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ABSTRACT

In the past few years, researchers have been extensively studying
the application of recurrent neural networks (RNNs) to solving
tasks where detection of long term dependencies is required.
This paper proposes an original architecture termed the
Recurrent Multiscale Network, RMN, to deal with these kinds of
problems. Its most relevant properties are concerned with
maintaining conventional RNNs’ capability of information
storing whilst simultaneously attempting to reduce their typical
drawback occurring when they are trained by gradient descent
algorithms, namely the vanishing gradient effect. This is
achieved through RMN which preprocesses the original signal
separating information at different temporal scales through an
adequate DSP tool, and handling each information level with an
autonomous recurrent architecture; the final goal is achieved by
a nonlinear reconstruction section. This network has shown a
markedly  improved  generalization  performance over
conventional RNNSs, in its application to time series prediction
tasks where long range dependencies are involved.

1. INTRODUCTION

Recurrent neural networks (RNNs) have been widely used
recently to deal with many dynamical and non-linear problems,
such as time series forecasting and identification of general
systems. In order to handle the temporal characteristics of such
data, any good system solution should let a past input exercise
its effect on a successive time instant, i.e. a sort of memorization
mechanism must be provided in order to capture contextual
information. RNNs are well suited for this as they have long-
term memory embedded: the cycles in the graph of a recurrent
network (represented by its feedback synapses) allow it to keep
information about past inputs for an amount of time that is not
fixed a-priori (information latching property), but rather depends
on its weights and on the input data. In contrast, static networks
(with no recurrent connections), even if they include delays
(such as Time Delay Neural Networks), have a finite impulse
response and cannot store a bit of information for an indefinite
time.

Hence, RNNs are the best candidates to store information for
an arbitrary duration, but such a capability is offset by the
vanishing gradient problem. This effect takes place when a RNN
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is trained by learning algorithms based on computing the
gradient of a cost function with respect to the weights of the
network [1], such as in the back propagation through time
(BPTT) or real time recurrent learning (RTRL). It has been
analytically proven [2], [3] that either the system gets
information latching being resistant to noise or, alternatively, it
is efficiently trainable by gradient descent learning algorithm,
but not both. The former case coincides with the occurrence of
vanishing gradient effect that leads to poor generalization
performances.

Several solutions have been proposed to mitigate this effect:
some methods use alternative learning algorithms, or special
architectures (additional memory for example) or a combination
of these [2]. Also particular methods based on conceiving
learning as a refinement process from a-priori knowledge
(symbolic analysis) have been developed [2]. However almost
all of these methods tend to not preserve the original simplicity
and low computational cost of RNNs trained by BPTT, which is
most widely used among gradient descent based learning
algorithms. As a consequence, a new original architecture is
proposed in this paper, in order to improve long-term
dependencies detecting capability when common RNNs and
BPTT are used together as the core of a hybrid learning system,
resulting in a reduction of the vanishing gradient effect. The
three-stage solution implemented is based on preprocessing the
input signal through a multi-band decomposition technique and
processing each obtained sequence separately through different
RNNs. In principle, all information quantity associated to a
particular temporal scale of the starting input can be learnt by a
single recurrent structure more easily than in the case of
detecting the same quantity from the entire original signal.
Moreover, an appropriate reconstructing operation is provided,
in order to process all elaborated sequences together, delivering
the final result as an imitating attempt of the original target.

2. DISCRETE WAVELET DECOMPOSITION

The chosen multi-band decomposition technique is the
discrete wavelet decomposition, which can be seen as an octave
band filter bank, with its analysis section (Discrete Wavelet
Transform (DWT)) and its synthesis section (inverse DWT
(IDWT)) [4]. Looking at the decomposition part, it can be
observed that the original signal {x”} is processed through

filtering and down-sampling operations resulting in different
sequences
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Each of these sequences is relative to a precise part of
spectrum of the signal and has different length than the others; in
more specific words, it means that their scale and resolution
values are dividled by 2 at each decomposition level,
consequently reducing by the same factor the sequence length
and the part of spectrum they represent. This fact is directly
related to the coverage of time/frequency plane existing in
continuous wavelet transform (CWT), confirming the analytical
link between DWT and CWT.

The signal can be reassembled from the coefficients through
filtering and up-sampling operation:

J
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where g’ =(G T)Hg . W=(G T)Hh . However, since

this filter bank is critically sampled, used filters are constrained
to satisfy the following condition to achieve perfect
reconstruction (without delay), here valid in case of simple two-
band filter bank:
x-GNGx=HTN Hx )
It can be easily extended to J-level decomposition case.

3. RECURRENT MULTISCALE NETWORK

The aforementioned idea of mitigating the vanishing gradient
effect is now implemented through the architectural solution
named Recurrent Multiscale Network (RMN). The name reflects
the fact that the network combines information about the two
main tools considered: recurrent neural networks and multiscale
decomposition.

Such a structure is composed of three stages. As shown in
Fig.1, each of them is well separated from the other ones, i.e.
they work independently and perform in sequence during RMN
simulations. Our RMN recalls the architectures proposed in [5],
[6] which present common feed-forward neural networks
(FFNN) in their second stage. Therefore their performances can
not be seen under the point of view of vanishing gradient
problem, since no kind of recurrent structures occur in these
architectures.

3.1. DWT section

The first section, called DWT section (DWTsec in Fig.1), fulfils
the function of preprocessing the signal, giving as outputs the
coefficient sequences resulting from Discrete Wavelet

Decomposition. The output dimensionality of this section
depends on the chosen decomposition level J (equal to J+1).
Original signal is processed in a ‘batch’ way: the complete
signal is decomposed in order to have the corresponding
coefficient sequences with  different length  (direct
decomposition). In particular, short sequences are related to low
frequencies and to the long term history of the signal; in
contrast, long sequences describe high frequency components
and short term history of the signal.

RNNsec

L ()} Rnn,

/V Rnn,

DWTsec RECsec
{x(n)} Do 0 5,0 {y(n)}
# P Rnn;
{w, ()} o, (k)}
\ Rnn, /
{v_,(k)} {‘A’J(k)}
— Rnnhl/';/

Figure 1. Recurrent Multiscale Network. It is composed of 3
independently working stages.

Another procedure, not here performed but employed in [5],
[6], for preparing input data of second stage can be considered
(indirect decomposition): it is based on transforming a segment
of the original time series each time instant and retaining the last
coefficient for each wavelet coefficient. This preprocessing
solution lets all coefficient sequences have the same length, but
does not preserve the advantages of temporal resolution
differentiation at each decomposition level, that is inversely
proportional to frequency (due to combination of filtering and
decimating operations in DWT).

3.2. RNN section

The second section, RNN section (RNNsec in Fig.l),
consists of a set of independent RNNs. There are as many RNNs
as the number of output lines in the first stage. In fact each
network has one of the coefficient sequences as its only input;
consequently RNNs and output lines of DWT section are strictly
associated. The target for each network is obtained by
decomposing the original target through DWT and taking
relative coefficient sequences. All networks are trained in a
‘batch’ and completely autonomous way. This is a benefit of
RMN: in fact all networks can work in parallel.

Finally, it has to be noted that only globally (or fully)-RNNs
(gRNNs) have been considered in this work. The learning
algorithm typically used is BPTT (its ‘batch’ version, namely
Epoch-wise BPTT).
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Figure 2. Two architectural implementations of third RMN
stage. (a) IDWT-FFNN chain based solution. (b) intBANK-
FFNN chain based solution.

3.3. REC section

In third section, REC section, (RECsec in Fig.1), the final result
is delivered in the same domain of the original input signal.
Sequences coming from the second stage are the inputs of this
section. Two possible solutions have been developed for this
RECsec. The first one is the IDWT-FFNN chain, whereas the
second one is intBANK-FFNN chain, where an interpolation
bank is used to get same length input signals for FFNN. In the
former structure, reconstruction is performed by IDWT, while
nonlinear links among sequences handled in the second stage are
recovered through FFNN. The role of feed-forward neural
network (generally trained through Levenberg Marquadt
learning algorithm) is fundamental to achieve a good final result,
since IDWT is not able to guarantee perfect reconstruction alone
for the presence of nonlinear operations before itself. The latter
solution has the neural network as reconstruction operator,
allowing not to choose analysis and synthesis filters constrained
by perfect reconstruction conditions.

Preprocessing operation performed by interpolation bank is
needed to get suitable inputs for FFNN training; in this case the
input dimensionality of FFNN (without considering the presence
of input memory) coincides with the number of output lines of
first stage, while in IDWT-FFNN chain solution it is equal to 1.
It has to be observed that a cascade of interpolation filter and

FFNN input memory for each single RNNsec’s output can be
seen as an adaptive FIR filter. Many parameters are user defined,
and can concern type of filtering operation in each intBANK
item (as ideal hold, zero padding or wavelet filters), type and
depth of input memory. Such choices are strictly related to the
handled task and can relevantly influence the right working of
the reconstruction stage and, consequently, the global
generalization performance.

Finally, in case of indirect decomposition no kind of
interpolation filter set is needed, as all sequences have the same
length. Anyway, for the same reason, IDWT-FFNN chain based
solution can not be used as here described.

4. LONG-MEMORY TIME SERIES PREDICTION TASK

RMN needs to be applied to adequate tasks in order to assess the
effectiveness of the overall structure on reducing vanishing
gradient effect, in relation to the behavior of common gRNNs. It
means that the considered task has to show the occurrence of the
studied problem and a comparison between performances of
RMN and those ones of gRNNs must be carried out. The chosen
one deals with particular types of time series having long range
dependencies (LRD), that have recently attracted much attention
over a wide range of engineering applications where need of
modeling various non-stationary phenomena occurs. Many
fractal processes, named long-memory processes, have been
used for this purpose. Such processes can be formally defined
[7], together with the short-memory processes, generally used
for stationary modeling. They can be essentially differentiated
for their autocorrelation function (ACF), that, given a discrete
time process {x, } , are respectively:

d

C, e (1)~ Bt

Cx,s/,gr, (l‘) ~ Bp"‘,

Moving from these equations, time series with controllable
memory measured by ACF have been generated. In the case of
short-memory processes, the whitening inverse filter method has
been used to get a time series characterized
by C. . ()~ Be™’". Moreover, the Cholesky factorization

method has been developed to generate a long-memory time
series whose ACF is imposed to be the same as that of a fractal
process, namely the fractionally differenced Gaussian noise. The
closer to one long/short-memory parameter values are, the wider
the shape of the relative ACF and longer the temporal

dependencies contained in {x, } will be.

, 0<d <1 d=long-memory parameter (5)

0< p<1 p =short-memory parameter (6)

A single step prediction task on this kind of series has been
performed. The true aim consists of showing that it can represent
a valid task to observe poor generalization behavior of full-band
gRNNs when vanishing gradient occurs, and that prediction
errors can be reduced by using RMN as learning system.
Learning and testing time series are 1000-samples long. All
prediction errors have been calculated over 10 runs. Depths of
input memory are identical in all full-band gRNNs, and longer
than in single-band gRNNs. Simulation results (Table 1) show
that:

*  Vanishing gradient effect has been occurred in full-band
gRNNs (varying long-memory parameter d ).

= It has not happened in case of short-memory temporal
series (varying short-memory parameter p ).
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= Applying RMN to the task has led to a relevant
improvement of generalisation performances, especially
when long memory parameter approaches to high values,
for both types of reconstruction section. Two levels of
decomposition have been considered (1 and 2).

Long/short-memory Learning MSE Testing MSE
parameter Mean Std Mean Std

d=0.55 0.1003 | 1.4*10* | 0.1031 | 1.3*10*
d=0.65 0.0849 | 7.8*10° | 0.1035 | 4.5*10°
d=0.8 0.0797 | 2.1%10* | 0.0907 | 2.8*10*
d=0.95 0.0317 | 5.1¥10° | 0.5894 | 0.2425
=5 0.0338 | 5.2%10° | 0.0390 | 3.9%10°
=15 0.0164 | 1.3*10° ]| 0.0168 | 5.5*10°
=30 0.0101 | 1.5*10° ] 0.0106 | 9.5*10°
=100 0.0050 | 4.2*10° | 0.0060 | 6.8*107

(@)

1levelRECsec MSE J2levelRECsec MSE
Mean Std Mean Std

0.0941 0.0217 0.0921 0.0101

\Long-memory parameter

d=0.55 learning

testing 0.0913 | 0.0166 0.0960 | 0.0121
d=0.65 learning 0.0916 0.0359 0.0716 0.0116
testing 0.0904 | 0.0165 0.1017 | 0.0087
d=0.8 learning 0.0608 | 0.0188 0.0794 | 0.0122
testing 0.0924 0.0355 0.0822 0.0099
d=0.95 learning 0.0850 | 0.0732 0.0862 | 0.0820
testing 0.1065 0.0314 0.1186 0.0435

0)

1levelRECsec MSE 2levelRECsec MSE
Mean Std Mean Std

\Long-memory parameter

d=0.55 learning 0.0782 | 0.0064 0.0727 | 0.0037
testing 0.0895 0.0200 0.0883 0.0203
d=0.65 learning 0.0728 | 0.0068 | 0.0810 | 0.0170
testing 0.1101 0.0140 0.0818 0.0122
d=0.8 learning 0.1026 | 0.0218 0.0748 | 0.0139
testing 0.0984 | 0.0232 0.0679 | 0.0096
d=0.95 learning 0.0896 | 0.0731 0.0629 | 0.0137
testing 0.1784 0.2172 0.0854 0.0201

(9
Long-memory parameter RNNsec-1 MSE RNNsec-2 MSE
Mean Std Mean Std
d=0.55 learning 0.0815 0.0134 0.0849 | 0.0181
testing 0.0793 | 0.0213 0.0940 | 0.0245
d=0.65 learning 0.0664 0.0034 0.0894 0.0147
testing 0.0921 0.0240 0.1080 0.0169
d=0.8 learning 0.0486 | 0.0097 0.0925 0.0208
testing 0.0664 0.0247 0.1111 0.0640
d=0.95 learning 0.0238 | 0.0056 | 0.1097 | 0.0156
testing 0.1713 0.1140 0.1439 0.0270

(d)

Table 1. (a) Learning/testing performances of a full-band gRNN.
(b) RMN learning/testing performances: intBANK-FFNN chain
case. (¢) RMN learning/testing performances: IDWT-FFNN
chain case. (d) Learning/testing performances of RMN’s second
stage (relative to level 1 decomposition and valid for both types
of reconstruction section).

Further simulations about multi-step prediction have been
carried out, and results as good as in single-step prediction,

obtained. More tests should be done by using long-memory time
series long more than 1000 samples: different generating
techniques should be involved to reduce the computational cost
of methods here proposed.

Moreover, it has to be pointed out that wavelet
decomposition is well suited to deal with 1/f processes, as it

tends to de-correlate all coefficient sequences [8], thus reducing
the amount of long-memory information they contain. This
aspect has been confirmed by good single prediction
performances of each single-band gRNN in the second stage (as
shown in Table 1(d)) then resulting in the global improved
behavior; consequently, it has allowed demonstrating the
effectiveness of idea which RMN is based on.

5. CONCLUSIONS

In this preliminary work, an original architecture termed the
RMN is presented, which is composed of different stages and is
based on multi-band preprocessing operation of the input
signals. The network has been applied to a sample task to assess
its effectiveness on reducing the vanishing gradient effect. The
selected task, namely time series prediction, has shown to be
very useful to stress the occurrence of this typical RNN problem.
Relevant results have been obtained, showing how DWT lets
single band gRNNSs in second stage of RMN be learned only on
a particular temporal scale of original signal, leading to a general
improvement of global results. Further studies on simulation sets
and implementation tools in all stages of RMN could help to
understand better RMN behavior concerning the vanishing
gradient problem. For example, different decomposition
techniques as Pyramid Transform or Wavelet Packet could be
tested and their usefulness assessed for every selected task.
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