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ABSTRACT 
 
This paper focuses on how to find the Maximum Modulus Root 
(MMR) (real or complex) of an arbitrary polynomial. Efficient 
solution to this problem is important for many fields including 
neural computation and digital signal processing, etc.. In this 
paper we present neural networks technique for solving this 
problem. Our Neural Root Finder (NRF) is designed based on 
partitioning Feedforward Neural Networks (FNN) trained with 
a Constrained Learning Algorithm (CLA) by imposing the a 
priori information about the root moment from polynomial into 
the error cost function.  Experimental results show that this 
neural root-finding method is able to find the maximum 
modulus roots of polynomials rapidly and efficiently.     
 

1. INTORDUCTION 
 
  
Since finding the roots of polynomials is important for many 
areas of signal processing such as spectral factorization, phase 
unwrapping, forming a cascade of lower order systems, and so 
on, some works have been reported on finding the roots of 
polynomials. Literature [1] gives a comprehensive review of 
polynomial root-finding methods that include the 
eigenvalue-based method, the Jenkins-Traub approach, etc. 
Most of them, however, adopted the conventional iterating or 
recursive methods. Moreover, almost all methods had difficulty 
in achieving both accuracy and processing speed [1,2].   
In 2000, L.Hoteit proposed using the FFT-based differential 
cepstrum estimation for computing the roots of a moderate to 
high order complex polynomial [2]. The root -finding method 
consists of an iterative estimation of the roots, followed by an 
estimation of the associated roots through an FFT-based on 
factorization. By means of this FFT-based differential cepstrum 
estimation ones can find the maximum root modulus of a 
polynomial. Nevertheless, the method for finding the 
polynomial maximum root modulus needs to estimate the slope 
of the curve about the logarithm of the modulus of the mth root 
moment of a polynomial, )log( mS , against the order of the 
root moment m . Obviously, the corresponding accuracy is 

limited, and the computational complexity is also increased. 
Specifically, this method fails to find the phase information of 
the MMR of polynomial, which is sometimes vital to signal 
processing.  
Inspired by the CLA by Perantonis, et.al and Hormis, et.al for 
training FNN for factorizing 2-D Polynomials [3], we designed 
a CLA [4] to train an FNN root-finder by  imposing the 
constrained relations between the roots and the coefficients of a 
polynomial into the batch-style error cost function. To further 
save computation load, we propose a new structural neural 
network model, referred to as the P artitioning Recursive Neural 
Root Finder of Polynomial (PRNRFP), for recursively 
obtaining a few roots at a given time [4]. Moreover, we 
extended the case of finding real roots of polynomial to a 
general case of finding complex roots of polynomial [5].  
In this paper we will discuss using the PRNRFP model imposed 
by the a priori information of Root Moments (RM) from 
polynomial to find the maximum modulus roots of arbitrary 
polynomials. Simulation results will be presented to support 
our approach. 
  
 
2. THE PARTITIONING RECURS IVE NEURAL 
ROOT FINDER OF POLYNOMIAL 
 

An n  order arbitrary polynomial )(xf  can be denoted 
as

nn
nn axaxaxaxf ++++= −
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1
10)( L , where 0,2 0 ≠≥ an . 

Without loss of generality, the coefficient 0a  of nx  is usually 
set as 1.  Suppose that )(xf  is factorized into the following 
form: 

)()())(()( 21 xfwxwxwxxf bi−−−= L                                    (1) 

where iwww ,,, 21 L  are the i  synaptic weights, i.e., the i  
roots to be found, the remaining polynomial )(xfb  with an 
order of ( in − ) can be expressed 
as

in
inin

b bxbxxf −
−−− +++= L1

1)( , where { }inbbb −,,, 21 L  are 
the coefficients of the remaining polynomial )(xfb . The 
structure sketch for this PRNRFP [4] is shown in Fig.1.  
Obviously, when 1=i , we can get one root at a time. In the 
following, we will discuss how to use the PRNRFP with 1=i  
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based on the RM’s to get the maximum modulus root. 

 

 

 

 

 

 

 
Fig.1 Partitioning recursive neural root finder architecture  

for finding i  roots at a time of polynomials  

   
3. THE ROOTS MOMENT AND CONSTRAINED 
LEARNING ALGORITHM 
 
3.1. The Root Moment  

The concept of the RM’s of polynomial was first formulated by 
Isaac Newton [6], which is defined as follows: 

Definition 1: For an n  order polynomial )(xf , assume that 
the corresponding n roots are respectively nwww  and ,,, 21 L , 
then, the m ( Zm ∈ ) order RM of polynomials is defined as  
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According to this definition, we can obtain the recursive 
relationship between the m order RM and the coefficients of 
the polynomial as follows:  
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In fact, we can prove eqn.(3) is equivalent to: 

)(        ,011 nmSaSaS nmnmm >=+++ −− L                              (4)    

The above recursive relationships in eqns.(3) and (4) are 
named as Newton identities. From these Newton identities, 
we can obtain a theorem as follows: 

Theorem 1: Suppose that an n  order polynomial )(xf  is 
known, then, a set of parameters (the RM’s) 

),,2,1,{ nmSm L=  is uniquely determined recursively through 
eqn (4). Conversely, given the n  RM’s ),,2,1,{ nmSm L= , an 
n  order polynomial )(xf is uniquely determined recursively 

through eqn (4).  

After discussing the constrained conditions implicit in 
polynomials, we present simply the complex CLA in the 
following subsection. 

 

3.2. Complex Constrained Learning Algorithm 

 

Suppose that P  training patterns are selected from the region 
1<x , an Error Cost Function  (ECF) is defined at the output 

of the network:  
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where w is the set of all weights in the  network 

model, )(ln pp xfo =  denotes the target (outer-supervised) 

signal to be found roots, ∑
=

−=
n

i

ipp wxy
1

ln denotes the actual 

output of the network, Pp ,,2,1 L=  is an index labeling the 
training patterns.   

According to the above additional information (constrained 
conditions) available from eqn.(3) or (4), we can unifiedly 
write them as follows:  

0=Φ                                                                                     (6) 

where T
m ],,,[ 21 ΦΦΦΦ L=  )( nm ≤  ( T denotes the 

transpose of a vector or matrix) is a vector composed of the 
constraint conditions of eqn. (3) or (4).   

By considering the ECF, which possibly contains many long 
narrow troughs, a constraint for updated synaptic weights is 
imposed in order to avoid missing the global minimum in the 
ECF. Consequently, the sum of square of the individual weight 
changes takes a predetermined positive value 2)( Pδ : 

2

1

2 )( Pdw
n

i
i δ=∑

=
                                                                     (7) 

where idw denotes the change of synaptic weight iw , Pδ  is a 
constant. This means that, at each epoch, the search for an 
optimum new point in the weight space is restricted to a small 
hypersphere of radius Pδ centered at the point defined by the 
current weight vector. If Pδ  is small enough, the change to 

)(wE and to Φ  induced by changes in the weights can be 
approximated by the first differentials )(wdE  and Φd .  

In the light of the ECF of eqn.(5) and the two constrained 
relations of eqns.(6) and (7), by imposing the two additional 
constraint relations into the ECF and by introducing suitable 
Lagrange vector and scale multipliers, V and µ . Considering 
a small change from idw , a new ECF including two additional 
constraints is defined as follows: 












−+Φ−+= ∑

=

n

i

i
HH dwPVdQwdEd

1

22)()()( δµδε             (8) 

By expanding the terms on the right hand side of eqn (8), 
we easily obtain: 
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where  /)(/1/)(
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we can derive the following relation:  
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Specifically, FFI  is a matrix, whose elements are defined by 
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Generally, the parameter Pδ  is adaptively selected as follows:  

)1()( 0
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where 0Pδ  is the initial value for Pδ , which is usually chosen 
with a larger value; t  is the time index; pθ  is the scale 
coefficient of time t , which is usually set as   1>pθ .  

However, the vector parameters ),,2,1( mjQ j L=δ  are 
generally selected as proportional to jΦ , i.e., jj kQ Φ−=δ   
( mj ,,2,1 L= , 0>k ), which ensures that the constraints Φ  
move towards zero at an exponential rate as the training 
progresses [4,5]. 

  
4. EXPERIMENTAL RESULTS 

 
To use the above CLA to train the PRNRFP with 1=i for 
finding the maximum modulus root of a polynomial, and verify 
the effectiveness and efficiency of our approach, two 
experimental results are presented in this section.  
In the following two examples, assume that the controlling 
parameter with the CLA is all chosen as 
{ }0.5,7.0,0.10 === pP θεδ , and 30 repeating experiments are 
respectively conducted by choosing different initial random 
weight values from the uniform distribution in [ ]1,1−  to 
observe the statistical experimental results. For each 
experiment, we first adopt the PRNRFP to find out all roots by 
letting the termination error accuracy being 001.0,01.0=re , 
respectively. At the same time, the MMR’s are selected out 
 

Example 1: 6.57.43.22)( 234
1 −+−+= xxxxxf . For this 

4-order polynomial, we adopt the PRNRFP with 1=i  to 
obtain the roots distributions in the complex planes for two 
accuracy cases, as shown in Fig.2. At the same time, the 10 
selected MMR’s and the corresponding Average Iterating 
Number (AIN) are shown in Table 1. 
  
Example 2: 32.45.11.2)( 2356

2 ++−++= xixxxxf . 
Likewise, for this 6-order polynomial, we also adopt the 
PRNRFP with 1=i  to obtain the roots distributions in the 
complex planes for two accuracy cases, as shown in Fig.3. 
Table 2 shows the 10 selected MMR’s out and the 
corresponding AIN’s. 
 
The experimental results and performance statistics for the 
above two examples shows that the PRNRFP with 1=i at each 
repeating trial can indeed select out the maximum modulus 
roots even when the initial weights at each trial are randomly 
chosen from [-1,1]. 
 
 

5. CONCLUSIONS 
  
This paper proposed applying the partitioning recursive neural 
root finder of polynomial (PRNRFP) trained by the root 
moments based constrained learning algorithm for finding the 
maximum modulus root of an arbitrary polynomial. The 
statistical experimental results show that this recursive NRF 
approach based on the root moment constraints can indeed 
rapidly obtain the maximum modulus roots. Further study will 
include how to find the minimum modulus roots and the 
ordered roots of arbitrary polynomial. 
 
. 
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(a) 210−=re                                                                           (b) 310−=re  

Fig. 2 The estimated root distributions of polynomial )(1 xf for two cases of 210−=re and 310−=re  

                                

(a) 210−=re                                                                           (b) 310−=re  

Fig. 3 The estimated root distributions of polynomial )(2 xf for two cases of 210−=re and 310−=re  

Table1  The selected 10 maximum modulus roots distributions for )(1 xf  

 
Indices  

 
The Maximum Modulus Roots AIN 

 
 

210−=re  
 

(-3.2876, 1.2614E-04)    (-3.2938, -1.8535E-03)   (-3.2724, -1.5103E-03)  (-3.2920, 4.2354E -05)     (-3.2923, 3.5135E-04)   
 (-3.2871, -5.4411E-05)    (-3.2594, -2.5273E-03)   ( -3.2935, -7.9741E -04)   ( -3.3000, -4.1932E-03)   (-3.2995, -2.7129E-03) 26 

310−=re  

 
(-3.2905, 1.2664E-04)   (-3.2914, -5.3297E-04)  (-3.2896, -7.7427E-05)  (-3.2905, 2.5303E-06)  (-3.2905, 5.8580E-05) 
(-3.2891, -1.0246E-04)  (-3.2907, 1.6246E-05)  (-3.2909, -1.1754E-04)  (-3.2913, -4.3486E-04)  (-3.2905, -4.1454E-05) 

 

 
 

52 
 

 
Table2  The selected 10 maximum modulus roots distributions for )(2 xf   

 
Indices  

 
The Maximum Modulus Roots AIN 

 
 

210−=re  
 

(-2.0458, 0.6697)     (-2.0381, 0.6632)     (-2.0450, 0.6694)     (-2.0539, 0.6763)     (-2.0510, 0.6591)    
(-2.0363, 0.6742)    (-2.0480, 0.6700)     (-2.0479, 0.6708)     (-2.0482, 0.6759)      (-2.0450, 0.6695) 

114 
 

310−=re  

 
(-2.0452, 0.6693)     (-2.0450, 0.6725)     (-2.0452, 0.6694)     (-2.0482, 0.6717)     (-2.0470, 0.6664) 
(-2.0422, 0.6710)     (-2.0431, 0.6689)     (-2.0479, 0.6708)     (-2.0459, 0.6706)     (-2.0450, 0.6695) 

 

 
 

150 
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