A METHOD OF GENERATING UNIFORMLY DISTRIBUTED SEQUENCESOVER [0,K],
WHERE K+1 ISNOT A POWER OF TWO

Richard Kuehnel* and Yuke Wang?

1. US Dept. of Defense
9800 Savage Road, Suite 6512
Fort George G. Meade, MD 20755, USA
rikuehn@ieee.org

ABSTRACT

A new methodology has been recently proposed for the efficient
generation of multiple pseudo-random bit sequences that are
statistically uncorrelated [1]. Random sequences that are
uniformly distributed over a range [0,K], where K+1 is a

power of 2, can be constructed by forming a vector of M
independent bit sequences, where M =log,(K +1). In this

paper we demonstrate that this method of construction represents
aspecial case of amore generalized approach in which K can be
any positive integer. The procedures described here can be used
to efficiently generate multiple independent random sequences
that are uniformly distributed over any range.

1. INTRODUCTION

Stochastic neural networks and other statistical computing
systems use thousands of random number sequences. They are
also massively paralel by their very nature, and thus benefit from
using multiple parallel circuits, each with its own source of
random sequences. This usually requires a separate pseudo-
random number generator (PRNG) for each circuit. A PRNG
often contains more logic gates than the circuit it supplies, so a
large amount of silicon area is consumed by random number
production. Moreover, to ensure that they are statisticaly
uncorrelated, each PRNG must be designed using a different
algorithm or using a different starting value. This adds
complexity to the design and increases the size of hardware
implementations [2].

Saarinen, et. a., analyzed severa methods of generating
independent sequences uniformly distributed over ranges that are
a power of two, but noted that an optimum method of dealing
with the complexity of the problem had not yet been developed
[5]. A new methodology for the generation of multiple random
bit sequences using only two pseudo-random bit generators has
recently been proposed in [1]. The design reduces the routing
requirements to only two signals that are passed from circuit to
circuit in series. It enables new circuits to be added to the system
without additional calculations — there is no need to keep track of
random starting values, tap combinations, or time shifts. Using
this technique, a random number sequence that is uniformly
distributed over the range [0,K], where K +1 is a power of 2,

0-7803-7663-3/03/$17.00 ©2003 IEEE

Il-801

2. Dept. of Computer Science

University of Texas at Dallas

Richardson, TX 75083, USA
yuke@utdallas.edu

can be constructed by forming a vector of M independent bit
sequences, where M =log,(K+1). It was noted in [4],

however, that in the context of random selection, sequence
generation over ranges that are not a power of 2 is an area that
deserves further study. In this paper we address this problem by
demongtrating that the method of constructing sequences over a
power of 2 represents a special case of a more generalized
approach in which the range can be any positive integer.

In Section 2 we describe a method of generating a sequence
distributed over a range that is not necessarily a power of 2. In
Section 3 we determine how the range of the sequence impacts
the number of logic gates required to construct it. Section 4
summarizes the results.

2. RANDOM SEQUENCE GENERATION

Our design method is based on the following theorem, which is
proven in Appendix 1.

Generating Theorem; For every integer K >1 there exists a
set of prime numbers qg,...,q,, , unique except for order, where

0.0,..-qy =K +1, such that if r; is uniformly distributed over
the set of integers {0,...,q; =4 fordl i, 1<i <M , thenthesum

R =1+ 10y + 1500 + ... + My G0 Oy 1
isuniformly distributed over the set of integers {0,...K} .

Using this theorem we can create a random sequence {R(n)}
that is uniformly distributed over [0, K], where K isany integer

greater than one, by factoring K +1 into its unique primes
K+1=gq..qy . We then generate M independent, random

sequences {ri (n)} uniformly distributed over 0<r,(n)<gq;,
1<i <M , and concatenate them by the relation

R(n) =r (n) +r,(n)g; +13(N)Gydp +-..+ 1y (M- 1

A linear feedback shift register (LFSR) can be used to generate
the pseudo random sequences {ri (n)} as shown in figure 1. Each

of the arrows denotes a sufficient number of bits to represent the

ICASSP 2003

sequence’s maximum value g; —1. Both the output and the input
to the shift register are

r,(n)=ar;(n-L)Obr,(n-A)

where O denotes modulo- g; addition, L is the length of the

shift register, and A is afixed tap in the shift register such that
1<A<L. The coefficients a and b are determined by a
primitive, irreducible, characteristic polynomia. More than two
taps can also be used. A list of appropriate polynomiasis widely
available and found, for example, in [3] and on the internet. For
g, =2 thetap coefficientsare a=b=1. Otherwise 1<a,b<g
according to the selected polynomia. Moreover, a and b are
not necessarily the same as the polynomial coefficients.

Appendix 2 describes a procedure for computing the tap
coefficients from the characteristic polynomial.

e e[

ri (n)
| 4S >

Figure 1.

It was recently shown in [1] that a separate LFSR for each
random sequence is unnecessary. Instead only two LFSR circuits
for each unique value of g, are needed for the entire system,

each having a different random sequence length. They generate
the sequences {si (n)} and {ti (n)} shown in figure 2.

As can be seen, {s1 (n)} and {ti (n)} are not used directly.
Instead a new random sequence is generated by their modulo- g;
addition, where {ti (n)} is delayed by 1 clock cycle from where it
was last used. The k -th sequence {r; , (n)}, uniformly distributed
over [0,q; —1] , isgenerated by

M (N) =s(n) Ot (n=k)

where O, as before, signifies modulo-q; addition. For

simplicity of notation al further references to these random
sequences will drop the second subscript. The sequence {ri (n)}

will simply refer to an independent sequence uniformly
distributed over [0,q; —1] that is used only once.

The desired sequence {R(n)} is generated by

R(n) = (n) +r,(n)g; +r3(n)g,q;, +...
+Iy (Mdg-Gy 4

)

One can observe that multiplication by g, occurs in M -1
terms, whereas multiplication by q,, never occurs. Since a
multiplication by 2 can be efficiently implemented in VLSI, we

choose to order the prime factors such that g, <q, <...<qy, . If

K +1 isapower of two, then ¢, =...=q,, =2 and equation (2)
reducesto
M i
RN =Y 1@ ®

i=1

where each {r, (n} is an independent random bit sequence. The

summation is achieved without logic by simply ordering the
random bits from the least significant to the most significant. The
summation can also be performed without additional logic if

K+1=12""),, , where gy, >2. In this case equation (3)
remains unchanged. If, on the other hand,
K +1=(2“"‘2)qM_1qM , Where 2<q,,_; <qy, , then

M=

R(M =2 (M@ +ry (MR dy

LN

The multiplication by gy _,, which is fortunately a constant

value, requires additional logic. Obviously if many of the prime
number factors are not egual to 2 then significant additional
circuitry may be required.

3. CIRCUIT SIZE

The number of logic gates needed to create a random seguence
varies depending on the range of the sequence. The least number
of logic gates are required when as many of the prime factors as
possible are equal to 2. To generate a sequence over [0,255] , for

example, requires only eight XOR gates and eight flipflops. More
generadly, to create an independent pseudo-random sequence that
is uniformly distributed over [0,K], where K+1=gq;...qy ,

requires a modulo- g; adder for each i, 1<i<M . The totd
number of flipflops needed is

M

erlogz(Qi)—I

i=1

Additional logic elements for multiplication are required if
g, >2, forany i <M . For example, if qy_ =3 and gy =5
then we need to compute the product 3r, (n) where
ry (N) ={01,...,4} . Since the coefficient 3 is afixed value, this

multiplication would require only a lookup table with a 3-bit
input to represent ry, (n) and a 4-bit output to represent the

product.

In addition to the circuit elements required for each
independent random sequence, a pair of linear feedback shift
registers is needed for each prime factor g; that is unique to the

overal system. This requires two modulo-g; adders and
(Ly +L,)[log,(q)] flipflops, where L,; and L,; are the
lengths of the shift registers. If g; >2 then, depending on the
characteristic polynomial that is selected, amodulo- g; multiplier

Il-802

s (n)

PRNG -
i i,0(n) i ria(n)
ti(n) ti(n-2)
PRNG >zt >zt ————>
Figure 2.
may be needed for each of the tap coefficients a and b shown n
in figure 1. For large systems the number of logic gates used for ADD |3l ROM L
these shift registers becomes insignificant compared to the total L, [X3#%,]
used to generate each independent random sequence {ri (n)} .
An n-bit modulo m addition for n =[log, m| can be viewed as /
amodulo m operation performed after the addition is done. Thus Address |0 1 2 mil m m+l .. 2m2
the modulo m addition follows: Data [0 1 2 .. ml 0 1 .. m2
X+ X%, if X +%<m Figure 4.
y=patxl, = S e
X +X-m, ifx+x=2m

Generdly, two methods can be used to complete the above
computation: 1) Compute the results of both x +x, and

¥ + X, —m, then select the correct result of modulo m addition
from them. 2) Use a correction table to correct the addition
X + %, totheresult [x + x| .

In the first method, two n-bit adders are used; the first adder
computes x + X, —m, while the second adder computes x, + X, .

The carry bit generated from the second adder indicates whether
or not x +x, is greater than m (figure 3). A multiplexer,

controlled by the carry, selects the correct output.

L

N ADD
S e

~[MUX
n
|X1+X2|m
—»| ADD J A
Ly
Carry
Figure 3.

In the second method, alookup tableis used to replace the first
n-bit adder and the multiplexer in the first method (figure 4).
When the lookup table in the ROM is smal, i.e. when the
modulus m is small, the second method can have better
performance than the first method for fast table lookup.

However, for an n-bit modulo addition the second method
requires a 2"-entry ROM with n bits for each entry. The hardware
consumption for the lookup table is much greater than the first
method when the size of the modulus is large, which makes it
unaffordable in practical hardware designs.

4. CONCLUSIONS

A random number sequence that is uniformly distributed over the
range [0, K], where K +1 isapower of 2, can be constructed by
forming a vector of M independent hit sequences, where
M =log,(K +1) . This method of construction represents a
specia case of a more generalized approach in which K can be
any positive integer. Moreover, the specific value of K has a
direct impact on the size of the circuit needed to generate the
sequence. The smallest circuits can be implemented when at most
only one of the prime number factors of K +1 is greater than 2.

APPENDIX 1. PROOF OF THE GENERATING
THEOREM

Proof: According to the fundamental theorem of arithmetic, any
integer value K +1 is equa to a product of primes g,q,...y

that are unique except for order. Let x be an integer, where
0<x<K . (In this section a mod b denotes the remainder
resulting from integer division, i.e. 7 mod 2 = 1.) Then

x=xmod(K +1)
=xmod(d;...dy)

= xmod(0};....qy) Mod(0y...Cy 1) + 8y GOy
whereO< ay, <qy

Il-803

= xmod(d;....0ly) mod(d; ...y) Mod(a .0y —2)
*tay40i--Ov-2 +ay th--Oua
where 0<a <q,, M-1<is<M

= xmod(d; ...y) Mod(d; ...y -)-..mod(d,)

+a,0; tahg; +..+ay OOy
where 0<g <q;, 2<i<M

If we define
& = xmod(q...qy) mod(¢...Ay —)-.-mod(ay)

then by inspection 0< a, <q, and thus

X=a +aq; +a,q,0, +...+ay 4.0y 1)
where 0<a <q;, 1<i<M

Let X betheset of al integersintherange [0,K] and let A be

the set of al M -tuples (a,,...,ay) suchthat 0<a; <q; for al

I, 1<i<M . Equation (1) proves that any integer xO X isthe

image of an element (a,,...,ay) 0 A under afunction f defined

as

f(a,....am) =2 + a0 +agyy + ...+ ay Gh--Om -1

where K+1=q,0,..qy, and where q;,0,,...,qy &ae prime

numbers, some or al of which can be the same. Both X and A
contain K +1 elements. For each x[0 X there exists at least one
(a,-nay)OA such that f(a,..,ay)=x. Thus f is a

function that maps A onto X . Let (b,...,by)JA and let
f(by,....,by) = f(ay,...,ay). Since

f (by,...,by,)modq, = f(a,,...,ay) mod g,

then b, =a,. By repeating this procedure with mod(q,q,) ,
shown that
(0.,) =(ay,..,ay). Thus f is oneto-one Since f is
both one-to-one and onto then there exists an inverse function
f1:X - A,

Now let R= f(ry,...,ry,) where each r; is an independent
random variable uniformly distributed over the set of integers
{0,...,q; =3 fordl i, 1<i<M .Then (rq,..ry)0A and thus

ROX . Foreach xO X , let (ay,..,ay)= f (). Then

PlR=3} =P{r {7 = 1 {3}
=P{(rtv) = (ai,---,a
= P{rl I (VI

ay}
_P{rl_al}l'-‘[rz_a} {Drl_akl

mod(9,q,0d3) , etc,, it can be

e

K+1
Therefore R isuniformly distributed over [0, K] .

APPENDIX 2: COEFFICIENT TRANSLATION

For a primitive polynomial with characteristic g, =2 the shift
register coefficients can be determined directly. The polynomial
f(x)=x” +x+1, for example, trandates into a shift register
configuration of r(n)=r(n=-7)0r,(n-1). The ease with
which this is accomplished is attributable to the fact that in
modulo-2 arithmetic —-1=1. In genera, however, let
f(x)=ax®+bx® +e be a primitive polynomia with
characteristic ;. Then the shift register configuration is
—eri(n) = a(n-c)Obr;(n-d) . (In this section juxtaposition is
interpreted as modulo- g; multiplication.) When we eliminate the
coefficient on the left hand side using modulo- g; arithmetic then
the coefficients on the right hand side will probably change
unless @ =2. For example, let the polynomia be

f(x) =x* +x3+5 with characteristic g, =17 . Then

r(n=40r(n-3)05r(n) =0

10r; (n—-4) 010r; (n—3) 016r,(n) =0
10r,(n=4)010r, (n=3) 0 (-Yr; (n) =0
ri(n) =10r; (n-4) 010r; (n-3)

REFERENCES

[1] Richard Kuehnel, “An Improved Design Methodology for
Generating Multiple Random Bit Segquences,” (to be published at
ISPC/GSPx, March 2003).

[2] Dennis R. Morgan, “Autocorrelation Function of Sequential
M-Bit Words Taken from an N-Bit Shift Register,” |EEE
Transactions on Computers, Vol. C-29, No. 5, May 1980.

[3] V. N. Yarmolik and S. N. Demidenko, Generation and
Application of Pseudorandom Sequences for Random Testing,
(New York: John Wiley and Sons, 1988).

[4] Bradley D. Brown and Howard C. Card, “Stochastic Neural
Computation |: Computational Elements,” |EEE Transactions on
Computers, Vol. 50, No. 9, Sep. 2001.

[5] J. Saarinen, J. Tomberg, L. Vehmanen, K. Kaski, “VLS
Implementation of Tausworthe Random Number Generator for
Parallel Processing Environment,” |EE Proceedings-E, Vol. 138,
No. 3, May 1991.

Il -804

