BIRECIPROCAL LATTICE WAVE DIGITAL FILTERS WITH ALMOST
LINEAR PHASE RESPONSE

Artur Wroblewski, Thomas Erl and Josef A. Nossek

Munich University of Technology
Arcisstr. 21, 80333 Munich, Germany
e—mail: Artur.Wroblewski@ei.tum.de

ABSTRACT obtaining linear phase response is the greatest. Thus, it can be seen

) o ] as the worst case approach and will allow for a fair comparison to
In this paper two methods for designing almost linear phase wave g|R half-band filters.

digit.al filters are cpmpared. Firsy Qf th.em is based on designinga  This paper is structured as follows. In Section 2 a short in-
minimum phase filter and equalizing its phase response by some&qqyction to bireciprocal wave digital filters is given. In Section
all-pass equalizer. The second one utilizes previously publisheds the method based on all-pass equalization is described. Section
method of designing almost linear phase filters without the equal- 4 ¢ontains a description of the method of designing linear phase
izer. Several improvements to both approaches are introduced angyaye digital filters. A comparison of the results is given in Sec. 5
a comparison of the two methods is given. and Section 6 concludes the paper.

1. INTRODUCTION 2. BIRECIPROCAL WAVE DIGITAL FILTERS

In today’s advanced technologies power consumption has becomenave digital filters (WDFs) are known to have many advantageous
the main limiting factor for many applications. Starting with pro- properties. They have low coefficient sensitivity, good dynamic
cessors for personal computing through terminals for mobile com- range, and especially, good stability properties under quantization
munications systems, down to applications like bionic ear. In many effects. Out of all wave digital filters the lattice wave digital filter
of those applications digital filtering is a very important issue and is the most attractive one. Each WDF has a corresponding filter
represents one of the most power consuming subsystems. Therein the reference domain. The design can therefore be carried out
fore it is important to compare different digital filter architectures in the analog domain using classical filter approximations. Then
to find the one that best fits the requirements for low-power design a transformation from analog to digital domain can be performed.
while maintaining all properties of a good filtering operation. For For lattice WDF explicit formulae are given in [5]. However there

a filter designer the fastest and most simple solution is to employ exist no closed form solutions for filters satisfying given require-
FIR filters. There exist many tools to do so, and the design processments on both magnitude and phase response.

is reduced to a few simple mouse clicks. However in most casesa A lattice WDF is a two-branch structure where each branch
FIR solution will not be the most efficient one, thus not optimal in  realizes an all-pass filter [3]. Out of several ways of realizing
terms of low power design. Therefore, in this paper we explore [IR them [2] the most attractive one is to use cascaded first-order and
solutions. The greatest disadvantage of IIR filters is the non-linear second-order sections. They are realized using symmetric two-
phase response. However, many methods of approximating it haveport adaptors. A bireciprocal (half-band) lattice WDF is a special
been presented in the past[6][7][10][11][1][9]. Even if with none case of lattice WDF. In this case every other coefficient of the fil-
of these methods perfect phase linearity can be achieved, the errofer become$ [12], which results in a structure shown in Fig. 1.
can be very small and is often insignificant for practical applica- Moreover, when the application is in a decimator or interpolator
tions. Moreover, in many cases the phase linearity can be tradechy a factor of2, the filter can run at the lower sampling rate [4].

for effort, which leads to good low power solutions and gives the The transfer function of a bireciprocal lattice WDF can be
designer more freedom than in the FIR case. Since all algorithmsyyritten as

for designing linear phase bireciprocal wave digital filters found
in the literature are based on two principles, for this comparison

one from each family has been chosen. In the first method, in-\where the transfer functiaH, (2*) corresponds to the lower branch
troduced by [9], a minimum phase filter is being designed and an i Fig. 1. The transfer function of the filter and its complementary

all-pass equalizer in cascade is then employed. The second methogtansfer function are power complementary. Therefore for birecip-
is based on [6] and allows for designing almost linear phase filters ygcg| |attice WDFs

without the need of an equalizer. Several improvements to both

methods are introduced here to obtain either better convergence H(“T)? + |H(T ™) =1

of the algorithm or more accurate results. For the comparison we

have chosen bireciprocal wave digital filters. This class of half- which means that the passband and stop-band edges are related by
band filters is the most efficient one and therefore the overhead forw.T + w,T = = with w. andw, being respectively the passband

H(z) = 5 (Ho(*) + = i ()
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squares error can readily be given as a quadratic form. However,
for phase approximation a quadratic form is not available due to
non-linear trigonometric functions involved. Nevertheless the au-
thors use approximate least-squares phase error solutions, which
% enable eigenfilter formulation. One of the great advantages of this
approach is the fact, that it can be applied to any class of filters
and is capable of equalizing almost any phase response. This is
not the case for the approach described in Sec. 4 since it's de-
] } >ﬂ(n) signed for lattice wave digital filters only. However, as will be
shown, the all-pass approximation is in many cases not as efficient

S

[—

as the approach described in Section 4. Nevertheless, very good
results have been achieved with this method, even if a modifica-
tion to the algorithm had to be introduced to achieve best possible
results. The authors of [9] estimate the nominal group delay of the

(64} (649
all-pass equalizer from the formula given in [8] to
e L ™= M

with

maxr __ Nm — CI)H(UJU)
Fig. 1. A 7th-order bireciprocal lattice wave digital filter. o = Wy

where N is the order of the all-pass equalizey, is the passband

cutoff frequency and  (wrr) the phase response to be equalized
and stop-band cutoff frequencies. The consequence is that theat that frequencyM = 0.8. This estimation is quite good (but
passband ripple will be extremely small for practical requirements not the best) for wider band signals. For narrow band signals best
on the stop-band attenuation. Thus the bireciprocal WDFs havesolutions can be achieved fad = 0.2...0.8 depending on the
the efficiency of a FIR half-band filter in terms of reduced com- passband width and order of the equalizer. In particular for the
putational effort(compared to not half-band counterparts), while example given in [9] of a 6th-order Chebyshev Il low-pass filter
preserving the main advantages of IIR filters over FIR, which are with a 40 dB stop-band attenuation ah@x stop-band cutoff fre-
sharp transitions for low order filters. Moreover, itis a well known quency, with phase response equalized by an order 6 all-pass, the
fact, that wave digital filters have very low coefficient sensitivity. optimal choice isM = 0.7145. For this choice ofif phase er-
Thus it is possible to represent filter coefficients utilizing only a ror decreases fro.7 - 1072 to0 3.57 - 10~* and the group delay
few bits. This could allow for decreasing the size of applied mul- ripple from 1.585355 to 0.045426. These differences are quite
tipliers or even replacing them by shift and add operations. significant. After performing numerous simulations we propose

As can be seen from Fig. 2 the main drawback of lattice WDFs the following initial guess fol/:
is the non-linear phase response. However, many methods for ob- 1
M= _N/250+0.55+0.45-2*1/N-sm(2-(5.6-wc—4+ﬁ))
with w,. being the passband edge of the filter. This guess tends to
be very close to the optimum value. In some cases the algorithm
may not converge with the initial value given here. However, con-
sidering significant improvements obtained by variatiorbf it
may be worth to vary this parameter around the initial guess. In
0 005 01015 02025 03 03 04 045 05 many cases phase error will be by orders of magnitude lower than
for the choice ofM proposed by the authors of [9]. Please note

that this guess has been validated for bireciprocal lattice WDFs

S:gn;l fI;thea:se response (radians) of a 17th order bireciprocal waveOnly and may not be accurate in general case.

4. ALMOST LINEAR PHASE BIRECIPROCAL WAVE

taining almost linear phase of IR filters have been presented in the DIGITAL FILTERS

past [7][10][1]. Two of them are described in the following.

In this paper we concentrate on bireciprocal lattice wave digital fil-
3. ALL-PASS EQUALIZATION FOR NON-LINEAR ters. They represent the most efficient, in terms of computational
PHASE FILTERS effort, family of lIR filters and are therefore of great interest. Itis
therefore very important to take a look at the methods dedicated
One of the most widely used applications of all-pass filters is in to the design of linear phase bireciprocal lattice WDFs to be able
group delay equalization of IIR filters. However, there exist no to compare this solution to all-pass equalization. It is possible to
easy-to-use method or a closed form solution for this problem. obtain a bireciprocal lattice WDF with approximately linear phase
The existing formulations are based on numerical approximation. by letting one of the branches in Fig. 1 consist of pure delays
The method used here is based on eigenfilter formulation and hag7][10][11]. The other branch is a general all-pass functionin
been presented in [9]. Traditionally, eigenfilter techniques have which can be realized using cascaded first and second orders sec-
been used for the design of linear-phase FIR filters where the leasttions (Fig. 3). The transfer function of a linear-phase lattice WDF
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precision. Unfortunately, the algorithm does not allow for specify-
ing the attenuation that has to be achieved. The specifications that
can be modified are filter order and the transition band. There’s
also no way to trade off phase linearity for filter complexity. How-
ever, the achievable phase linearity and group delay ripple are very
small. Even if the order of such designed filter will be higher than
that of the corresponding minimum phase solution, one has to take
into account that the number of multipliers in this structure is only
(order 4+ 1) /4. These filters are thus as efficient, when comparing
effort per filter order, as FIR half-band filters and a comparison to
FIR solution is straightforward.

Q
)

f

5. EXPERIMENTAL RESULTS

The all-pass equalization gives more degrees of freedom allowing
5T the designer to choose how good or bad the approximation of the
linear phase will be. It is not possible for the other approach de-
scribed here. Therefore we first applied the method of Section 4
Fig. 3. Structure of an 11th order almost linear phase bireciprocal to obtain linear phase filters, then we have evaluated the results
lattice WDF. to extract information on stop-band attenuation and phase error.
This specifications have then been used to design minimum phase
filters according to formulae given in [5]. The phase response of
is these filters has then been equalized in a way that the phase er-
ror of the resulting filter was not larger than the constraint given
H(z) = Ho(5") + 2 71, R=1,2,.. by linear phase approach. The results are summarized in Table 1.
) ) ) They are sorted in descending order beginning with the wide tran-
with R being the number of attenuation zeros and the overall fre- gjtion bands (120 degrees) and ending with very narrow one (95

guency response is given as degrees). Since the filters are half-band, stop-band and passband
4 1. ‘ ‘ frequencies are symmetric around 90 degrees. Only results with
H(T) = 5(@"1’0(”) 4 ¢/ GRFDWT stop-band attenuation between 70 dB and 100 dB are presented.

Clearly, even if phase response error is the same in both cases, the

In the passband the phase response of branch&eteT’), must group delay error of the equalized solution is always larger than
approximate the phase response of the other branch, which in thigor the linear phase WDF. Also the maximum group delay is a lit-
case is linear. This forces the overall phase response to be approx/e higher. For the realization of the all-pass we propose to apply
imately linear in the passband. The design algorithm consideredWave digital filters. Also for this purpose they are very efficient
here is based on [6], which is a special case of algorithm pre- @nd only one multiplier per equalizer order is required. As the
sented in [10][11]. It considers filters which are characterized by NUmbers in brackets indicate even then the combination of mini-
the property of having the maximal number of attenuation zeros Mum phase filter and equalizer is significantly less efficient than
for a given number of degrees of freedom (number of filter coeffi- the almostlinear phase solution. However, in many practical cases
cients). The main disadvantage of the algorithm is that it needs anthe requirements on the phase error will be orders magnitude lower
initial guess of the values of the frequencies at which the attenu- than in the examples from Table 1 and applying an equalizer could
ation zeros occur. With the formula given in [6] only filters up to €ad to an advantageous solution.

order23 converged. To achieve convergence also for higher orders

of the filter we propose to choose 6. CONCLUSION

9 . . .
wﬁo)T _ Clsm_1(3m(wcT)sin(( (B+7) + DwoT + rr ) In this paper a comparison _of two approaches to almost linear
2 2R+1 phase bireciprocal wave digital filters has been discussed. Sev-
. eral improvements concerning convergence of the algorithms as
instead of well as their accuracy have been proposed. The results show sig-

1 T nificant differences in computational effort for the realization of

OT = Zsin™ (sin(w.T)sin(557—)) =L..R i ini

wr b= s s dysimio e ) T= 15 both approaches. The solution based on a cascade of minimum

phase filter and equalizer could result in as much®s — 80%

for the initial solution. In this equations 8 the number of attenu-  more effort as for its linear-phase counterpart. However, in many
ation zerosyw, the passband cutoff frequenay 7 = 1.2 - 7/180 applications the specification on phase linearity could be orders of
andc = 0.96. Moreover, faster and better convergence has beenmagnitude lower than in the examples presented here and result
achieved by introducing variable step size in different iterations. in lower equalizer complexity. vary depending on requirements
Still, some convergence problems exist. However, they occur only on phase linearity. Moreover, if applying solution of Section 4 in

if the filter order is much too high for the chosen transition band. a multistage structure all filters in the cascade have to be linear
When converging, stop-band attenuation of such a filter would phase, which results in higher filter orders. On the other hand the
probably be in the range of 300 dB,which is not feasible for practi- all minimum phase filters in the cascade require only one equal-
cal applications and the computed numbers are limited by machineizer as the last element in the cascade. In some cases the order of
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Stop-band| Stop-band | Phase Order Group Delay Error Max Group Delay

Frequency| Attenuation| Error (Sampling intervals) | (Sampling intervals)

(Degrees) (dB) (radians) LPF MPF LPF MPF LPF MPF

[MULT] [MULT]

120 75.4 2-107* 19 [5] 9+4[8] | 9.9-1073 | 1.3-1072 9.01 9.73
120 86.3 6-10° 23 [6] 9+5[9] | 37-10°|47-10° | 11.00 11.26
120 97.1 1-107° 277 11+7[12] | 1.4-107° | 1.5-107° | 13.00 15.14
115 74.8 2.10° 7 23[6 9+5[9] [ 1.2-10 2| 1.6-10 7| 11.02 11.41
115 83.9 8-107° 277 11+7[12] | 5.6-107° | 7.5-107° | 13.00 15.33
115 92.8 3.-10°° 318 11+7[12] | 25-10 ° [ 44-10 ° | 15.00 15.59
110 70.9 3-107% 27 [7] 9+6[10] | 2.1-1072 [ 2.9-1072 | 13.03 13.19
110 78.2 1-10°° 31[8] | 12+8[13) [ 1.1-107> [ 2.0-10 > | 15.01 17.00
110 85.3 6-107° 35[9] 11+8[13] | 6.3-107° | 1.1-1072 17.01 17.45
110 92.3 3-107° || 39[10] | 13+10[16]] 3.3-107° [ 8.9-10~° | 19.00 21.44
105 74.6 2-107* || 39[10] | 11+9[14] | 2.1-1072 | 2.3-1072 19.03 19.49
105 79.9 1-107* || 43[11] | 12+10[15]] 1.3-1072 | 1.3-1072 | 21.02 21.06
105 85.2 7-107° || 47[12] | 13+12[18]| 8.5-107° | 6.0-107° | 23.01 25.46
105 90.5 3-107° || 51[13] | 13+12[18]| 5.3-107° | 4.8-107° | 25.00 25.58
105 95.7 2.-107° || 55[14] | 13+14[20]| 3.3-107° | 2.5-107° 27.00 27.28
100 78.4 1-107* || 63[16] | 13+16[22]] 2.3-1072 | 1.1-1072 | 31.03 33.23
100 81.9 9-10"° || 67[17] | 13+18[24]| 1.7-10% | 6.7-10 3 | 33.02 35.12
100 88.9 4-107° || 75[18] | 15+26[33]| 9.5-10=° | 2.9-107° | 37.01 43.53

Table 1. Comparison of the two methods (Phase error in radians, group delay in sampling intervals). LPF - Almost Linear Phase Filter,
MPF - Minimum Phase Filter with all-pass equalizer, MULT - number of multipliers.

the linear-phase filter could be very high, which could cause prob- [5] L. Gazsi. Explicit Formulas for Lattice Wave Digital Filters.
lems due to computational accuracy. Higher coefficient and/or data IEEE Transactions on Circuits and Syster@&\S-32(1):68—
word-length may be necessary in such cases. The numbers pre- 87, January 1985.
sented here do not take into account these effects, which represent[el H. Johansson and L. Wanhammar. Design of Bireciprocal
a topic for further study. The comparison presented here seems Linear-Phase Lattice Wave Digital Filte@eport LiTH-ISY-
to gain on importance from the point of view of low-power design R-1877 August 1996
and almost linear phase IIR filters may represent a good alternative ' '

] I. Kunold. Linear Phase Realization of Wave Digital Filters.

to today’s standards. There are many applications ranging from [7 a ! _
YA analog-to-digital converters to any kind of portable devices IEEE Transactions on Acoustics, Speech and Signal Process-

like MP3-Players or terminals for mobile communication systems,
where computational efficiency is extremely important and power
consumption the main limiting factor. Especially in mobile com-
munication, where external interferers like multi-path propagation
do not allow for perfect symbol synchronization, strict phase lin-
earity may not be a required feature.
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