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ABSTRACT

This paper focuses on how to find the Maximum Modulus Root
(MMR) (real or complex) of an arbitrary polynomial. Efficient
solution to this problem isimportant for many fields including
neural computation and digital signal processing etc.. In this
paper we present neural networks technique for solving this
problem. Our Neural Root Finder (NRF) is designed based on
partitioning Feedforward Neural Networks (FNN) trained with
a Constrained Learning Algorithm (CLA) by imposing the a
prioriinformation about theroot moment from polynomial into
the error cost function. Experimental results show that this
neural root-finding method is able to find the maximum
modulus roats of polynomials rapidly and efficiently.

1. INTORDUCTION

Since finding the roots of polynomials is important for many
areas of signal processing such as spectral factorization, phase
unwrapping, forming a cascade of lower order systems, and so
on, some works have been reported on finding the roots of
polynomials. Literature [1] gives a comprehensive review of
polynomial  root-finding methods that include the
eigenvalue-based method, the Jenkins-Traub approach, etc.
Most of them, however, adopted the conventional iterating or
recursive methods. Moreover, almost all methods had difficulty
in achieving both accuracy and processing speed [1,2].

In 2000, L.Hoteit proposed using the FFT-based differentia
cepstrum estimation for computing the roots of a moderate to
high order complex polynomial [2]. The root -finding method
consists of an iterative estimation of the roots, followed by an
estimation of the associated roots through an FFT-based on
factorization. By means of this FFT-based differential cepstrum
estimation ones can find the maximum root modulus of a
polynomial. Nevertheless, the method for finding the
polynomial maximum root modulus needs to estimate the slope
of the curve about the logarithm of the modulus of the mth root
moment of a polynomial, log(|S,|), against the order of the
root moment m . Obviously, the corresponding accuracy is
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limited, and the computational complexity is aso increased.
Specifically, this method fails to find the phase information of
the MMR of polynomial, which is sometimes vital to signal
processing.

Inspired by the CLA by Perantonis, et.a and Hormis, et.a for
training FNN for factorizing 2-D Polynomials [3], we designed
a CLA [4] to train an FNN root-finder by imposing the
constrained relations between the roots and the coefficients of a
polynomial into the batch-style error cost function. To further
save computation load, we propose a new structural neural
network model, referred to astheP artitioning Recursive Neural
Root Finder of Polynomial (PRNRFP), for recursively
obtaining a few roots at a given time [4]. Moreover, we
extended the case of finding real roots of polynomia to a
general case of finding complex roots of polynomial [5].
Inthispaper wewill discuss using the PRNRFP model imposed
by the a priori information of Root Moments (RM) from
polynomia to find the maximum modulus roots of arbitrary
polynomials. Simulation results will be presented to support
our approach.

2. THE PARTITIONING RECURSIVE NEURAL
ROOT FINDER OF POLYNOMIAL

An n order arbitrary polynomial f(x) can be denoted
& f(x)=ax"+ax"'+-.-+a, ,x+a ,where n32,a,10.
Without loss of generdlity, the coefficient a, of x" isusualy
set as 1. Suppose that f (x) isfactorized into the following
form:

)

where w;,W,,---,W arethe i synaptic weights, i.e, the i
roots to be found, the remaining polynomial f,(X) withan

)= (- wi)(X- ) - (x- wi) 5 (X)

order of ( n-i ) can be  expressed
as f,(x) = X" +bx""*+...+b _, , where {p,b,,---,b,} ae
the coefficients of the remaining polynomia f,(x) . The

structure sketch for this PRNRFP [4] is shown in Fig.1.
Obviously, when i =1, we can get one root at atime. In the
following, we will discuss how to use the PRNRFP with i =1
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based on the RM’ sto get the maximum modul us root.

Fig.1 Partitioning recursive neural root finder architecture

for finding i rootsat atimeof polynomials

3. THE ROOTS MOMENT AND CONSTRAINED
LEARNING ALGORITHM

3.1. The Root Moment

The concept of the RM’ s of polynomial wasfirst formulated by
Isaac Newton [6], which is defined as follows:

Definition 1: For an n order polynomia f(x), assume that

the corresponding n roots are respectively w,,w,,---,andw,,

then, the m (ml Z ) order RM of polynomialsis defined as
S, =W WS bW =8 W @

i=1

According to this definition, we can obtain the recursive

relationship between the m order RM and the coefficients of

the polynomial as follows:

15+a,=0
[S, +a8 +2a,=0
l.

®
%Sm+a1$m,l+---+ahsm,nzo, (m>n)

In fact, we can prove eqn.(3) is equivalent to:

Snt+ @Sy, ++a,5,., =0, (m>n) 4)

The above recursive relationships in egns.(3) and (4) are
named as Newton identities. From these Newton identities,
we can obtain a theorem as follows:

Theorem 1. Suppose that an n order polynomia f(x) is
known, then, a set of parameters (the RM’S9
{S,.m=212,---,n) isuniquely determined recursively through
egn (4). Conversdly, giventhe n RM' s{S,,,m=12---,n), an
n order polynomia f(X)is uniquely determined recursively
through egn (4).

After discussing the constrained conditions implicit in
polynomials, we present simply the complex CLA in the
following subsection.

3.2. Complex Constrained L earning Algorithm

Suppose that P training patterns are selected from the region
|| <1, an Error Cost Function (ECF) is defined at the output
of the network:

EW) = ale, (] =254 (0, - ¥,)(0,- ¥,) )
_2Ppil P _2Pp:1 P yp P yp

where w is the set of al weights in the network
model, 0, = |n|f(Xp)| denotes the target (outer-supervised)

3
signal to befound roots, ¥, = Q |n|Xp - W,| denotesthe actua
i=1

output of the network, p=12,---,P is an index labeling the
training patterns.

According to the above additional information (constrained
conditions) available from egn.(3) or (4), we can unifiedly
write them as follows:

F=0 ®

where F =[F ,F,,-,F ] (m£n) ( T denotes the
transpose of a vector or matrix) is a vector composed of the
constraint conditions of eqgn. (3) or (4).

By considering the ECF, which possibly contains many long
narrow troughs, a constraint for updated synaptic weights is
imposed in order to avoid missing the global minimum in the
ECF. Consequently, the sum of square of the individual weight
changes takes a predetermined positive value (dP)? :

2

a |dw|” = (dP)? %

N

where dw; denotes the change of synaptic weight w ,dP isa
constant. This means that, at each epoch, the search for an
optimum new point in the weight space is restricted to a small
hypersphere of radius dP centered at the point defined by the
current weight vector. If dP is small enough, the change to
E(w) andto F induced by changes in the weights can be
approximated by the first differentials dE(w) and dF .

In the light of the ECF of egn.(5) and the two constrained
relations of egns.(6) and (7), by imposing the two additional
constraint relations into the ECF and by introducing suitable
Lagrange vector and scale multipliers, V and IT . Considering
asmall changefrom dw; , anew ECF including two additional
constraints is defined as follows:

é d. LU
de = dE(w) +(dQ" - dF ")V + m&dP)* - § |aw,['d ®)

e g
By expanding the terms on the right hand sideof eqn (8),
we easily obtain:

n n
o]

3 g ¢ g
de=g Jdw, +(dQT - a dWiFiT)V+m;(dP)2' a (dWi)ZL:J
8 o}

(9)
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where J, =TE(W)/ iw, =1/P§ e, (w) /|xp- wi| ,
p=1
E :[F.(l),F.(z),~~~,F.(m)]T , Fi(i):ﬂ
I I I I M
(i=42,---,n,j =12---,m). Similar to the derivation of [4],
we can derive the following relation:
) FHyv
dw, :i_ i (10)
2m  2m
where
lé IJJ B l;';ﬂl:IJF @1/2
=- E € 2 Hy -1 u (11)
adP)” -dQ" 1 £dQg
V =-2m tdQ+ I fl e 12)

3 2
a |J‘| isascdar, l; is a vector whose
i=1

where |

.4 :
components are defined by 1 = I F” ,(j=12,-,m).

i=1

Specificaly, | g isamatrix, whose elements are defined by

. 3 .
[Fs =a FOF® (i k=12--,m).

i=1
Generally, the parameter dP is adaptively selected as follows:
LA
dP(t) =dP,(1- e ') (13)

where dP, istheinitia valuefor dP, whichisusually chosen
with a larger value; t is the time index; qp is the scale
coefficient of time t, whichisusually setas >1.

However, the vector parameters dQ;(j =12--,m) are
generally selected as proportiona to F ;, i.e, dQ, =-kF;

(j=12--,m k >0), which ensures that the constraints F

move towards zero at an exponential rate as the training
progresses [4,5].

4. EXPERIMENTAL RESULTS

To use the above CLA to train the PRNRFP with i=1 for
finding the maximum modulus root of a polynomial, and verify
the effectiveness and efficiency of our approach, two
experimental results are presented in this section.

In the following two examples, assume that the controlling
parameter  with the CLA is adl chosen as
{dP, =1.0,e =0.7,q, =5.0} , and 30 repeating experiments are
respectively conducted by choosing differert initial random
weight values from the uniform distribution in [ :Ll] to
observe the statistical experimental results. For each
experiment, we first adopt the PRNRFP to find out all roots by
letting the termination error accuracy being e, = 0.01,0.001,
respectively. At the sametime, the MMR’ s are selected out
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Example 1: f (x)=x*+2x%- 2.3x* +4.7x- 5.6 . For this
4-order polynomial, we adopt the PRNRFP with i=1 to
obtain the roots distributions in the complex planes for two
accuracy cases, as shown in Fig.2. At the same time, the 10
selected MMR’ s and the corresponding Average lterating
Number (AIN) are shownin Table 1.

Example 20 f,(x)=x®+21x°+-15ix* +42%* +3
Likewise, for this 6order polynomial, we also adopt the
PRNRFP with i =1 to obtain the roots distributions in the
complex planes for two accuracy cases, as shown in Fig.3.
Table 2 shows the 10 selected MMR's out and the
corresponding AIN’ s.

The experimental results and performance statistics for the
above two examples shows that the PRNRFP with i =1 at each
repeating trial can indeed select out the maximum modulus
roots even when the initial weights at each trial are randomly
chosen from[-1,1].

5. CONCLUSIONS

This paper proposed applying the partitioning recursive neural
root finder of polynomial (PRNRFP) trained by the root
moments based constrained learning algorithm for finding the
maximum modulus root of an arbitrary polynomia. The
statistical experimental results show that this recursive NRF
approach based on the root moment constraints can indeed
rapidly obtain the maximum modulus roots. Further study will
include how to find the minimum modulus roots and the
ordered roots of arbitrary polynomial.
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@ e =10° (b e =10°

Fig. 2 Theestimated root distributions of polynomial f,(x) for twocasesof ¢ =10?and e =103

@ e =107 (b e =10°

Fig. 3 The estimated root distributions of polynomial f, (X) for two casesof € =10?and ¢ =10°°

Tablel The selected 10 maximum modulusrootsdistributionsfor f,(x)

Indices The Maximum Modulus Roots AIN
(-3.2876, 1.2614E-04) (-3.2938,-1.8535E-03) (-3.2724,-1.5103E-03) (-3.2920, 4.2354E-05)  (-3.2923, 3.5135E-04) 2%

e =107 | (-32871,-54411E-05) (-3.2594,-25273E03) (-3.2935,-7.9741E-04) (-3.3000,-4.1932E-03) (-3.2995,-2.7129E-03)

_qg? | (32905 1.2664E-04) (-3.2914, -5.3207E-04) (-3.2896,-7.7427E:05) (-3.2905, 2.5303E06) (-3.2905, 5.8580E-05)
& (-3.2891, -1.0246E-04) (-3.2907, 1.6246E-05) (-3.2909, -1.1754E-04) (-3.2913, 4.3486E04) (-3.2905, -4.1454E-05) 52
Table2 The selected 10 maximum modulusrootsdistributionsfor f,(x)
Indices The Maximum Modulus Roots AIN
(-2.0458,0.6697) (-2.0381, 0.6632) (-2.0450, 0.6694) (-2.0539, 0.6763) (-2.0510, 0.6591) 114
e =102 (-2.0363,0.6742) (2.0480,0.6700) (-2.0479,0.6708) (-2.0482, 0.6759) (-2.0450, 0.6695)
e =10° (-2.0452,0.6693) (-2.0450,0.6725) (-2.0452, 0.6694) (-2.0482, 0.6717) (-2.0470, 0.6664)

(-2.0422,0.6710) (-2.0431,0.6689) (-2.0479, 0.6708) (-2.0459, 0.6706) (-2.0450,0.6695) 150
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