
 

 

 
 

A METHOD OF GENERATING UNIFORMLY DISTRIBUTED SEQUENCES OVER [0,K], 
WHERE K+1 IS NOT A POWER OF TWO 

 
Richard Kuehnel1 and Yuke Wang2 

 

1. US Dept. of Defense 
9800 Savage Road, Suite 6512 

Fort George G. Meade, MD 20755, USA 
rjkuehn@ieee.org 

2. Dept. of Computer Science 
University of Texas at Dallas 
Richardson, TX 75083, USA 

yuke@utdallas.edu 
 

ABSTRACT 
 
A new methodology has been recently proposed for the efficient 
generation of multiple pseudo-random bit sequences that are 
statistically uncorrelated [1]. Random sequences that are 
uniformly distributed over a range ],0[ K , where 1+K  is a 
power of 2, can be constructed by forming a vector of M  
independent bit sequences, where )1(log 2 += KM . In this 
paper we demonstrate that this method of construction represents 
a special case of a more generalized approach in which K  can be 
any positive integer. The procedures described here can be used 
to efficiently generate multiple independent random sequences 
that are uniformly distributed over any range. 
 
 

1. INTRODUCTION 

 
Stochastic neural networks and other statistical computing 
systems use thousands of random number sequences. They are 
also massively parallel by their very nature, and thus benefit from 
using multiple parallel circuits, each with its own source of 
random sequences. This usually requires a separate pseudo-
random number generator (PRNG) for each circuit. A PRNG 
often contains more logic gates than the circuit it supplies, so a 
large amount of silicon area is consumed by random number 
production. Moreover, to ensure that they are statistically 
uncorrelated, each PRNG must be designed using a different 
algorithm or using a different starting value. This adds 
complexity to the design and increases the size of hardware 
implementations [2]. 
    Saarinen, et. al., analyzed several methods of generating 
independent sequences uniformly distributed over ranges that are 
a power of two, but noted that an optimum method of dealing 
with the complexity of the problem had not yet been developed 
[5]. A new methodology for the generation of multiple random 
bit sequences using only two pseudo-random bit generators has 
recently been proposed in [1]. The design reduces the routing 
requirements to only two signals that are passed from circuit to 
circuit in series. It enables new circuits to be added to the system 
without additional calculations – there is no need to keep track of 
random starting values, tap combinations, or time shifts.  Using 
this technique, a random number sequence that is uniformly 
distributed over the range ],0[ K , where 1+K  is a power of 2, 

can be constructed by forming a vector of M  independent bit 
sequences, where )1(log 2 += KM . It was noted in [4], 
however, that in the context of random selection, sequence 
generation over ranges that are not a power of 2 is an area that 
deserves further study. In this paper we address this problem by 
demonstrating that the method of constructing sequences over a 
power of 2 represents a special case of a more generalized 
approach in which the range can be any positive integer. 
     In Section 2 we describe a method of generating a sequence 
distributed over a range that is not necessarily a power of 2. In 
Section 3 we determine how the range of the sequence impacts 
the number of logic gates required to construct it. Section 4 
summarizes the results. 
 

2. RANDOM SEQUENCE GENERATION 
 
Our design method is based on the following theorem, which is 
proven in Appendix 1. 
 

Generating Theorem: For every integer 1>K  there exists a 
set of prime numbers Mqq ,...,1 , unique except for order, where 

1...21 += Kqqq M , such that if ir  is uniformly distributed over 
the set of integers }1,...,0{ −iq  for all i , Mi ≤≤1 , then the sum  
 
     121213121 ...... −++++= MM qqqrqqrqrrR  
 
is uniformly distributed over the set of integers },...0{ K . 
 
     Using this theorem we can create a random sequence { })(nR  
that is uniformly distributed over ],0[ K , where K  is any integer 
greater than one, by factoring 1+K  into its unique primes 

MqqK ...1 1=+ . We then generate M  independent, random 
sequences { })(nri  uniformly distributed over ii qnr <≤ )(0 , 

Mi ≤≤1 , and concatenate them by the relation 
 
    11213121 ...)(...)()()()( −++++= MM qqnrqqnrqnrnrnR  
 
    A linear feedback shift register (LFSR) can be used to generate 
the pseudo random sequences { })(nri  as shown in figure 1. Each 
of the arrows denotes a sufficient number of bits to represent the 
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sequence’s maximum value 1−iq . Both the output and the input 
to the shift register are 
 
     )()()( λ−⊕−= nbrLnarnr iii  
 
where ⊕  denotes modulo- iq  addition, L  is the length of the 
shift register, and λ  is a fixed tap in the shift register such that 

L<≤ λ1 . The coefficients a  and b  are determined by a 
primitive, irreducible, characteristic polynomial. More than two 
taps can also be used. A list of appropriate polynomials is widely 
available and found, for example, in [3] and on the internet. For 

2=iq  the tap coefficients are 1== ba . Otherwise iqba <≤ ,1  
according to the selected polynomial. Moreover, a  and b  are 
not necessarily the same as the polynomial coefficients. 
Appendix 2 describes a procedure for computing the tap 
coefficients from the characteristic polynomial. 
 

 
Figure 1. 

 
    It was recently shown in [1] that a separate LFSR for each 
random sequence is unnecessary. Instead only two LFSR circuits 
for each unique value of iq  are needed for the entire system, 
each having a different random sequence length. They generate 
the sequences { })(nsi  and { })(nti  shown in figure 2. 
    As can be seen, { })(nsi  and { })(nti  are not used directly. 
Instead a new random sequence is generated by their modulo- iq  
addition, where { })(nti  is delayed by 1 clock cycle from where it 
was last used. The k -th sequence { })(, nr ki , uniformly distributed 

over ]1,0[ −iq , is generated by 
 
    )()()(, kntnsnr iiki −⊕=  
 
where ⊕ , as before, signifies modulo- iq  addition. For 
simplicity of notation all further references to these random 
sequences will drop the second subscript. The sequence { })(nri  
will simply refer to an independent sequence uniformly 
distributed over ]1,0[ −iq  that is used only once. 
    The desired sequence { })(nR  is generated by 
 

    
11

213121

...)(
...)()()()(
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MM qqnr
qqnrqnrnrnR

 (2) 

 
One can observe that multiplication by 1q  occurs in 1−M  
terms, whereas multiplication by Mq  never occurs. Since a 
multiplication by 2 can be efficiently implemented in VLSI, we 

choose to order the prime factors such that Mqqq ≤≤≤ ...21 . If 
1+K  is a power of two, then 2...1 === Mqq  and equation (2) 

reduces to 
 

    �
=

−=
M

i

i
i nrnR

1

1)2)(()(    (3) 

 
where each { })(nri  is an independent random bit sequence. The 
summation is achieved without logic by simply ordering the 
random bits from the least significant to the most significant. The 
summation can also be performed without additional logic if 

( ) M
M qK 121 −=+ , where 2>Mq . In this case equation (3) 

remains unchanged. If, on the other hand, 
( ) MM

M qqK 1
221 −

−=+ , where MM qq ≤< −12 , then 
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The multiplication by 1−Mq , which is fortunately a constant 
value, requires additional logic. Obviously if many of the prime 
number factors are not equal to 2 then significant additional 
circuitry may be required. 
 

3. CIRCUIT SIZE 
 
The number of logic gates needed to create a random sequence 
varies depending on the range of the sequence. The least number 
of logic gates are required when as many of the prime factors as 
possible are equal to 2. To generate a sequence over ]255,0[ , for 
example, requires only eight XOR gates and eight flipflops. More 
generally, to create an independent pseudo-random sequence that 
is uniformly distributed over ],0[ K , where MqqK ...1 1=+ , 
requires a modulo- iq  adder for each ,i  Mi ≤≤1 . The total 
number of flipflops needed is 
 

    � ��
=

M

i
iq

1
2 )(log  

 
Additional logic elements for multiplication are required if 

2>iq , for any Mi < . For example, if 31 =−Mq  and 5=Mq  
then we need to compute the product )(3 nrM  where 

}4,...,1,0{)( =nrM . Since the coefficient 3  is a fixed value, this 
multiplication would require only a lookup table with a 3-bit 
input to represent )(nrM  and a 4-bit output to represent the 
product. 
    In addition to the circuit elements required for each 
independent random sequence, a pair of linear feedback shift 
registers is needed for each prime factor iq  that is unique to the 
overall system. This requires two modulo- iq  adders and 

� �)(log)( 2,2,1 iii qLL +  flipflops, where iL ,1  and iL ,2  are the 

lengths of the shift registers. If 2>iq  then, depending on the 
characteristic polynomial that is selected, a modulo- iq  multiplier 

1−Z 1−Z 1−Z

)(nri

ba

II - 802

➡ ➡



 

 

may be needed for each of the tap coefficients a  and b  shown 
in figure 1. For large systems the number of logic gates used for 
these shift registers becomes insignificant compared to the total 
used to generate each independent random sequence { })(nri . 

An n-bit modulo m addition for � �mn 2log=  can be viewed as 
a modulo m operation performed after the addition is done. Thus 
the modulo m addition follows: 
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�
�
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=+=
,

,

21

21
21 mxx

xx
xxy m  

mxxif
mxxif

≥+
<+

21

21  

 
Generally, two methods can be used to complete the above 

computation: 1) Compute the results of both 21 xx +  and 
mxx −+ 21 , then select the correct result of modulo m addition 

from them. 2) Use a correction table to correct the addition 
21 xx +  to the result mxx 21 + . 

In the first method, two n-bit adders are used; the first adder 
computes mxx −+ 21 , while the second adder computes 21 xx + . 
The carry bit generated from the second adder indicates whether 
or not 21 xx +  is greater than m (figure 3). A multiplexer, 
controlled by the carry, selects the correct output. 

 

ADD

ADD

MUX

Carry

|x1+x2|m

n

n

n

n

n

n

n
n

 
 

 
In the second method, a lookup table is used to replace the first 

n-bit adder and the multiplexer in the first method (figure 4). 
When the lookup table in the ROM is small, i.e. when the 
modulus m is small, the second method can have better 
performance than the first method for fast table lookup. 

 

ADD

n

n
ROM

n+1 n

|x1+x2|m

Address 0 2m-21 2 ... m-1 m m+1

0 1 2 ... m-1 0 1

...

... m-2Data  
 

Figure 4. 
 

However, for an n-bit modulo addition the second method 
requires a 2n-entry ROM with n bits for each entry. The hardware 
consumption for the lookup table is much greater than the first 
method when the size of the modulus is large, which makes it 
unaffordable in practical hardware designs. 
 

4. CONCLUSIONS 
 

A random number sequence that is uniformly distributed over the 
range ],0[ K , where 1+K  is a power of 2, can be constructed by 
forming a vector of M  independent bit sequences, where 

)1(log 2 += KM . This method of construction represents a 
special case of a more generalized approach in which K  can be 
any positive integer. Moreover, the specific value of K  has a 
direct impact on the size of the circuit needed to generate the 
sequence. The smallest circuits can be implemented when at most 
only one of the prime number factors of 1+K  is greater than 2. 
 
APPENDIX 1: PROOF OF THE GENERATING 
THEOREM 
 
Proof: According to the fundamental theorem of arithmetic, any 
integer value 1+K  is equal to a product of primes Mqqq ...21  
that are unique except for order. Let x  be an integer, where 

Kx ≤≤0 . (In this section a mod b denotes the remainder 
resulting from integer division, i.e. 7 mod 2 = 1.) Then 
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M
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1  

 

Figure 3. 
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Figure 2.                       
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If we define 
 
    )mod()......mod()...mod( 11111 qqqqqxa MM −≡  
 
then by inspection 110 qa <≤  and thus 
 

    
Miqawhere

qqaqqaqaax

ii

MM

≤≤<≤
++++= −

1,0
...... 11212121  (1) 

 
Let X  be the set of all integers in the range ],0[ K  and let A  be 
the set of all M -tuples ),...,( 1 Maa  such that ii qa <≤0  for all 
i , Mi ≤≤1 . Equation (1) proves that any integer Xx ∈  is the 
image of an element Aaa M ∈),...,( 1  under a function f  defined 
as 
 
    112131211 ......),...,( −++++= MMM qqaqqaqaaaaf  
 
where MqqqK ...1 21=+  and where Mqqq ,...,, 21  are prime 
numbers, some or all of which can be the same. Both X  and A  
contain 1+K  elements. For each Xx ∈  there exists at least one 

Aaa M ∈),...,( 1  such that xaaf M =),...,( 1 . Thus f  is a 
function that maps A  onto X . Let Abb M ∈),...,( 1  and let 

),...,(),...,( 11 MM aafbbf = . Since 
 
    1111 mod),...,(mod),...,( qaafqbbf MM =  
 
then 11 ab = . By repeating this procedure with )mod( 21qq , 

)mod( 321 qqq , etc., it can be shown that 

),...,(),...,( 11 MM aabb = . Thus f  is one-to-one. Since f  is 
both one-to-one and onto then there exists an inverse function 

AXf →− :1 . 
    Now let ),...,( 1 MrrfR ≡  where each ir  is an independent 
random variable uniformly distributed over the set of integers 

}1,...,0{ −iq  for all i , Mi ≤≤1 . Then Arr M ∈),...,( 1  and thus 

XR ∈ . For each Xx ∈ , let )(),...,( 1
1 xfaa M

−= . Then 
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Therefore R  is uniformly distributed over ],0[ K .  
 
APPENDIX 2: COEFFICIENT TRANSLATION 
 
For a primitive polynomial with characteristic 2=iq  the shift 
register coefficients can be determined directly. The polynomial 

1)( 7 ++= xxxf , for example, translates into a shift register 
configuration of )1()7()( −⊕−= nrnrnr iii . The ease with 
which this is accomplished is attributable to the fact that in 
modulo-2 arithmetic 11 =− . In general, however, let 

ebxaxxf dc ++=)(  be a primitive polynomial with 
characteristic iq . Then the shift register configuration is 

)()()( dnbrcnarner iii −⊕−=− . (In this section juxtaposition is 
interpreted as modulo- iq  multiplication.) When we eliminate the 
coefficient on the left hand side using modulo- iq  arithmetic then 
the coefficients on the right hand side will probably change 
unless 2=iq . For example, let the polynomial be 

5)( 34 ++= xxxf  with characteristic 17=iq . Then 
 

    

)3(10)4(10)(
0)()1()3(10)4(10

0)(16)3(10)4(10
0)(5)3()4(
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