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Abstract

Finding global minima and maxima of constrained optimiza-
tion problems is an important task in engineering applica-
tions and scientific computation. In this paper, the nec-
essary conditions of optimality will be solved sequentially
using a combination of gradient descent and exact or ap-
proximate line search. The optimality conditions are en-
forced at each step while optimizing along the direction of
the gradient of the Lagrangian of the problem. Among many
applications, this paper proposes learning algorithms which
extract adaptively reduced rank canonical variates and corre-
lations, reduced rank Wiener filter, and principal and minor
components within similar framework.

1. Introduction

The problem of minimizing functionals over a sphere or an
ellipse arises in many applications in engineering and ap-
plied sciences. Some of these applications include solving
linear and nonlinear eigenvalue problems, major and minor
component estimation [1], and canonical correlation analy-
sis [2]. Even the SVD and EVD in matrix computation can
be formulated as optimization problems over a sphere [3].
In the signal processing field, there are numerous prob-

lems that can be formulated as optimization problems over
orthogonal constraints. These problems include

1. Minimum Subspace Computation

2. Minor and principal Subspace Tracking

3. Adaptive Subspace Computation

4. Computing the first r dominant eigenpairs

5. Canonical correlation analysis

6. Reduced Rank Wiener Filtering

We present in this paper new methods of computing and
solving optimization problems using constrained gradient
descent of the Lagrangian in conjunction with exact and
approximate line search. Thus these approaches may be
considered as constrained iterative gradient descent meth-
ods.

2. Problem Formulation

The idea of using an approximate or exact line search for
solving constrained optimization problem with orthogonal
constraints will be applied to several practical problems.
Consider the following minimization problem

Minimize F (x) subject to xTx = Ir, (1)

where F is at least twice continuously differentiable real
valued function, x ∈ IRm×r, and Ir stands for the identity
matrix of size r. Define the Lagrangian as

L(x, λ) = F (x)− trace{(xTx− Ir)
λ

2
}, (2)

where λ is a matrix of Lagrange multipliers. The necessary
condition for optimality is that ∇L = 0, where

∇L =
{

∇xF (x)− xλ
xTx− Ir

}
. (3a)

If (x, λ) is an optimal solution, then λ may be expressed
as

λ = xT∇xF (x). (3b)

Substituting this expression in (3a) yields

∇xL = ∇xF (x)− xxT∇xF (x)

= (Ir − xxT )∇xF (x).
(4)

Conversely, if we assume that ∇L = 0, then xT∇L =
(xTx−Ir)x

T∇F (x). Thus if λ is non-singular (which is the
case in many applications listed in Section 3), then (Ir −
xTx)λ = 0, and hence xTx = Ir.
Now assume that an approximate solution matrix x is

given and assume that λ has been computed as in (3b).
For a given nonzero direction matrix h, we are interested
in computing α ∈ IRr×r so that L(x + hα) is minimum.
Clearly, the Taylor expansion of L(x + hα) around x is
given by

L(x+ hα) = F (x) +DxF (x)hα+
1

2
αThT∇2

xF (x)hα+ h.o.t.

− trace{xTx
λ

2
+ αThTx

λ

2
+ xThα

λ

2
+ αThThα

λ

2
},

(5a)
where h.o.t. stands for cubic and higher order terms. By
ignoring h.o.t., it follows that

(
∂L(x+ hα)

∂α
)T = DxF (x)h+h

T∇2
xF (x)hα−hTxα−hThαλ.

(5b)
When F is quadratic, the Kronecker product may be used to

obtain exact solution to the system; ∂L(x+hα)
∂α

= 0. Specif-
ically,

((Ir⊗hTD2
xF (x)h)+(λ

T⊗hTh))vec(α) = vec(hTxλ−hT∇xF (x)).
(6)
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Here vec stands for the operation of stacking the columns
of a matrix into one column, and ⊗ denotes the Kronecker
product.
If h is chosen as h = ∇xL(x, λ), then xTh = 0. There-

fore, if r = 1, i.e., x is a vector, then the scalar α can be
obtained as

α = −(hT∇2
xLh)−1hTh, (7a)

where ∇2
xL = ∇2

xF (x)− λIr, and x can be updated as

x′ = x+ hα. (7b)

If α is chosen to be fixed at each stage, then the above
procedure reduces to the constrained gradient descent.

3. Examples

In this section we present a few signal processing applica-
tions where the proposed methods can be utilized.

Example 1: Major Subspace Computation

The above ideas of line search minimization can be used
for principal component analysis. The first principal com-
ponent optimizes the reconstruction mean-square-error by
choosing the best one dimensional subspace to project the
signal into. The criterion for the first component w is that
it minimizes

J1(w) = E(||x−wwTx||)
= E{||x||2} − 2wTRxxw + (w

TRxxw)w
Tw,

(8a)

where ||.|| is the Euclidean norm. The solution to this mini-
mization problem is w = q1, where q1 is the eigenvector cor-
responding to the largest eigenvalue of the auto-covariance
matrix Rxx. For the rth component criterion, one may solve
the minimization problem

Minimize Jr(w) = E(||x− wwT (I −W T
r Wr)x||2), (8b)

where Wr = [w1 · · · wr ]
T . Thus

Jr = E(||x||2 − 2wT (I −W T
r Wr)Rxxw+

(wT (I −WrW
T
r )Rxx(I −WrW

T
r ))w)

= E(||x||2)− 2wTPrRxxw + (w
TPrRxxPrw)||w||2,

(9)
where Pr = I −W T

r Wr. To minimize J1 using the gradient
method, we have

∇J1 = −4Rxxw + 2w
TwRxxw + 2(w

TRxxw)w. (10)

If ∇J1 = 0, it can be verified that wTw = 1. Now let us set
h = ∇J1 and determine α so that J1(w+ αh) is minimum.
It can be shown that α is a solution for the cubic equation

0 = f(α) = a0α
3 + a1α

2 + a2α+ a3, (11)

where

a0 = 4(hT h)(hTRxxh),

a1 = 2(hT h)(hTRxxw + wTRxxh) + 3(h
Tw + wTh)(hTRxxh),

a2 = 2(hTw + wTh)(wTRxxh+ hTRxxw) + 2(h
Th)(wTRxxw)

+ 2(wTw − 2)(hTRxxh),

a3 = (hTw + wTh)(wTRxxw) + (w
Tw − 2)

× (hTRxxw +wTRxxh).
(12a)

If h is chosen to be orthogonal to w, then hTw = wTh = 0
and hence (12a) simplifies to

a1 = 2(hTh)(wTRxxh),

a2 = 2(hTh)(wTRxxw) + 2(w
Tw − 2)(hTRxxh),

a3 = (wTw − 2)(hTRxxw + wTRxxh).

(12b)

The polynomial f(α) has at least one real zero. If all zeros
are real, one may choose the step size α to be max{αi}3

i=1.
Theoretically w converges to a unit vector, however to speed
up convergence, one should normalize w to a unit vector in
each step. Similarly, Jr may be minimized by replacing Rxx

with R̄xx = PrRxxPr.

Algorithm 1 (Constrained Gradient Descent-
Line-Search) (CGD-LS)

The inputs for this algorithm are Rxx ∈ IRm×m, and Wr ∈
IRm×r, where Wr is a matrix whose columns are the first r
principal components. The output is the (r+1)th principal
component wr+1.

1. Choose a nonzero random initial vector w. Normalize
w so that wTw = 1.

2. Let h = ∇Jr as in (10) with Rxx being replaced with
R̄xx = PrRxxPr, where Pr = I −WrW

T
r .

3. Compute a0, a1, a2 and a3 as in (12a) and solve (11)
for αi. Set α = max{αi}3

i=1.

4. Update w using w′ = w + hα.

5. Orthogonalize w′ with respect toWr using the formula
w′′ = (I −WrW

T
r )w

′.

6. Normalize w′′, i.e., set w = w′′√
w′′T w′′

.

7. Repeat Steps 2-5 until convergence.

This algorithm can be slightly modified for adaptive com-
putation of principal subspace. This can be established
by updating the auto-covariance Rxx so that R̂xx = (1 −
β)Rxx + βxxT for some number 0 < β ≤ 1. Here x is the
new observation vector.

Example 2: Canonical Correlation Analysis

The main idea in two-set canonical correlation analysis
(CCA) is to investigate the relationship between two sets of
variables. It finds corresponding sets of linear combinations
of the original two groups of variables. CCA is first devel-
oped in [4]. As indicated in [5], canonical correlations and
variates can be found by solving the maximization problem:

Maximize wTRxyv

subject to wTRxxw = 1, vTRyyv = 1,
(13)

where Rxx = E(xxT ), Rxy = E(xyT ) = RT
yx, Ryy =

E(yyT ), {.}T denotes matrix transpose, and E{.} denotes
expectation. The proposed method of Section 2 can be
applied to serially compute the canonical correlations and
variates. Specifically, let Wr and Ur be the first r canonical
coordinates so that

UT
r RyxWr = Kr, W T

r RxxWr = Ir, UT
r RyyUr = Ir, (14)

where Kr is a diagonal matrix; Kr = diag(κ1, κ2, · · · , κr),
where κ1 ≥ κ2 ≥ · · · ≥ κr. Here κi is the ith canonical
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correlation. To determine κr+1, wr+1, and vr+1 one can
solve the optimization problem

maximize wTRxyu

subject to

W T
r Rxyu = 0, wTRxyUr = 0,

wTRxxWr = 0, uTRyyUr = 0,

wTRxxw = 1, uTRyyu = 1.

(15)

Let P1 = I − WrW
T
r Rxx and P2 = I − UrU

T
r Ryy be pro-

jections so that for any two vectors (w, v) satisfying the
constraints in (15), P1w = w, P2u = u, P1Wr = 0 and
P2Ur = 0. Consequently, (15) may be expressed as

Maximize wTP T
1 RxyP2v

subject to wTP T
1 RxxP1w = 1, vTP T

2 RyyP2v = 1,
(16)

Then the solutions must be orthogonalized with respect to
the diagonal matrix Kr.

Example 3: Quadratics Over a Sphere

Minimization of a quadratic over a sphere arises in many
algorithmic developments. For example, in the trust re-
gion algorithm [6]-[7] it is required to solve subproblems
involving the minimization of the following quadratic over
a sphere:

Minimize F (x) = trace{xTAx− 2bTx},
subject to xTx = Ir,

(17)

where A is a symmetric m×m matrix, b ∈ IRm, and T de-
notes matrix transpose. Problems of this form also arise in
many other applications including regularization methods
for ill-posed problems [8]. Several approaches have been
developed to solve (17). In some of these approaches par-
tial or complete diagonalization of A is used, however, this
representation is practical only when m is small. The focus
here is on large scale case. The Lagrangian of this problem
is defined as

L(x, λ) = 1

2
trace{xTAx− 2bTx} − trace{(xTx− Ir)

λ

2
},
(18)

where λ is the Lagrange multipliers matrix. Clearly,

∇xL = (Ax− b)− xλ. (19a)

A necessary condition of optimality is that ∇xL = 0 and
therefore

λ = xTAx− xT b = F (x) + bTx. (19b)

Now let h = Ax− b− xλ be a direction of descent matrix,
then

L(x+ hα) =
1

2
trace{(x+ hα)TA(x+ hα)− 2bT (x+ hα)}

− trace((xT + αThT )(x+ hα) − Ir)
λ

2
.

(20a)
Hence if α minimizes L(x+hα), then it is a solution of the
equation:

2hTAx+ 2hTAhα− 2(bTh)T − hTxλ− hThαλ = 0. (20b)

Note that our choice of h and λ implies that xTh = 0.
Therefore, (20b) simplifies to

hThαλ − hTAhα = bTh− hTAx. (21)

This equation can be solved exactly as in (6) using the
Kronecker product. If r = 1, an exact solution for α is

α =
bTh− xTAh

hT (A− λIm)h
. (22)

An alternative approach for computing x for the case
r = 1 is to consider x = (A− λIm)

−1b. Consequently,

1 = xTx = bT (A− λIm)
−2b. (23)

The Newton-Gauss method can be applied so that

λk+1 = λk − bT (A− λIm)
−2b− 1

2bT (A− λIm)−3b
.

The starting point λ0 should be chosen appropriately so
that λk converges to the smallest solution of (23). Then
the optimal solution x is determined as x = (A− λIm)

−1b.
As a special case, when r = 1 and b = 0, (17) transcribes

to the problem

Minimize xTAx subject to ||x|| = 1. (24)

It is well-known that a solution of this problem is any eigen-
vector associated with the smallest eigenvalue of A. Sim-
ilarly, computing the r most sub-dominant eigenpairs in-
volves the solution of (24) r times, where x in each case is
restricted to the space orthogonal to the previous eigenvec-
tors.

Example 4: Reduced Rank Wiener Filtering

The reduced rank Wiener filtering problem is to find the
rank r minimizer Wr that minimizes

Qxx(Wr) = E(||x(n)−Wry(n)||2) Wr has rank r. (25a)

As in [9]and [10], this can be rewritten as

Qxx(Wr) = Qxx(W )+(Rxy−WrRyy)R
−1
yy (Rxy −WrRyy)

T ,
(25b)

where Qxx = Rxx − RxyR
−1
yy Ryx. Here Rxx = E(xxT ) ∈

IRm×m, Rxy = E(xyT ) ∈ IRm×n, and Ryy = E(yyT ) ∈
IRn×n.
To compute a reduced rank Wiener filter Wr, of rank r,

assume thatWr = UΣV T where U ∈ IRm×r and V ∈ IRn×r

are orthogonal and Σ ∈ IRr×r is diagonal positive definite
matrix. Therefore, the matrices U , Σ, and V are solutions
of the minimization problem:

Minimize
1

2
trace{Qxx(W ) + (Rxy − UΣV HRyy)R

−1
yy

× (Rxy − UΣV HRyy)
T },

(26)
subject to the constraints UTU = I , V TV = I and Σ is
positive definite diagonal matrix. To solve this problem,
one can apply the techniques of Section 2 with some modi-
fication.
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Example 5: Generalized Minimum Subspace
Computation

There are many situations where it is required to obtain
a generalized signal subspace or a small number of low-
est or largest eigenvalues. One can repeatedly minimize
a functional F (x) restricting x to the space orthogonal to
the previous subspace. In some cases, especially for mul-
tiple or clustered eigenvalues, it is advisable to compute
the whole invariant subspace spanned by the correspond-
ing eigenvectors. In this section we present an algorithm
to compute the r smallest eigenvalues (with eigenvectors)
simultaneously by considering the corresponding subspace
as a whole. An r-dimensional subspace is spanned by r
non-degenerate (column) vectors, which are combined into
a rectangular matrix x. The general form of the general-
ized minimum subspace can be expressed as a minimization
problem:

Minimizex Trace{xTAx}, xTBx = Ir, (27a)

where A is symmetric and B is positive definite of size m.
This problem can be shown to be equivalent to maximizing
trace{(xTAx)(xTBx)−1} over all non zero vectors x.
Let L(x, λ) = 1

2
trace{xTAx}− trace{(xTBx− Ir)

λ
2
} be

the Lagrangian, then a necessary condition for optimality
is that

∇xL(x, λ) = Ax−Bxλ = 0.

A steepest descent method would search a new minimum
along h, say x′ = x + hα with a (small) coefficient ma-
trix α ∈ IRr×r. The matrix α is required to minimize
L(x + hα, λ) with respect to r × r matrix α, where λ =
(xTAx)(xTBx)−1. The exact solution can be computed
from the equation

hTAx+ hTAhα− hTBxλ− hTBhαλ = 0, (27b)

by using similar approach given in (6). The matrix α can
also be obtained approximately as

α ≈ −1
2
(hTAh)−1(xTAh+ hTAx), (27c)

where h = 1
2
∇F (x) or h = Ax − Bx(xTBx)−1xTAx. The

old solution will be updated so that x1 = x + hα. This
solution must then be normalized to a new matrix y so
that yTBy = I . One approach is to use

y = x1(x
T
1 Bx1)

−1
2 .

Note that the matrices (xT
1 Bx1)

−1
2 and hTAh are of order

r × r. Computing the inverse or the positive definite square
root of such matrices is a small problem and can be solved
by standard techniques.

Algorithm 2

Let x(1) be any nonzero randomly generated vector. For
k = 1, 2, · · · until convergence do

x̄(k) = x(k)(x(k)TBx(k))−
1
2

λ(k) = x̄(k)TAx̄(k)

h(k) = Ax̄(k)−Bx̄(k)λ(k)

a(k) = −(h(k)TAh(k))(h(k)TAx̄(k))
x(k + 1) = x̄(k) + h(k)a(k)

4. Conclusion

In this paper we proposed a number of computational
tools for solving optimization problems over spheres or el-
lipses. These include, among many other problems, the
reduced rank canonical variates and correlations, reduced
rank Wiener filters, reduced rank principal and minor com-
ponent analysis. The main motivation of this work is the
desire to solve linear systems of equations arising from the
necessary conditions of optimality of these problems with-
out inverting large scale matrices. Simulations have been
conducted to examine the performance of each of the pro-
posed methods, however, we did not include them here due
to space limitation. Finally, the proposed approaches can
be extended to complex functions after some modifications.
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