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ABSTRACT 
 
In the past few years, researchers have been extensively studying 
the application of recurrent neural networks (RNNs) to solving 
tasks where detection of long term dependencies is required. 
This paper proposes an original architecture termed the 
Recurrent Multiscale Network, RMN, to deal with these kinds of 
problems. Its most relevant properties are concerned with 
maintaining conventional RNNs’ capability of information 
storing whilst simultaneously attempting to reduce their typical 
drawback occurring when they are trained by gradient descent 
algorithms, namely the vanishing gradient effect. This is 
achieved through RMN which preprocesses the original signal 
separating information at different temporal scales through an 
adequate DSP tool, and handling each information level with an 
autonomous recurrent architecture; the final goal is achieved by 
a nonlinear reconstruction section. This network has shown a 
markedly improved generalization performance over 
conventional RNNs, in its application to time series prediction 
tasks where long range dependencies are involved. 

 

1. INTRODUCTION 
 
Recurrent neural networks (RNNs) have been widely used 
recently to deal with many dynamical and non-linear problems, 
such as time series forecasting and identification of general 
systems. In order to handle the temporal characteristics of such 
data, any good system solution should let a past input exercise 
its effect on a successive time instant, i.e. a sort of memorization 
mechanism must be provided in order to capture contextual 
information. RNNs are well suited for this as they have long-
term memory embedded: the cycles in the graph of a recurrent 
network (represented by its feedback synapses) allow it to keep 
information about past inputs for an amount of time that is not 
fixed a-priori (information latching property), but rather depends 
on its weights and on the input data. In contrast, static networks 
(with no recurrent connections), even if they include delays 
(such as Time Delay Neural Networks), have a finite impulse 
response and cannot store a bit of information for an indefinite 
time.  

Hence, RNNs are the best candidates to store information for 
an arbitrary duration, but such a capability is offset by the 
vanishing gradient problem. This effect takes place when a RNN 

is trained by learning algorithms based on computing the 
gradient of a cost function with respect to the weights of the 
network [1], such as in the back propagation through time 
(BPTT) or real time recurrent learning (RTRL). It has been 
analytically proven [2], [3] that either the system gets 
information latching being resistant to noise or, alternatively, it 
is efficiently trainable by gradient descent learning algorithm, 
but not both. The former case coincides with the occurrence of 
vanishing gradient effect that leads to poor generalization 
performances. 

Several solutions have been proposed to mitigate this effect: 
some methods use alternative learning algorithms, or special 
architectures (additional memory for example) or a combination 
of these [2]. Also particular methods based on conceiving 
learning as a refinement process from a-priori knowledge 
(symbolic analysis) have been developed [2]. However almost 
all of these methods tend to not preserve the original simplicity 
and low computational cost of  RNNs trained by BPTT, which is 
most widely used among gradient descent based learning 
algorithms. As a consequence, a new original architecture is 
proposed in this paper, in order to improve long-term 
dependencies detecting capability when common RNNs and 
BPTT are used together as the core of a hybrid learning system, 
resulting in a reduction of the vanishing gradient effect. The 
three-stage solution implemented is based on preprocessing the 
input signal through a multi-band decomposition technique and 
processing each obtained sequence separately through different 
RNNs. In principle, all information quantity associated to a 
particular temporal scale of the starting input can be learnt by a 
single recurrent structure more easily than in the case of 
detecting the same quantity from the entire original signal. 
Moreover, an appropriate reconstructing operation is provided, 
in order to process all elaborated sequences together, delivering 
the final result as an imitating attempt of the original target. 
 

2. DISCRETE WAVELET DECOMPOSITION 
 

The chosen multi-band decomposition technique is the 
discrete wavelet decomposition, which can be seen as an octave 
band filter bank, with its analysis section (Discrete Wavelet 
Transform (DWT)) and its synthesis section (inverse DWT 
(IDWT)) [4]. Looking at the decomposition part, it can be 
observed that the original signal { }nx  is processed through 
filtering and down-sampling operations resulting in different 
sequences 
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Each of these sequences is relative to a precise part of 
spectrum of the signal and has different length than the others; in 
more specific words, it means that their scale and resolution 
values are divided by 2 at each decomposition level, 
consequently reducing by the same factor the sequence length 
and the part of spectrum they represent. This fact is directly 
related to the coverage of time/frequency plane existing in 
continuous wavelet transform (CWT), confirming the analytical 
link between DWT and CWT.  

The signal can be reassembled from the coefficients through 
filtering and up-sampling operation: 

( ) 2 2
1

j J

J
j j J J

n k kn k n k
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= = +∑∑ ∑   (3)    

where ( ) 1jjg g
−

= ↑G , ( ) 1jjh h
−

= ↑G . However, since 

this filter bank is critically sampled, used filters are constrained 
to satisfy the following condition to achieve perfect 
reconstruction (without delay), here valid in case of simple two-
band filter bank: 

x x x′ ′− ↑↓ = ↑↓G G H H    (4)                               
It can be easily extended to J-level decomposition case. 

 
3. RECURRENT MULTISCALE NETWORK 

 
The aforementioned idea of mitigating the vanishing gradient 
effect is now implemented through the architectural solution 
named Recurrent Multiscale Network (RMN). The name reflects 
the fact that the network combines information about the two 
main tools considered: recurrent neural networks and multiscale 
decomposition.  

Such a structure is composed of three stages. As shown in 
Fig.1, each of them is well separated from the other ones, i.e. 
they work independently and perform in sequence during RMN 
simulations. Our RMN recalls the architectures proposed in [5], 
[6] which present common feed-forward neural networks 
(FFNN) in their second stage. Therefore their performances can 
not be seen under the point of view of vanishing gradient 
problem, since no kind of recurrent structures occur in these 
architectures. 
 
3.1. DWT section 
 
The first section, called DWT section (DWTsec in Fig.1), fulfils 
the function of preprocessing the signal, giving as outputs the 
coefficient sequences resulting from Discrete Wavelet 

Decomposition. The output dimensionality of this section 
depends on the chosen decomposition level J (equal to J+1). 
Original signal is processed in a ‘batch’ way: the complete 
signal is decomposed in order to have the corresponding 
coefficient sequences with different length (direct 
decomposition). In particular, short sequences are related to low 
frequencies and to the long term history of the signal; in 
contrast, long sequences describe high frequency components 
and short term history of the signal.  
 
 
 

 

Figure 1. Recurrent Multiscale Network. It is composed of 3 
independently working stages. 

 
Another procedure, not here performed but employed in [5], 

[6], for preparing input data of second stage can be considered 
(indirect decomposition): it is based on transforming a segment 
of the original time series each time instant and retaining the last 
coefficient for each wavelet coefficient. This preprocessing 
solution lets all coefficient sequences have the same length, but 
does not preserve the advantages of temporal resolution 
differentiation at each decomposition level, that is inversely 
proportional to frequency (due to combination of filtering and 
decimating operations in DWT). 

 
3.2. RNN section 
 

The second section, RNN section (RNNsec in Fig.1), 
consists of a set of independent RNNs. There are as many RNNs 
as the number of output lines in the first stage. In fact each 
network has one of the coefficient sequences as its only input; 
consequently RNNs and output lines of DWT section are strictly 
associated. The target for each network is obtained by 
decomposing the original target through DWT and taking 
relative coefficient sequences. All networks are trained in a 
‘batch’ and completely autonomous way. This is a benefit of 
RMN: in fact all networks can work in parallel.  

Finally, it has to be noted that only globally (or fully)-RNNs 
(gRNNs) have been considered in this work. The learning 
algorithm typically used is BPTT (its ‘batch’ version, namely 
Epoch-wise BPTT). 
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Figure 2. Two architectural implementations of third RMN 
stage. (a) IDWT-FFNN chain based solution. (b) intBANK-
FFNN chain based solution. 

 
3.3. REC section 
 
In third section, REC section, (RECsec in Fig.1), the final result 
is delivered in the same domain of the original input signal. 
Sequences coming from the second stage are the inputs of this 
section. Two possible solutions have been developed for this 
RECsec. The first one is the IDWT-FFNN chain, whereas the 
second one is intBANK-FFNN chain, where an interpolation 
bank is used to get same length input signals for FFNN. In the 
former structure, reconstruction is performed by IDWT, while 
nonlinear links among sequences handled in the second stage are 
recovered through FFNN. The role of feed-forward neural 
network (generally trained through Levenberg Marquadt 
learning algorithm) is fundamental to achieve a good final result, 
since IDWT is not able to guarantee perfect reconstruction alone 
for the presence of nonlinear operations before itself. The latter 
solution has the neural network as reconstruction operator, 
allowing not to choose analysis and synthesis filters constrained 
by perfect reconstruction conditions. 

Preprocessing operation performed by interpolation bank is 
needed to get suitable inputs for FFNN training; in this case the 
input dimensionality of FFNN (without considering the presence 
of input memory) coincides with the number of output lines of 
first stage, while in IDWT-FFNN chain solution it is equal to 1. 
It has to be observed that a cascade of interpolation filter and 

FFNN input memory for each single RNNsec’s output can be 
seen as an adaptive FIR filter. Many parameters are user defined, 
and can concern type of filtering operation in each intBANK 
item (as ideal hold, zero padding or wavelet filters), type and 
depth of input memory. Such choices are strictly related to the 
handled task and can relevantly influence the right working of 
the reconstruction stage and, consequently, the global 
generalization performance.  

Finally, in case of indirect decomposition no kind of 
interpolation filter set is needed, as all sequences have the same 
length. Anyway, for the same reason, IDWT-FFNN chain based 
solution can not be used as here described. 
 
4. LONG-MEMORY TIME SERIES PREDICTION TASK 

 
RMN needs to be applied to adequate tasks in order to assess the 
effectiveness of the overall structure on reducing vanishing 
gradient effect, in relation to the behavior of common gRNNs. It 
means that the considered task has to show the occurrence of the 
studied problem and a comparison between performances of 
RMN and those ones of gRNNs must be carried out. The chosen 
one deals with particular types of time series having long range 
dependencies (LRD), that have recently attracted much attention 
over a wide range of engineering applications where need of 
modeling various non-stationary phenomena occurs. Many 
fractal processes, named long-memory processes, have been 
used for this purpose. Such processes can be formally defined 
[7], together with the short-memory processes, generally used 
for stationary modeling. They can be essentially differentiated 
for their autocorrelation function (ACF), that, given a discrete 
time process{ }nx , are respectively: 

( ), , 0 1d
x longC t B t d≈ < <  d =long-memory parameter    (5) 

( ), , 0 1t
x shortC t Bρ ρ≈ < <  ρ =short-memory parameter  (6) 

Moving from these equations, time series with controllable 
memory measured by ACF have been generated. In the case of 
short-memory processes, the whitening inverse filter method has 
been used to get a time series characterized 
by ( ),

t
x shortC t Be τ−≈ . Moreover, the Cholesky factorization 

method has been developed to generate a long-memory time 
series whose ACF is imposed to be the same as that of a fractal 
process, namely the fractionally differenced Gaussian noise. The 
closer to one long/short-memory parameter values are, the wider 
the shape of the relative ACF and longer the temporal 
dependencies contained in { }nx will be. 

A single step prediction task on this kind of series has been 
performed. The true aim consists of showing that it can represent 
a valid task to observe poor generalization behavior of full-band 
gRNNs when vanishing gradient occurs, and that prediction 
errors can be reduced by using RMN as learning system. 
Learning and testing time series are 1000-samples long. All 
prediction errors have been calculated over 10 runs. Depths of 
input memory are identical in all full-band gRNNs, and longer 
than in single-band gRNNs.  Simulation results (Table 1) show 
that: 
 Vanishing gradient effect has been occurred in full-band 

gRNNs (varying long-memory parameter d ). 
 It has not happened in case of short-memory temporal 

series (varying short-memory parameter ρ ). 

(a)

( ){ }y n( ){ }2ŵ k
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 Applying RMN to the task has led to a relevant 
improvement of generalisation performances, especially 
when long memory parameter approaches to high values, 
for both types of reconstruction section. Two levels of 
decomposition have been considered (1 and 2). 

 
Long/short-memory 

parameter 
Learning MSE 

    Mean        Std 
Testing MSE 

    Mean       Std 

d=0.55 0.1003 1.4*10-4 0.1031 1.3*10-4 

d=0.65 0.0849 7.8*10-5 0.1035 4.5*10-5 

d=0.8 0.0797 2.1*10-4 0.0907 2.8*10-4 

d=0.95 0.0317 5.1*10-5 0.5894 0.2425 

5τ =  0.0338 5.2*10-5 0.0390 3.9*10-5 

15τ =  0.0164 1.3*10-5 0.0168 5.5*10-5 

30τ =  0.0101 1.5*10-6 0.0106 9.5*10-6 

100τ =  0.0050 4.2*10-5 0.0060 6.8*10-7 

 

Long-memory parameter 1levelRECsec MSE 
    Mean         Std 

2levelRECsec MSE
   Mean          Std 

d=0.55  learning 
           testing 

0.0941 
0.0913 

0.0217 
0.0166 

0.0921 
0.0960 

0.0101 
0.0121 

d=0.65  learning 
           testing 

0.0916 
0.0904 

0.0359 
0.0165 

0.0716 
0.1017 

0.0116 
0.0087 

d=0.8    learning 
           testing 

0.0608 
0.0924 

0.0188 
0.0355 

0.0794 
0.0822 

0.0122 
0.0099 

d=0.95  learning 
           testing 

0.0850 
0.1065 

0.0732 
0.0314 

0.0862 
0.1186 

0.0820 
0.0435 

 

Long-memory parameter 1levelRECsec MSE 
    Mean         Std 

2levelRECsec MSE
   Mean          Std 

d=0.55  learning 
           testing 

0.0782 
0.0895 

0.0064 
0.0200 

0.0727 
0.0883 

0.0037 
0.0203 

d=0.65  learning 
           testing 

0.0728 
0.1101 

0.0068 
0.0140 

0.0810 
0.0818 

0.0170 
0.0122 

d=0.8    learning 
           testing 

0.1026 
0.0984 

0.0218 
0.0232 

0.0748 
0.0679 

0.0139 
0.0096 

d=0.95  learning 
           testing 

0.0896 
0.1784 

0.0731 
0.2172 

0.0629 
0.0854 

0.0137 
0.0201 

 

Long-memory parameter RNNsec-1 MSE 
Mean         Std 

RNNsec-2 MSE 
Mean          Std 

d=0.55  learning 
           testing 

0.0815 
0.0793 

0.0134 
0.0213 

0.0849 
0.0940 

0.0181 
0.0245 

d=0.65  learning 
           testing 

0.0664 
0.0921 

0.0034 
0.0240 

0.0894 
0.1080 

0.0147 
0.0169 

d=0.8    learning 
           testing 

0.0486 
0.0664 

0.0097 
0.0247 

0.0925 
0.1111 

0.0208 
0.0640 

d=0.95  learning 
           testing 

0.0238 
0.1713 

0.0056 
0.1140 

0.1097 
0.1439 

0.0156 
0.0270 

 

Table 1. (a) Learning/testing performances of a full-band gRNN. 
(b) RMN learning/testing performances: intBANK-FFNN chain 
case. (c) RMN learning/testing performances: IDWT-FFNN 
chain case. (d) Learning/testing performances of RMN’s second 
stage (relative to level 1 decomposition and valid for both types 
of reconstruction section). 

Further simulations about multi-step prediction have been 
carried out, and results as good as in single-step prediction, 

obtained. More tests should be done by using long-memory time 
series long more than 1000 samples: different generating 
techniques should be involved to reduce the computational cost 
of methods here proposed.  

Moreover, it has to be pointed out that wavelet 
decomposition is well suited to deal with 1 f processes, as it 
tends to de-correlate all coefficient sequences [8], thus reducing 
the amount of long-memory information they contain. This 
aspect has been confirmed by good single prediction 
performances of each single-band gRNN in the second stage (as 
shown in Table 1(d)) then resulting in the global improved 
behavior; consequently, it has allowed demonstrating the 
effectiveness of idea which RMN is based on.   
 

5. CONCLUSIONS 
 
In this preliminary work, an original architecture termed the 
RMN is presented, which is composed of different stages and is 
based on multi-band preprocessing operation of the input 
signals. The network has been applied to a sample task to assess 
its effectiveness on reducing the vanishing gradient effect. The 
selected task, namely time series prediction, has shown to be 
very useful to stress the occurrence of this typical RNN problem. 
Relevant results have been obtained, showing how DWT lets 
single band gRNNs in second stage of RMN be learned only on 
a particular temporal scale of original signal, leading to a general 
improvement of global results. Further studies on simulation sets 
and implementation tools in all stages of RMN could help to 
understand better RMN behavior concerning the vanishing 
gradient problem. For example, different decomposition 
techniques as Pyramid Transform or Wavelet Packet could be 
tested and their usefulness assessed for every selected task. 
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