
 .

E-step:
Following the EM framework [5], we define the missing data quan-
tities

� � � E 
 , with � � E � H
if

� & D E and
y

otherwise, and
with

U E � � E � H
. Here,

� & DIE means that
�

was gener-

ated by D E . In the E-step, we compute the expected complete
data log-likelihood given the current parameter estimates, g ��� ������ ��� � 	�� w E 
�
 . This quantity is based on the expectations �@[ � � E Y � &���
	 g ��� ��` and �@[ � � E Y � & � � 	 g ��� �u` . Note that, based on the def-
inition of � � E , these expected quantities are simply probabilistic
assignments of points to components, i.e. �@[ � � E Y � & � � 	 g ��� � ` �Z\[ D E Y � &����
	 g ��� ��` . These probabilities, derived via Bayes rule,
are given by

Z\[ D E Y � &�����	 g ��� � ` � ���
� ������ � � � � � ������ � ��� - � � � � � ��� ��� � � �����U
!#"�$&%&'�( �

�����! � � � � � �����! � ��� - � � � � � ! � ��� �)� �����
(2)

Z\[ D E Y � &�� � 	 g ��� � ` ������ ������ � � � � � ������ � �*� ��+*� � �-, � �����U
!#"�$ % '.( �

�����! � � � � � �����! � ��� ��+*� � � , � ����� / U
!/"10$ % '�( �

�����! � � � � � �����! � �� ��� � � �.� ������ � � � � � ������ �U
!#"�$ % '.( �

�����! � � � � � �����! � ��� ��+*� � �-, � ����� / U
!/"10$ % '�( �

�����! � � � � � �����! �
(3)

M-step:
For concreteness, suppose that X �)2 � is a joint Gaussian density
function, with parameter set given by the mean vector and covari-
ance matrix, i.e. W E �_�
3 E 	&4 E 
 4. In the M-step, the expected
complete data log likelihood is maximized over the

�
parameters,

yielding g ��� / � � � �5� ��� / � � 	�� w7E 
J
 . For our model, this M-step is
given by the (decoupled) parameter estimates5:

S ��� / � �E � U
6 "57 " �*� � � � � �7� "�8 9 ����� � / U

6 "57 � �*� � � � � ���;� 8 9 ����� �! : G
(4)

4It is straightforward to modify the M-step development here for other
continuous feature models, as well as for categorical feature models, e.g.
a naive Bayes model. The choice of multivariate Gaussians is merely for
illustration.

5We omit the update of ; E for concision of expression. Its form follows
naturally from those given for < E and = E .

3 ��� / � �E � U
6 "�7 " � ��� � � � � �7� " 8 9 ����� � / U

6 "57 � � �*� � � � � ���;� 8 9 ����� �U
6 "57 " ��� � � � � �7� "�8 9 ����� � / U

6 "57 � �*� � � � � ��� � 8 9 ����� � : G
(5)

Z\[ �JY D E 	7638:9 ` ��� / � � � U
6 "57 "
> ? � 6 �.@ ? �*� � � � � ��� "A8 9 ����� �U

6 "57 " �*� � � � � ��� " 8 9 ����� �
: ��	 GCB7D E & L M�NfO (6)

Z\[ 6
8]9CY D ^ ` ��� / � � �U
6 "57 " U� "�$ %&'�( �*� � � � � ��� "A8 9 ����� �U

6 "57 " U� "
$D% '�( ��� � � � � �7� " 8 9 ����� � / U
6 "57 � U� "�$&% '.( ��� � � � � �7�;� 8 9 ����� � �

(7)
Comments:
1) Both the

� w E 
 and EM optimizations ascend in
8:�J��{ �

. Thus,
our iterative method is a hillclimbing algorithm in

{ �
.

2) Initially, we choose w E ��H : G . This choice is in some sense
least biased, since it is difficult to have any a priori knowledge of
which components are ‘non-predefined’.
3) If a component switches from w E ��H

to w E ��y
, its predefined

parameters
� Z\[ Q �b�7Y D E 	7638:9 ` 
 are held static and saved for use

in the optimization of component natures. If the component later
switches to wJE ��H

, the EM algorithm will update these parameters
starting from their current, saved values.

3. STATISTICAL INFERENCES FROM THE MODEL

Our learned model is naturally applied to classification (to the
known classes), predefined vs. unknown class discrimination, and
sample rejection. For classification, we require evaluation of the
a posteriori predefined class probabilities. These probabilities are
given (via Bayes rule ) by:

Z\[ Q �b�JY � 	 g ` � UE ��E % '�( S E X ��� Y W E � Z\[ Q �b�JY D E 	76#ef9 `UE �FE % '.( S E X ��� Y W E � 	$� & ,�- �
(8)

In order to discriminate between the hypotheses that an unlabeled
sample originates from a predefined versus an unknown class, we
need the a posteriori probability that a given feature vector is gen-
erated by a non-predefined component. This is simply

Z\[ D v M Y � & � � ` � Hj�HGE �FE % '�( Z\[ D E Y � &�� � 	 g ` 	 (9)

where Z\[ D E Y � &b���I	 g ` is given in (3). (9) also forms the ba-
sis for sample rejections when the goal is classification to one of
the predefined classes. Usually in pattern recognition, samples are
rejected when it is determined that a reliable decision cannot be
reached. Alternatively, our model rejects samples under the hy-
pothesis that they are either outliers or belong to unknown classes.
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4. EXPERIMENTAL RESULTS

Synthetic and real-world data were used for evaluation. For the
synthetic data, we generated five 2-D sets of 560 samples, each
consisting of seven isotropic, equal-mass Gaussian components,
with random centers and variance one in both dimensions for all
components. Three of the components represent predefined classes
and four represent unknown classes. The second data set is De-
terding’s 10-D vowel set. This has 990 samples consisting of 11
vowels where we used the first 6 as known classes and the last 5
as unknown classes. For all the experiments,

� y��
of the data from

known classes (and all data from unknown classes) was taken to
be unlabeled. For both predefined/unknown class discrimination
and for classification (to one of the known classes), we compared
with a method which we dub ‘Supervised Clustering’ and with a
method based on [2]6. In Supervised Clustering, we first perform
standard Gaussian mixture modelling using only the labeled data.
Each component is then hard-assigned to its majority class. For
classification, the component centers then simply form a nearest-
prototype classifier. For predefined/unknown class discrimination,
an unlabeled sample is declared to be from an unknown class if
it is deemed to be an outlier with respect to each of these (prede-
fined) components. This is determined by thresholding the com-
ponent’s (Gaussian) density, evaluated at the sample7. For the
method based on [2], each mixture component is deemed ‘prede-
fined’ if it “owns” any labeled samples (in the MAP sense); else,
the component is ‘non-predefined’. Predefined/unknown class dis-
crimination is thus performed similar to our method, based on (9),
but with Z\[ D E Y � &���� ` now specified in [2]. For our method, it-
erative cycling was used to choose the

� w E 
 . For all three compet-
ing methods, the model size was selected to minimize a minimum
description length (MDL) cost8. Predefined/unknown class dis-
crimination performance, measured over the unlabeled data subset,
is shown in Table 1. The synthetic data results are averaged over
all five data sets. Classification performance is shown in Table 2,
again measured on the unlabeled subset. For all three methods,
a two-step classification was invoked, with predefined/unknown
class discrimination first applied, and then, for samples deemed
predefined, classification to one of the known classes. If either
step is incorrect, an error is counted. Note the poor performance
of [2], which assumes all the training points come from known
classes.

Method Synthetic data Vowel data
new EM .115 .212

Supervised clustering .245 .344
[2] .515 .365

Table 1. Fraction of incorrect predefined/unknown class de-
cisions for the synthetic data and the vowel data.

6Since our particular mixed data scenario is, we believe, novel, there
are very few existing competing methods. Thus, we created two methods
for comparison.

7The threshold was chosen to make both error types equally likely.
8This cost is

! ,�������
	��
�����
� , with 	 ^ the number of model param-
eters and � the likelihood.

Method Synthetic data Vowel data
new EM .139 .319

Supervised clustering .249 .447
[2] .548 .526

Table 2. Fraction of incorrect classifications on the two data
sets.

5. RELATED AND FUTURE WORK

One prior work on robust learning for mixed data sets is [6]. This
is a mixture modelling approach similar to [1] except that a robust
variant of the EM algorithm was employed. The main modelling
differences between our approach and [6] are that i) we treat label
presence/absence as observed data; ii) we explicitly model the new
classes/outliers. Thus, unlike [6] our approach can be directly used
to tackle new class discovery. The class discovery problem has
been considered before, e.g [4]. There, all the data was assumed
labeled, with new classes corresponding essentially to mislabeled
data, rather than to purely unlabeled components. While we have
only considered the mixed labeled/unlabeled scenario here, we be-
lieve that an extension of our approach suitable for the correctly
labeled/mislabeled scenario can also be developed.

We view class discovery as consisting of two (stratified) goals.
The first, addressed here, is to identify the subset of points which
do not belong to known classes. A more ambitious objective is to
validate the components which own these ‘unknown class’ sam-
ples. In our current work, we have only evaluated our MDL-based
model selection strategy in terms of the classification and prede-
fined versus unknown class discrimination performance. Model
selection for the validated discovery of new classes remains to
be investigated. In addition, we plan to investigate applications
to knowledge discovery in Internet searches and to scientific do-
mains.
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