

FINDING THE MAXIMUM MODULUS ROOTS OF POLYNOMIALS
BASED ON CONSTRAINED NEURAL NETWORKS1

De-Shuang Huang1,2 Horace H.S.Ip2

1 Institute of Intelligent Machines, Chinese Academy of Sciences,
 P.O.Box 1130, Hefei, Anhui 230031, China

2 AIMtech Centre, Department of Computer Science, City University of Hong Kong,
83 Tat Chee Avenue, Kowloon Tong, Hong Kong,

emails: huangdeshuang@yahoo.com, cship@cityu.edu.hk

1 This work was supported by NSFC of China.

ABSTRACT

This paper focuses on how to find the Maximum Modulus Root
(MMR) (real or complex) of an arbitrary polynomial. Efficient
solution to this problem is important for many fields including
neural computation and digital signal processing, etc.. In this
paper we present neural networks technique for solving this
problem. Our Neural Root Finder (NRF) is designed based on
partitioning Feedforward Neural Networks (FNN) trained with
a Constrained Learning Algorithm (CLA) by imposing the a
priori information about the root moment from polynomial into
the error cost function. Experimental results show that this
neural root-finding method is able to find the maximum
modulus roots of polynomials rapidly and efficiently.

1. INTORDUCTION

Since finding the roots of polynomials is important for many
areas of signal processing such as spectral factorization, phase
unwrapping, forming a cascade of lower order systems, and so
on, some works have been reported on finding the roots of
polynomials. Literature [1] gives a comprehensive review of
polynomial root-finding methods that include the
eigenvalue-based method, the Jenkins-Traub approach, etc.
Most of them, however, adopted the conventional iterating or
recursive methods. Moreover, almost all methods had difficulty
in achieving both accuracy and processing speed [1,2].
In 2000, L.Hoteit proposed using the FFT-based differential
cepstrum estimation for computing the roots of a moderate to
high order complex polynomial [2]. The root -finding method
consists of an iterative estimation of the roots, followed by an
estimation of the associated roots through an FFT-based on
factorization. By means of this FFT-based differential cepstrum
estimation ones can find the maximum root modulus of a
polynomial. Nevertheless, the method for finding the
polynomial maximum root modulus needs to estimate the slope
of the curve about the logarithm of the modulus of the mth root
moment of a polynomial,)log(mS , against the order of the
root moment m . Obviously, the corresponding accuracy is

limited, and the computational complexity is also increased.
Specifically, this method fails to find the phase information of
the MMR of polynomial, which is sometimes vital to signal
processing.
Inspired by the CLA by Perantonis, et.al and Hormis, et.al for
training FNN for factorizing 2-D Polynomials [3], we designed
a CLA [4] to train an FNN root-finder by imposing the
constrained relations between the roots and the coefficients of a
polynomial into the batch-style error cost function. To further
save computation load, we propose a new structural neural
network model, referred to as the P artitioning Recursive Neural
Root Finder of Polynomial (PRNRFP), for recursively
obtaining a few roots at a given time [4]. Moreover, we
extended the case of finding real roots of polynomial to a
general case of finding complex roots of polynomial [5].
In this paper we will discuss using the PRNRFP model imposed
by the a priori information of Root Moments (RM) from
polynomial to find the maximum modulus roots of arbitrary
polynomials. Simulation results will be presented to support
our approach.

2. THE PARTITIONING RECURS IVE NEURAL
ROOT FINDER OF POLYNOMIAL

An n order arbitrary polynomial)(xf can be denoted
as

nn
nn axaxaxaxf ++++= −

−
1

1
10)(L , where 0,2 0 ≠≥ an .

Without loss of generality, the coefficient 0a of nx is usually
set as 1. Suppose that)(xf is factorized into the following
form:

)()())(()(21 xfwxwxwxxf bi−−−= L (1)

where iwww ,,, 21 L are the i synaptic weights, i.e., the i
roots to be found, the remaining polynomial)(xfb with an
order of (in −) can be expressed
as

in
inin

b bxbxxf −
−−− +++= L1

1)(, where { }inbbb −,,, 21 L are
the coefficients of the remaining polynomial)(xfb . The
structure sketch for this PRNRFP [4] is shown in Fig.1.
Obviously, when 1=i , we can get one root at a time. In the
following, we will discuss how to use the PRNRFP with 1=i

II - 7970-7803-7663-3/03/$17.00 ©2003 IEEE ICASSP 2003

➠ ➡

based on the RM’s to get the maximum modulus root.

Fig.1 Partitioning recursive neural root finder architecture

for finding i roots at a time of polynomials

3. THE ROOTS MOMENT AND CONSTRAINED
LEARNING ALGORITHM

3.1. The Root Moment

The concept of the RM’s of polynomial was first formulated by
Isaac Newton [6], which is defined as follows:

Definition 1: For an n order polynomial)(xf , assume that
the corresponding n roots are respectively nwww and ,,, 21 L ,
then, the m (Zm ∈) order RM of polynomials is defined as

∑
=

=+++=
n

i

m
i

m
n

mm
m wwwwS

1
21 L (2)

According to this definition, we can obtain the recursive
relationship between the m order RM and the coefficients of
the polynomial as follows:











>=+++

=++

=+

−−)(,0

02

0

11

2112

11

nmSaSaS

aSaS

aS

nmnmm L

M
 (3)

In fact, we can prove eqn.(3) is equivalent to:

)(,011 nmSaSaS nmnmm >=+++ −− L (4)

The above recursive relationships in eqns.(3) and (4) are
named as Newton identities. From these Newton identities,
we can obtain a theorem as follows:

Theorem 1: Suppose that an n order polynomial)(xf is
known, then, a set of parameters (the RM’s)

),,2,1,{ nmSm L= is uniquely determined recursively through
eqn (4). Conversely, given the n RM’s),,2,1,{ nmSm L= , an
n order polynomial)(xf is uniquely determined recursively

through eqn (4).

After discussing the constrained conditions implicit in
polynomials, we present simply the complex CLA in the
following subsection.

3.2. Complex Constrained Learning Algorithm

Suppose that P training patterns are selected from the region
1<x , an Error Cost Function (ECF) is defined at the output

of the network:

∑∑
==

−−==
P

p
pppp

P

p
p yoyo

P
we

P
wE

1

*

1

2
))((

2
1

)(
2
1

)((5)

where w is the set of all weights in the network

model,)(ln pp xfo = denotes the target (outer-supervised)

signal to be found roots, ∑
=

−=
n

i

ipp wxy
1

ln denotes the actual

output of the network, Pp ,,2,1 L= is an index labeling the
training patterns.

According to the above additional information (constrained
conditions) available from eqn.(3) or (4), we can unifiedly
write them as follows:

0=Φ (6)

where T
m],,,[21 ΦΦΦΦ L=)(nm ≤ (T denotes the

transpose of a vector or matrix) is a vector composed of the
constraint conditions of eqn. (3) or (4).

By considering the ECF, which possibly contains many long
narrow troughs, a constraint for updated synaptic weights is
imposed in order to avoid missing the global minimum in the
ECF. Consequently, the sum of square of the individual weight
changes takes a predetermined positive value 2)(Pδ :

2

1

2)(Pdw
n

i
i δ=∑

=
 (7)

where idw denotes the change of synaptic weight iw , Pδ is a
constant. This means that, at each epoch, the search for an
optimum new point in the weight space is restricted to a small
hypersphere of radius Pδ centered at the point defined by the
current weight vector. If Pδ is small enough, the change to

)(wE and to Φ induced by changes in the weights can be
approximated by the first differentials)(wdE and Φd .

In the light of the ECF of eqn.(5) and the two constrained
relations of eqns.(6) and (7), by imposing the two additional
constraint relations into the ECF and by introducing suitable
Lagrange vector and scale multipliers, V and µ . Considering
a small change from idw , a new ECF including two additional
constraints is defined as follows:












−+Φ−+= ∑

=

n

i

i
HH dwPVdQwdEd

1

22)()()(δµδε (8)

By expanding the terms on the right hand side of eqn (8),
we easily obtain:












−+−+= ∑∑∑

===

n

i

i

n

i

T
ii

T
i

n

i

i dwPVFdwQdwJd
1

22

11

)()()(δµδε

 (9)

1w
iw

2w 3w

1 x 2x 1n ix − − n ix −

()bf x

L

L

)(xy

II - 798

➡ ➡

where /)(/1/)(
1

ip

P

p

pii wxwePwwEJ −=∂∂= ∑
=

,

Tm
iiii FFFF],,,[)()2()1(L= ,

i

jj
i w

F
∂

Φ∂
=)(

(mjni ,,2,1,,,2,1 LL ==). Similar to the derivation of [4],
we can derive the following relation:

µµ 22

VFJ
dw

H
ii

i −= (10)

where

2/1

12

1

)(2
1










−
−

−= −

−

QIQP

IIII

FF
H

JFFF
H
JFJJ

δδδ
µ (11)

JFFFFF IIQIV 112 −− +−= δµ (12)

where ∑
=

=
n

i

iJJ JI
1

2
 is a scalar, JFI is a vector whose

components are defined by ∑
=

=
n

i

j
ii

j
JF FJI

1

)()(,(mj ,,2,1 L=).

Specifically, FFI is a matrix, whose elements are defined by

∑
=

=
n

i

k
i

j
i

jk
FF FFI

1

)()((mkj ,,2,1, L=).

Generally, the parameter Pδ is adaptively selected as follows:

)1()(0
t

p

ePtP
θ

δδ
−

−= (13)

where 0Pδ is the initial value for Pδ , which is usually chosen
with a larger value; t is the time index; pθ is the scale
coefficient of time t , which is usually set as 1>pθ .

However, the vector parameters),,2,1(mjQ j L=δ are
generally selected as proportional to jΦ , i.e., jj kQ Φ−=δ
(mj ,,2,1 L= , 0>k), which ensures that the constraints Φ
move towards zero at an exponential rate as the training
progresses [4,5].

4. EXPERIMENTAL RESULTS

To use the above CLA to train the PRNRFP with 1=i for
finding the maximum modulus root of a polynomial, and verify
the effectiveness and efficiency of our approach, two
experimental results are presented in this section.
In the following two examples, assume that the controlling
parameter with the CLA is all chosen as
{ }0.5,7.0,0.10 === pP θεδ , and 30 repeating experiments are
respectively conducted by choosing different initial random
weight values from the uniform distribution in []1,1− to
observe the statistical experimental results. For each
experiment, we first adopt the PRNRFP to find out all roots by
letting the termination error accuracy being 001.0,01.0=re ,
respectively. At the same time, the MMR’s are selected out

Example 1: 6.57.43.22)(234
1 −+−+= xxxxxf . For this

4-order polynomial, we adopt the PRNRFP with 1=i to
obtain the roots distributions in the complex planes for two
accuracy cases, as shown in Fig.2. At the same time, the 10
selected MMR’s and the corresponding Average Iterating
Number (AIN) are shown in Table 1.

Example 2: 32.45.11.2)(2356

2 ++−++= xixxxxf .
Likewise, for this 6-order polynomial, we also adopt the
PRNRFP with 1=i to obtain the roots distributions in the
complex planes for two accuracy cases, as shown in Fig.3.
Table 2 shows the 10 selected MMR’s out and the
corresponding AIN’s.

The experimental results and performance statistics for the
above two examples shows that the PRNRFP with 1=i at each
repeating trial can indeed select out the maximum modulus
roots even when the initial weights at each trial are randomly
chosen from [-1,1].

5. CONCLUSIONS

This paper proposed applying the partitioning recursive neural
root finder of polynomial (PRNRFP) trained by the root
moments based constrained learning algorithm for finding the
maximum modulus root of an arbitrary polynomial. The
statistical experimental results show that this recursive NRF
approach based on the root moment constraints can indeed
rapidly obtain the maximum modulus roots. Further study will
include how to find the minimum modulus roots and the
ordered roots of arbitrary polynomial.

.

6. REFERENCES

[1] A.W.Press, S.Teukolsky, W.Vetterling and B.Flannery.
Nemerical Recipes in C, the Art of Scientific Computing.
Cambridge University Press, 1988.
[2] L.Hoteit, “FFT-based fast polynomial rooting,” 2000 IEEE
International Conference on Speech, and Signal Processing
(ICASSP '00), Proceedings, Vol.6, pp.3315 –3318, 2000.
[3] S.J.Perantonis, N.Ampazis, S.Varoufakis, and G.Antoniou,
“Constrained learning in neural networks: application to stable
factorization of 2-D Polynomials,” Neural Processing Letters,
7, 5-14,1998.
[4] D.S.Huang, Zheru Chi, “Neural networks with problem
decomposition for finding real roots of polynomials,” 2001 Int.
Joint Conf. On Neural Networks (IJCNN2001), Washington,
DC, Vol. Addendum, 25-30, July 15-19, 2001.
[5] D.S.Huang, Zheru Chi, “Finding complex roots of
polynomials by feedforward neural networks,” 2001 Int. Joint
Conf. On Neural Networks (IJCNN2001) , Washington, DC, Vol.
Addendum, 13-18, July 15-19, 2001.
[6] T. Stathaki, “Root moments: a digital signal-processing
perspective,” IEE Proc. Vis. Image Signal Processing, 145,
293-302, 1998.

II - 799

➡ ➡

(a) 210−=re (b) 310−=re

Fig. 2 The estimated root distributions of polynomial)(1 xf for two cases of 210−=re and 310−=re

(a) 210−=re (b) 310−=re

Fig. 3 The estimated root distributions of polynomial)(2 xf for two cases of 210−=re and 310−=re

Table1 The selected 10 maximum modulus roots distributions for)(1 xf

Indices

The Maximum Modulus Roots AIN

210−=re

(-3.2876, 1.2614E-04) (-3.2938, -1.8535E-03) (-3.2724, -1.5103E-03) (-3.2920, 4.2354E -05) (-3.2923, 3.5135E-04)
 (-3.2871, -5.4411E-05) (-3.2594, -2.5273E-03) (-3.2935, -7.9741E -04) (-3.3000, -4.1932E-03) (-3.2995, -2.7129E-03) 26

310−=re

(-3.2905, 1.2664E-04) (-3.2914, -5.3297E-04) (-3.2896, -7.7427E-05) (-3.2905, 2.5303E-06) (-3.2905, 5.8580E-05)
(-3.2891, -1.0246E-04) (-3.2907, 1.6246E-05) (-3.2909, -1.1754E-04) (-3.2913, -4.3486E-04) (-3.2905, -4.1454E-05)

52

Table2 The selected 10 maximum modulus roots distributions for)(2 xf

Indices

The Maximum Modulus Roots AIN

210−=re

(-2.0458, 0.6697) (-2.0381, 0.6632) (-2.0450, 0.6694) (-2.0539, 0.6763) (-2.0510, 0.6591)
(-2.0363, 0.6742) (-2.0480, 0.6700) (-2.0479, 0.6708) (-2.0482, 0.6759) (-2.0450, 0.6695)

114

310−=re

(-2.0452, 0.6693) (-2.0450, 0.6725) (-2.0452, 0.6694) (-2.0482, 0.6717) (-2.0470, 0.6664)
(-2.0422, 0.6710) (-2.0431, 0.6689) (-2.0479, 0.6708) (-2.0459, 0.6706) (-2.0450, 0.6695)

150

II - 800

➡ ➠

