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Artur Wróblewski, Thomas Erl and Josef A. Nossek

Munich University of Technology
Arcisstr. 21, 80333 Munich, Germany
e–mail: Artur.Wroblewski@ei.tum.de

ABSTRACT

In this paper two methods for designing almost linear phase wave
digital filters are compared. First of them is based on designing a
minimum phase filter and equalizing its phase response by some
all-pass equalizer. The second one utilizes previously published
method of designing almost linear phase filters without the equal-
izer. Several improvements to both approaches are introduced and
a comparison of the two methods is given.

1. INTRODUCTION

In today’s advanced technologies power consumption has become
the main limiting factor for many applications. Starting with pro-
cessors for personal computing through terminals for mobile com-
munications systems, down to applications like bionic ear. In many
of those applications digital filtering is a very important issue and
represents one of the most power consuming subsystems. There-
fore it is important to compare different digital filter architectures
to find the one that best fits the requirements for low-power design
while maintaining all properties of a good filtering operation. For
a filter designer the fastest and most simple solution is to employ
FIR filters. There exist many tools to do so, and the design process
is reduced to a few simple mouse clicks. However in most cases a
FIR solution will not be the most efficient one, thus not optimal in
terms of low power design. Therefore, in this paper we explore IIR
solutions. The greatest disadvantage of IIR filters is the non-linear
phase response. However, many methods of approximating it have
been presented in the past[6][7][10][11][1][9]. Even if with none
of these methods perfect phase linearity can be achieved, the error
can be very small and is often insignificant for practical applica-
tions. Moreover, in many cases the phase linearity can be traded
for effort, which leads to good low power solutions and gives the
designer more freedom than in the FIR case. Since all algorithms
for designing linear phase bireciprocal wave digital filters found
in the literature are based on two principles, for this comparison
one from each family has been chosen. In the first method, in-
troduced by [9], a minimum phase filter is being designed and an
all-pass equalizer in cascade is then employed. The second method
is based on [6] and allows for designing almost linear phase filters
without the need of an equalizer. Several improvements to both
methods are introduced here to obtain either better convergence
of the algorithm or more accurate results. For the comparison we
have chosen bireciprocal wave digital filters. This class of half-
band filters is the most efficient one and therefore the overhead for

obtaining linear phase response is the greatest. Thus, it can be seen
as the worst case approach and will allow for a fair comparison to
FIR half-band filters.

This paper is structured as follows. In Section 2 a short in-
troduction to bireciprocal wave digital filters is given. In Section
3 the method based on all-pass equalization is described. Section
4 contains a description of the method of designing linear phase
wave digital filters. A comparison of the results is given in Sec. 5
and Section 6 concludes the paper.

2. BIRECIPROCAL WAVE DIGITAL FILTERS

Wave digital filters (WDFs) are known to have many advantageous
properties. They have low coefficient sensitivity, good dynamic
range, and especially, good stability properties under quantization
effects. Out of all wave digital filters the lattice wave digital filter
is the most attractive one. Each WDF has a corresponding filter
in the reference domain. The design can therefore be carried out
in the analog domain using classical filter approximations. Then
a transformation from analog to digital domain can be performed.
For lattice WDF explicit formulae are given in [5]. However there
exist no closed form solutions for filters satisfying given require-
ments on both magnitude and phase response.

A lattice WDF is a two-branch structure where each branch
realizes an all-pass filter [3]. Out of several ways of realizing
them [2] the most attractive one is to use cascaded first-order and
second-order sections. They are realized using symmetric two-
port adaptors. A bireciprocal (half-band) lattice WDF is a special
case of lattice WDF. In this case every other coefficient of the fil-
ter becomes0 [12], which results in a structure shown in Fig. 1.
Moreover, when the application is in a decimator or interpolator
by a factor of2, the filter can run at the lower sampling rate [4].

The transfer function of a bireciprocal lattice WDF can be
written as

H(z) =
1

2
(H0(z

2) + z�1H1(z
2))

where the transfer functionH0(z
2) corresponds to the lower branch

in Fig. 1. The transfer function of the filter and its complementary
transfer function are power complementary. Therefore for birecip-
rocal lattice WDFs

jH(ej!T )j2 + jH(ej!T��)j2 = 1

which means that the passband and stop-band edges are related by
!cT + !sT = � with !c and!s being respectively the passband
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Fig. 1. A 7th-order bireciprocal lattice wave digital filter.

and stop-band cutoff frequencies. The consequence is that the
passband ripple will be extremely small for practical requirements
on the stop-band attenuation. Thus the bireciprocal WDFs have
the efficiency of a FIR half-band filter in terms of reduced com-
putational effort(compared to not half-band counterparts), while
preserving the main advantages of IIR filters over FIR, which are
sharp transitions for low order filters. Moreover, it is a well known
fact, that wave digital filters have very low coefficient sensitivity.
Thus it is possible to represent filter coefficients utilizing only a
few bits. This could allow for decreasing the size of applied mul-
tipliers or even replacing them by shift and add operations.

As can be seen from Fig. 2 the main drawback of lattice WDFs
is the non-linear phase response. However, many methods for ob-
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Fig. 2. Phase response (radians) of a 17th order bireciprocal wave
digital filter.

taining almost linear phase of IIR filters have been presented in the
past [7][10][1]. Two of them are described in the following.

3. ALL-PASS EQUALIZATION FOR NON-LINEAR
PHASE FILTERS

One of the most widely used applications of all-pass filters is in
group delay equalization of IIR filters. However, there exist no
easy-to-use method or a closed form solution for this problem.
The existing formulations are based on numerical approximation.
The method used here is based on eigenfilter formulation and has
been presented in [9]. Traditionally, eigenfilter techniques have
been used for the design of linear-phase FIR filters where the least-

squares error can readily be given as a quadratic form. However,
for phase approximation a quadratic form is not available due to
non-linear trigonometric functions involved. Nevertheless the au-
thors use approximate least-squares phase error solutions, which
enable eigenfilter formulation. One of the great advantages of this
approach is the fact, that it can be applied to any class of filters
and is capable of equalizing almost any phase response. This is
not the case for the approach described in Sec. 4 since it’s de-
signed for lattice wave digital filters only. However, as will be
shown, the all-pass approximation is in many cases not as efficient
as the approach described in Section 4. Nevertheless, very good
results have been achieved with this method, even if a modifica-
tion to the algorithm had to be introduced to achieve best possible
results. The authors of [9] estimate the nominal group delay of the
all-pass equalizer from the formula given in [8] to

�0 =M�max0

with

�max0 =
N� ��H(!U)

!U
where N is the order of the all-pass equalizer,!U is the passband
cutoff frequency and�H(!U) the phase response to be equalized
at that frequency.M = 0:8. This estimation is quite good (but
not the best) for wider band signals. For narrow band signals best
solutions can be achieved forM = 0:2:::0:8 depending on the
passband width and order of the equalizer. In particular for the
example given in [9] of a 6th-order Chebyshev II low-pass filter
with a 40 dB stop-band attenuation and0:3� stop-band cutoff fre-
quency, with phase response equalized by an order 6 all-pass, the
optimal choice isM = 0:7145. For this choice ofM phase er-
ror decreases from2:7 � 10�2 to 3:57 � 10�4 and the group delay
ripple from 1:585355 to 0:045426. These differences are quite
significant. After performing numerous simulations we propose
the following initial guess forM :

M = �N=250+0:55+0:45�2�1=N �sin(2�(5:6�!c�4+
1

2 �N
))

with !c being the passband edge of the filter. This guess tends to
be very close to the optimum value. In some cases the algorithm
may not converge with the initial value given here. However, con-
sidering significant improvements obtained by variation ofM , it
may be worth to vary this parameter around the initial guess. In
many cases phase error will be by orders of magnitude lower than
for the choice ofM proposed by the authors of [9]. Please note
that this guess has been validated for bireciprocal lattice WDFs
only and may not be accurate in general case.

4. ALMOST LINEAR PHASE BIRECIPROCAL WAVE
DIGITAL FILTERS

In this paper we concentrate on bireciprocal lattice wave digital fil-
ters. They represent the most efficient, in terms of computational
effort, family of IIR filters and are therefore of great interest. It is
therefore very important to take a look at the methods dedicated
to the design of linear phase bireciprocal lattice WDFs to be able
to compare this solution to all-pass equalization. It is possible to
obtain a bireciprocal lattice WDF with approximately linear phase
by letting one of the branches in Fig. 1 consist of pure delays
[7][10][11]. The other branch is a general all-pass function inz2,
which can be realized using cascaded first and second orders sec-
tions (Fig. 3). The transfer function of a linear-phase lattice WDF
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Fig. 3. Structure of an 11th order almost linear phase bireciprocal
lattice WDF.

is

H(z) = H0(z
2) + z�2R+1; R = 1; 2; :::

with R being the number of attenuation zeros and the overall fre-
quency response is given as

H(ej!T ) =
1

2
(ej�0(!T ) + e�j(2R+1)!T )

In the passband the phase response of branch zero,�0(!T ), must
approximate the phase response of the other branch, which in this
case is linear. This forces the overall phase response to be approx-
imately linear in the passband. The design algorithm considered
here is based on [6], which is a special case of algorithm pre-
sented in [10][11]. It considers filters which are characterized by
the property of having the maximal number of attenuation zeros
for a given number of degrees of freedom (number of filter coeffi-
cients). The main disadvantage of the algorithm is that it needs an
initial guess of the values of the frequencies at which the attenu-
ation zeros occur. With the formula given in [6] only filters up to
order23 converged. To achieve convergence also for higher orders
of the filter we propose to choose

!(0)
r T = c

1

2
sin�1(sin(!cT )sin(

(2(R+ r) + 1)!0T + r�

2R+ 1
))

instead of

!(0)
r T =

1

2
sin�1(sin(!cT )sin(

r�

2R+ 1
)); r = 1; :::; R

for the initial solution. In this equations isR the number of attenu-
ation zeros,!c the passband cutoff frequency,!0T = 1:2 � �=180
andc = 0:96. Moreover, faster and better convergence has been
achieved by introducing variable step size in different iterations.
Still, some convergence problems exist. However, they occur only
if the filter order is much too high for the chosen transition band.
When converging, stop-band attenuation of such a filter would
probably be in the range of 300 dB,which is not feasible for practi-
cal applications and the computed numbers are limited by machine

precision. Unfortunately, the algorithm does not allow for specify-
ing the attenuation that has to be achieved. The specifications that
can be modified are filter order and the transition band. There’s
also no way to trade off phase linearity for filter complexity. How-
ever, the achievable phase linearity and group delay ripple are very
small. Even if the order of such designed filter will be higher than
that of the corresponding minimum phase solution, one has to take
into account that the number of multipliers in this structure is only
(order+1)=4. These filters are thus as efficient, when comparing
effort per filter order, as FIR half-band filters and a comparison to
FIR solution is straightforward.

5. EXPERIMENTAL RESULTS

The all-pass equalization gives more degrees of freedom allowing
the designer to choose how good or bad the approximation of the
linear phase will be. It is not possible for the other approach de-
scribed here. Therefore we first applied the method of Section 4
to obtain linear phase filters, then we have evaluated the results
to extract information on stop-band attenuation and phase error.
This specifications have then been used to design minimum phase
filters according to formulae given in [5]. The phase response of
these filters has then been equalized in a way that the phase er-
ror of the resulting filter was not larger than the constraint given
by linear phase approach. The results are summarized in Table 1.
They are sorted in descending order beginning with the wide tran-
sition bands (120 degrees) and ending with very narrow one (95
degrees). Since the filters are half-band, stop-band and passband
frequencies are symmetric around 90 degrees. Only results with
stop-band attenuation between 70 dB and 100 dB are presented.
Clearly, even if phase response error is the same in both cases, the
group delay error of the equalized solution is always larger than
for the linear phase WDF. Also the maximum group delay is a lit-
tle higher. For the realization of the all-pass we propose to apply
wave digital filters. Also for this purpose they are very efficient
and only one multiplier per equalizer order is required. As the
numbers in brackets indicate even then the combination of mini-
mum phase filter and equalizer is significantly less efficient than
the almost linear phase solution. However, in many practical cases
the requirements on the phase error will be orders magnitude lower
than in the examples from Table 1 and applying an equalizer could
lead to an advantageous solution.

6. CONCLUSION

In this paper a comparison of two approaches to almost linear
phase bireciprocal wave digital filters has been discussed. Sev-
eral improvements concerning convergence of the algorithms as
well as their accuracy have been proposed. The results show sig-
nificant differences in computational effort for the realization of
both approaches. The solution based on a cascade of minimum
phase filter and equalizer could result in as much as10%� 80%
more effort as for its linear-phase counterpart. However, in many
applications the specification on phase linearity could be orders of
magnitude lower than in the examples presented here and result
in lower equalizer complexity. vary depending on requirements
on phase linearity. Moreover, if applying solution of Section 4 in
a multistage structure all filters in the cascade have to be linear
phase, which results in higher filter orders. On the other hand the
all minimum phase filters in the cascade require only one equal-
izer as the last element in the cascade. In some cases the order of
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Stop-band Stop-band Phase Group Delay Error Max Group Delay
Frequency Attenuation Error

Order
(Sampling intervals) (Sampling intervals)

(Degrees) (dB) (radians) LPF MPF LPF MPF LPF MPF
[MULT] [MULT]

120 75.4 2 � 10�4 19 [5] 9+4 [8] 9:9 � 10�3 1:3 � 10�2 9.01 9.73
120 86.3 6 � 10�5 23 [6] 9+5 [9] 3:7 � 10�3 4:7 � 10�3 11.00 11.26
120 97.1 1 � 10�5 27 [7] 11+7 [12] 1:4 � 10�3 1:5 � 10�3 13.00 15.14
115 74.8 2 � 10�4 23 [6] 9+5 [9] 1:2 � 10�2 1:6 � 10�2 11.02 11.41
115 83.9 8 � 10�5 27 [7] 11+7 [12] 5:6 � 10�3 7:5 � 10�3 13.00 15.33
115 92.8 3 � 10�5 31 [8] 11+7 [12] 2:5 � 10�3 4:4 � 10�3 15.00 15.59
110 70.9 3 � 10�4 27 [7] 9+6 [10] 2:1 � 10�2 2:9 � 10�2 13.03 13.19
110 78.2 1 � 10�4 31 [8] 11+8 [13] 1:1 � 10�2 2:0 � 10�2 15.01 17.00
110 85.3 6 � 10�5 35 [9] 11+8 [13] 6:3 � 10�3 1:1 � 10�2 17.01 17.45
110 92.3 3 � 10�5 39 [10] 13+10 [16] 3:3 � 10�3 8:9 � 10�3 19.00 21.44
105 74.6 2 � 10�4 39 [10] 11+9 [14] 2:1 � 10�2 2:3 � 10�2 19.03 19.49
105 79.9 1 � 10�4 43 [11] 11+10 [15] 1:3 � 10�2 1:3 � 10�2 21.02 21.06
105 85.2 7 � 10�5 47 [12] 13+12 [18] 8:5 � 10�3 6:0 � 10�3 23.01 25.46
105 90.5 3 � 10�5 51 [13] 13+12 [18] 5:3 � 10�3 4:8 � 10�3 25.00 25.58
105 95.7 2 � 10�5 55 [14] 13+14 [20] 3:3 � 10�3 2:5 � 10�3 27.00 27.28
100 78.4 1 � 10�4 63 [16] 13+16 [22] 2:3 � 10�2 1:1 � 10�2 31.03 33.23
100 81.9 9 � 10�5 67 [17] 13+18 [24] 1:7 � 10�2 6:7 � 10�3 33.02 35.12
100 88.9 4 � 10�5 75 [18] 15+26 [33] 9:5 � 10�3 2:9 � 10�3 37.01 43.53

Table 1. Comparison of the two methods (Phase error in radians, group delay in sampling intervals). LPF - Almost Linear Phase Filter,
MPF - Minimum Phase Filter with all-pass equalizer, MULT - number of multipliers.

the linear-phase filter could be very high, which could cause prob-
lems due to computational accuracy. Higher coefficient and/or data
word-length may be necessary in such cases. The numbers pre-
sented here do not take into account these effects, which represent
a topic for further study. The comparison presented here seems
to gain on importance from the point of view of low-power design
and almost linear phase IIR filters may represent a good alternative
to today’s standards. There are many applications ranging from
�� analog-to-digital converters to any kind of portable devices
like MP3-Players or terminals for mobile communication systems,
where computational efficiency is extremely important and power
consumption the main limiting factor. Especially in mobile com-
munication, where external interferers like multi-path propagation
do not allow for perfect symbol synchronization, strict phase lin-
earity may not be a required feature.

7. REFERENCES

[1] M. Abo-Zahhad, M. Yaseen, and T. Henk. Design of Lattice
Wave Digital Filters with Prescribed Loss and Phase Specifi-
cations.ECCTD’95 Istanbul, Turkey, 1:761–764, 1995.

[2] A. Fettweis. Wave Digital Filters: Theory and Practice.Proc.
IEEE, 74(2):270–327, February 1986.

[3] A. Fettweis, H. Levin, and A. Sedlmeyer. Wave Digital Lat-
tice Filters.International Journal on Circuit Theory and Ap-
plications, 2:203–211, June 1974.

[4] A. Fettweis, J. A. Nossek, and K. Meerk¨otter. Reconstruc-
tion of Signals after Filtering and Sampling Rate Reduction.
IEEE Transactions on Acoustics, Speech and Signal Process-
ing, ASSP-33(4):893–902, August 1985.

[5] L. Gazsi. Explicit Formulas for Lattice Wave Digital Filters.
IEEE Transactions on Circuits and Systems, CAS-32(1):68–
87, January 1985.

[6] H. Johansson and L. Wanhammar. Design of Bireciprocal
Linear-Phase Lattice Wave Digital Filters.Report LiTH-ISY-
R-1877, August 1996.

[7] I. Kunold. Linear Phase Realization of Wave Digital Filters.
IEEE Transactions on Acoustics, Speech and Signal Process-
ing, pages 1455–1458, 1988.

[8] M. Lang and T.I. Laakso. Design of Allpass Filters for Phase
Approximation and Equalization using LSEE error criterion.
Proc. ISCAS’92, San Diego, CA, pages 2417–2420, May
1992.

[9] T. Q. Nguyen, T. I. Laakso, and R. D. Koilpillai. Eigenfilter
Approach for the Design of Allpass Filters Approximating a
Given Phase Response.IEEE Transactions on Signal Pro-
cessing, 42(9):2257–2263, September 1994.

[10] M. Renfors and T. Saram¨aki. Recursive Nth-Band Digital
Filters Part I: Design and Properties.IEEE Transactions on
Circuits and Systems, CAS-34(1):24–39, January 1987.

[11] M. Renfors and T. Saram¨aki. Recursive Nth-Band Digital
Filters Part II: Design of Multistage Decimators and Inter-
polators.IEEE Transactions on Circuits and Systems, CAS-
34(1):24–39, January 1987.

[12] W. Wegener. Wave Digital Directional Filters with Re-
duced Number of Multipliers and Adders.Archiv Elektrische
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