

A METHOD OF GENERATING UNIFORMLY DISTRIBUTED SEQUENCES OVER [0,K],
WHERE K+1 IS NOT A POWER OF TWO

Richard Kuehnel1 and Yuke Wang2

1. US Dept. of Defense
9800 Savage Road, Suite 6512

Fort George G. Meade, MD 20755, USA
rjkuehn@ieee.org

2. Dept. of Computer Science
University of Texas at Dallas
Richardson, TX 75083, USA

yuke@utdallas.edu

ABSTRACT

A new methodology has been recently proposed for the efficient
generation of multiple pseudo-random bit sequences that are
statistically uncorrelated [1]. Random sequences that are
uniformly distributed over a range],0[K , where 1+K is a
power of 2, can be constructed by forming a vector of M
independent bit sequences, where)1(log 2 += KM . In this
paper we demonstrate that this method of construction represents
a special case of a more generalized approach in which K can be
any positive integer. The procedures described here can be used
to efficiently generate multiple independent random sequences
that are uniformly distributed over any range.

1. INTRODUCTION

Stochastic neural networks and other statistical computing
systems use thousands of random number sequences. They are
also massively parallel by their very nature, and thus benefit from
using multiple parallel circuits, each with its own source of
random sequences. This usually requires a separate pseudo-
random number generator (PRNG) for each circuit. A PRNG
often contains more logic gates than the circuit it supplies, so a
large amount of silicon area is consumed by random number
production. Moreover, to ensure that they are statistically
uncorrelated, each PRNG must be designed using a different
algorithm or using a different starting value. This adds
complexity to the design and increases the size of hardware
implementations [2].
 Saarinen, et. al., analyzed several methods of generating
independent sequences uniformly distributed over ranges that are
a power of two, but noted that an optimum method of dealing
with the complexity of the problem had not yet been developed
[5]. A new methodology for the generation of multiple random
bit sequences using only two pseudo-random bit generators has
recently been proposed in [1]. The design reduces the routing
requirements to only two signals that are passed from circuit to
circuit in series. It enables new circuits to be added to the system
without additional calculations – there is no need to keep track of
random starting values, tap combinations, or time shifts. Using
this technique, a random number sequence that is uniformly
distributed over the range],0[K , where 1+K is a power of 2,

can be constructed by forming a vector of M independent bit
sequences, where)1(log 2 += KM . It was noted in [4],
however, that in the context of random selection, sequence
generation over ranges that are not a power of 2 is an area that
deserves further study. In this paper we address this problem by
demonstrating that the method of constructing sequences over a
power of 2 represents a special case of a more generalized
approach in which the range can be any positive integer.
 In Section 2 we describe a method of generating a sequence
distributed over a range that is not necessarily a power of 2. In
Section 3 we determine how the range of the sequence impacts
the number of logic gates required to construct it. Section 4
summarizes the results.

2. RANDOM SEQUENCE GENERATION

Our design method is based on the following theorem, which is
proven in Appendix 1.

Generating Theorem: For every integer 1>K there exists a
set of prime numbers Mqq ,...,1 , unique except for order, where

1...21 += Kqqq M , such that if ir is uniformly distributed over
the set of integers }1,...,0{ −iq for all i , Mi ≤≤1 , then the sum

 121213121 −++++= MM qqqrqqrqrrR

is uniformly distributed over the set of integers },...0{ K .

 Using this theorem we can create a random sequence { })(nR
that is uniformly distributed over],0[K , where K is any integer
greater than one, by factoring 1+K into its unique primes

MqqK ...1 1=+ . We then generate M independent, random
sequences { })(nri uniformly distributed over ii qnr <≤)(0 ,

Mi ≤≤1 , and concatenate them by the relation

 11213121 ...)(...)()()()(−++++= MM qqnrqqnrqnrnrnR

 A linear feedback shift register (LFSR) can be used to generate
the pseudo random sequences { })(nri as shown in figure 1. Each
of the arrows denotes a sufficient number of bits to represent the

II - 8010-7803-7663-3/03/$17.00 ©2003 IEEE ICASSP 2003

➠ ➡

sequence’s maximum value 1−iq . Both the output and the input
to the shift register are

)()()(λ−⊕−= nbrLnarnr iii

where ⊕ denotes modulo- iq addition, L is the length of the
shift register, and λ is a fixed tap in the shift register such that

L<≤ λ1 . The coefficients a and b are determined by a
primitive, irreducible, characteristic polynomial. More than two
taps can also be used. A list of appropriate polynomials is widely
available and found, for example, in [3] and on the internet. For

2=iq the tap coefficients are 1== ba . Otherwise iqba <≤ ,1
according to the selected polynomial. Moreover, a and b are
not necessarily the same as the polynomial coefficients.
Appendix 2 describes a procedure for computing the tap
coefficients from the characteristic polynomial.

Figure 1.

 It was recently shown in [1] that a separate LFSR for each
random sequence is unnecessary. Instead only two LFSR circuits
for each unique value of iq are needed for the entire system,
each having a different random sequence length. They generate
the sequences { })(nsi and { })(nti shown in figure 2.
 As can be seen, { })(nsi and { })(nti are not used directly.
Instead a new random sequence is generated by their modulo- iq
addition, where { })(nti is delayed by 1 clock cycle from where it
was last used. The k -th sequence { })(, nr ki , uniformly distributed

over]1,0[−iq , is generated by

)()()(, kntnsnr iiki −⊕=

where ⊕ , as before, signifies modulo- iq addition. For
simplicity of notation all further references to these random
sequences will drop the second subscript. The sequence { })(nri
will simply refer to an independent sequence uniformly
distributed over]1,0[−iq that is used only once.
 The desired sequence { })(nR is generated by

11

213121

...)(
...)()()()(

−+
+++=

MM qqnr
qqnrqnrnrnR

 (2)

One can observe that multiplication by 1q occurs in 1−M
terms, whereas multiplication by Mq never occurs. Since a
multiplication by 2 can be efficiently implemented in VLSI, we

choose to order the prime factors such that Mqqq ≤≤≤ ...21 . If
1+K is a power of two, then 2...1 === Mqq and equation (2)

reduces to

 �
=

−=
M

i

i
i nrnR

1

1)2)(()((3)

where each { })(nri is an independent random bit sequence. The
summation is achieved without logic by simply ordering the
random bits from the least significant to the most significant. The
summation can also be performed without additional logic if

() M
M qK 121 −=+ , where 2>Mq . In this case equation (3)

remains unchanged. If, on the other hand,
() MM

M qqK 1
221 −

−=+ , where MM qq ≤< −12 , then

 1
2

1

1

1)2)(()2)(()(−
−

−

=

− +=� M
M

M

M

i

i
i qnrnrnR

The multiplication by 1−Mq , which is fortunately a constant
value, requires additional logic. Obviously if many of the prime
number factors are not equal to 2 then significant additional
circuitry may be required.

3. CIRCUIT SIZE

The number of logic gates needed to create a random sequence
varies depending on the range of the sequence. The least number
of logic gates are required when as many of the prime factors as
possible are equal to 2. To generate a sequence over]255,0[, for
example, requires only eight XOR gates and eight flipflops. More
generally, to create an independent pseudo-random sequence that
is uniformly distributed over],0[K , where MqqK ...1 1=+ ,
requires a modulo- iq adder for each ,i Mi ≤≤1 . The total
number of flipflops needed is

 � ��
=

M

i
iq

1
2)(log

Additional logic elements for multiplication are required if

2>iq , for any Mi < . For example, if 31 =−Mq and 5=Mq
then we need to compute the product)(3 nrM where

}4,...,1,0{)(=nrM . Since the coefficient 3 is a fixed value, this
multiplication would require only a lookup table with a 3-bit
input to represent)(nrM and a 4-bit output to represent the
product.
 In addition to the circuit elements required for each
independent random sequence, a pair of linear feedback shift
registers is needed for each prime factor iq that is unique to the
overall system. This requires two modulo- iq adders and

� �)(log)(2,2,1 iii qLL + flipflops, where iL ,1 and iL ,2 are the

lengths of the shift registers. If 2>iq then, depending on the
characteristic polynomial that is selected, a modulo- iq multiplier

1−Z 1−Z 1−Z

)(nri

ba

II - 802

➡ ➡

may be needed for each of the tap coefficients a and b shown
in figure 1. For large systems the number of logic gates used for
these shift registers becomes insignificant compared to the total
used to generate each independent random sequence { })(nri .

An n-bit modulo m addition for � �mn 2log= can be viewed as
a modulo m operation performed after the addition is done. Thus
the modulo m addition follows:

�
�
�

−+
+

=+=
,

,

21

21
21 mxx

xx
xxy m

mxxif
mxxif

≥+
<+

21

21

Generally, two methods can be used to complete the above

computation: 1) Compute the results of both 21 xx + and
mxx −+ 21 , then select the correct result of modulo m addition

from them. 2) Use a correction table to correct the addition
21 xx + to the result mxx 21 + .

In the first method, two n-bit adders are used; the first adder
computes mxx −+ 21 , while the second adder computes 21 xx + .
The carry bit generated from the second adder indicates whether
or not 21 xx + is greater than m (figure 3). A multiplexer,
controlled by the carry, selects the correct output.

ADD

ADD

MUX

Carry

|x1+x2|m

n

n

n

n

n

n

n
n

In the second method, a lookup table is used to replace the first

n-bit adder and the multiplexer in the first method (figure 4).
When the lookup table in the ROM is small, i.e. when the
modulus m is small, the second method can have better
performance than the first method for fast table lookup.

ADD

n

n
ROM

n+1 n

|x1+x2|m

Address 0 2m-21 2 ... m-1 m m+1

0 1 2 ... m-1 0 1

...

... m-2Data

Figure 4.

However, for an n-bit modulo addition the second method
requires a 2n-entry ROM with n bits for each entry. The hardware
consumption for the lookup table is much greater than the first
method when the size of the modulus is large, which makes it
unaffordable in practical hardware designs.

4. CONCLUSIONS

A random number sequence that is uniformly distributed over the
range],0[K , where 1+K is a power of 2, can be constructed by
forming a vector of M independent bit sequences, where

)1(log 2 += KM . This method of construction represents a
special case of a more generalized approach in which K can be
any positive integer. Moreover, the specific value of K has a
direct impact on the size of the circuit needed to generate the
sequence. The smallest circuits can be implemented when at most
only one of the prime number factors of 1+K is greater than 2.

APPENDIX 1: PROOF OF THE GENERATING
THEOREM

Proof: According to the fundamental theorem of arithmetic, any
integer value 1+K is equal to a product of primes Mqqq ...21
that are unique except for order. Let x be an integer, where

Kx ≤≤0 . (In this section a mod b denotes the remainder
resulting from integer division, i.e. 7 mod 2 = 1.) Then

MM

MMMM

M

qawhere
qqaqqqqx

qqx
Kxx

<≤
+=

=
+=

−−

0
...)...mod()...mod(

)...mod(
)1mod(

11111

1

Figure 3.

PRNG

PRNG 1−Z 1−Z

)(0, nri)(1, nri

)(nsi

)(nti)2(−nti

Figure 2.

II - 803

➡ ➡

MiMqawhere

qqaqqa
qqqqqqx

ii

MMMM

MMM

≤≤−<≤
++

=

−−−

−−

1,0
......

)...mod()...mod()...mod(

11211

21111

Miqawhere
qqaqqaqa

qqqqqx

ii

MM

MM

≤≤<≤
++++

=

−

−

2,0
......

)mod()......mod()...mod(

1121212

1111

If we define

)mod()......mod()...mod(11111 qqqqqxa MM −≡

then by inspection 110 qa <≤ and thus

Miqawhere

qqaqqaqaax

ii

MM

≤≤<≤
++++= −

1,0
...... 11212121 (1)

Let X be the set of all integers in the range],0[K and let A be
the set of all M -tuples),...,(1 Maa such that ii qa <≤0 for all
i , Mi ≤≤1 . Equation (1) proves that any integer Xx ∈ is the
image of an element Aaa M ∈),...,(1 under a function f defined
as

 112131211),...,(−++++= MMM qqaqqaqaaaaf

where MqqqK ...1 21=+ and where Mqqq ,...,, 21 are prime
numbers, some or all of which can be the same. Both X and A
contain 1+K elements. For each Xx ∈ there exists at least one

Aaa M ∈),...,(1 such that xaaf M =),...,(1 . Thus f is a
function that maps A onto X . Let Abb M ∈),...,(1 and let

),...,(),...,(11 MM aafbbf = . Since

 1111 mod),...,(mod),...,(qaafqbbf MM =

then 11 ab = . By repeating this procedure with)mod(21qq ,

)mod(321 qqq , etc., it can be shown that

),...,(),...,(11 MM aabb = . Thus f is one-to-one. Since f is
both one-to-one and onto then there exists an inverse function

AXf →− :1 .
 Now let),...,(1 MrrfR ≡ where each ir is an independent
random variable uniformly distributed over the set of integers

}1,...,0{ −iq for all i , Mi ≤≤1 . Then Arr M ∈),...,(1 and thus

XR ∈ . For each Xx ∈ , let)(),...,(1
1 xfaa M

−= . Then

{ } () (){ }

() (){ }
{ }MM

MM

ararP
aarrP

xfRfPxRP

===
==

=== −−

,...,
,...,,...,

11

11

11

 { } { } { }MarParParP ==== 12211 ...

 �
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
=

Mqqq
1...11

21

1

1
+

=
K

Therefore R is uniformly distributed over],0[K .

APPENDIX 2: COEFFICIENT TRANSLATION

For a primitive polynomial with characteristic 2=iq the shift
register coefficients can be determined directly. The polynomial

1)(7 ++= xxxf , for example, translates into a shift register
configuration of)1()7()(−⊕−= nrnrnr iii . The ease with
which this is accomplished is attributable to the fact that in
modulo-2 arithmetic 11 =− . In general, however, let

ebxaxxf dc ++=)(be a primitive polynomial with
characteristic iq . Then the shift register configuration is

)()()(dnbrcnarner iii −⊕−=− . (In this section juxtaposition is
interpreted as modulo- iq multiplication.) When we eliminate the
coefficient on the left hand side using modulo- iq arithmetic then
the coefficients on the right hand side will probably change
unless 2=iq . For example, let the polynomial be

5)(34 ++= xxxf with characteristic 17=iq . Then

)3(10)4(10)(
0)()1()3(10)4(10

0)(16)3(10)4(10
0)(5)3()4(

−⊕−=
=−⊕−⊕−

=⊕−⊕−
=⊕−⊕−

nrnrnr
nrnrnr

nrnrnr
nrnrnr

iii

iii

iii

iii

REFERENCES

[1] Richard Kuehnel, “An Improved Design Methodology for
Generating Multiple Random Bit Sequences,” (to be published at
ISPC/GSPx, March 2003).

[2] Dennis R. Morgan, “Autocorrelation Function of Sequential
M-Bit Words Taken from an N-Bit Shift Register,” IEEE
Transactions on Computers, Vol. C-29, No. 5, May 1980.

[3] V. N. Yarmolik and S. N. Demidenko, Generation and
Application of Pseudorandom Sequences for Random Testing,
(New York: John Wiley and Sons, 1988).

[4] Bradley D. Brown and Howard C. Card, “Stochastic Neural
Computation I: Computational Elements,” IEEE Transactions on
Computers, Vol. 50, No. 9, Sep. 2001.

[5] J. Saarinen, J. Tomberg, L. Vehmanen, K. Kaski, “VLSI
Implementation of Tausworthe Random Number Generator for
Parallel Processing Environment,” IEE Proceedings-E, Vol. 138,
No. 3, May 1991.

II - 804

➡ ➠

