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ABSTRACT the best solution for each problem. Besides, the resulting

In this paper, we propose a new approach for solving multi- machines need a lower number of support vectors [4] and
class problems with Support Vector Machines. We modify achieve higher performances in the case where the training
the existing technique to properly reduce the empirical er- Set is separable. If not, the incorrectly classified samples
ror, therefore we will be ideally able to outperform the pre- C€an be multiple times penalized, as we will show in the next

viously proposed scheme for multi-class SVMs. The pro- S€ction, leading .to soluuon; thqt are biased towards these
posed approach also provides solutions with a significant S@mples. We will present in this paper a novel approach

portant feature for fast systems. in which we eliminate the bias introduced by the previous

multiple class SVM formulation.

The rest of the paper is outlined as follows. Section 2
presents the new multi-class setting for SVMs. The opti-
mization procedure is detailed in Section 3. Section 4 shows
by means of experiments the behavior of the multi-class
SVM. Section 5 ends the paper with some conclusions.

1. INTRODUCTION

Support Vector Machines (SVMs) have become, in a very
short period of time, the standard state-of-the-art tool to
solve linear and non-linear knowledge discovery problems
[1], specifically for binary classification and regression es-
timation. The SVM has also been extended to multi-class 2. MULTI-CLASS SVM

problems [2, 3]. The SVM extension for multi-class is far ] ) ] ] -
from being unique and none of the approaches seems to beWe briefly |r_1troduce .th.e formulation for binary classifica-
superior to the others [4]. Basically, we can distinguish be- tion SVM. Given a training data seft;, y;), fori = 1,...,n
tween 2 different trends. The first divides the multiple class andx; € R? andy; € {£1}) and a non-linear transforma-
problem into a number of binary classification. The general- tion to a higher dimensional space, the feature spece(
ization step is based on a voting among the binary classifiersRr? ﬂ; RH), the SVM solves:

to derive the winning class. There are different transfor-

mations into binary proplems [3, 4], bei_ng the most wi_dely min {l||W||2 +C Z &}
used: one-vs.-all, in which each class is compared with all w,éib | 2 -

the other classes considered as one [5]; and one-vs.-one, in |

which each class is individually compared with all the oth- SuPJectto

ers [3]. The limitation of thesg approachgs is that they do yi(dT (x)w +b) >1—¢ Vi=1,....,n (2)
not consider the full problem directly. Particularly, the one- .

s . & >0 Vi=1,....,n (3)
vs.-all approach unbalances the training sets (if the classes
are balanced, the negative class in each binary classifier willwherew andb define the linear classifier in the feature space
have far more samples than the positive class), and the one{might be non-linear in the input space). The SVM tries to
vs.-one will be using only information from two classes, enforce that the positive samples present an output greater
losing each classifier the information from all the remain- than +1, and the negative samples present an output less
ing classes. than—1. Those samples not fulfilling this condition need a

The second trend considers the multi-class problem di- nonzercg; in (2) and therefore they will introduce a penalty
rectly as a generalization of the binary classification schemein the objective functional (1). The inclusion of the norm of
[2] and [1] (Chapter 10). This formulationis very promising w in (1) ensures that the solution is maximum margin [1].
because it deals with all the samples and classes at the same The main difference between binary classification and
time, without losing any relevant information for arrivingto  multiple class problem is that; € {1,2,...,k}, instead.

(1)
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Therefore, we can generalize the binary SVM to multi-class which should not be the case, if we apply the Empirical Risk
by using a different weight vector and bias for each class Minimization (ERM) inductive principle [1] over (8).

(w’ andb’ for j € {1,2,...,k}). So, this classifier com- If we employed the ERM principle over (8) to get the
putesk outputs to classify any pattern. The classification SVM solution as in the binary case, we would be leaded to
function is then: replace (6) with the following constraints:
f(x) = argmax (¢T(X)wj + bj) 4) (¢T(Xf)wj +b) - maX,(d’T(Xg)Wm +0™) >2— ff (9)
JE{1,... .k} m,m#j

, , , Vi=1,...,k, Vi=1,...,n/
Accordingly, we can impose (2) for each train pattern

and each class it does not belong to, as proposed in [1, 2],in which the correct class is only compared to the largest
leading to: output for all the rest
4 However, this modification can not be easily introduced
1 ) ko ko2 in most learning problems, because it would make the prob-
wi I{gigjm ) Z W] +C Z Z Z & () lem non-linear, preventing us from using quadratic program-
o j=1 i ming approaches as in the standard SVM. But we can again
replace the constraints in (9) with:

(" ())w! + ) — (¢" (x))w™ +b™) > 2 ¢ (10)
Vi=1,....k, Ym=1,....,k (m#j), Vi=1,...,n

subject to
(@7 (D)W + ) = (9" (xhw™ + ™) > 2 =& (6)

7, m
& z0 (7_) in which we have only deleted theax. This can be done
Vi=1,... .k, Vm=1,....k(m #j),Vi=1,...,n'.  pecause the/ for each pattern will be the one that enforces
i h _ . . the condition for alims, so it has to be the maximum of the
Wher?’?i is thei sgmple in clasg a”d.”] is the ngmber _&'™ in the M-SVM formulation. We can check that also in
of training samples in that class. Wg will refer to this multi-  his case, each pattern is only allowed to penalize once in the
class SVM formulation as M-SVM in the rest of the paper. gpjective function. Functional (5) with constraints (10) and
This optimization problem seeks that the’ output forx; gg' > 0 is our Empirical Risk SVM proposal for multi-class
is larger than any other. Otherwisg,™ will be nonzero problems (ER-MSVM).
for certainms, and the sample will be penalized in the ob-
jective functional as many times as it does not follow this
condition. Consequently, the penalization of any incorrectly

classified sample will not depend just on the incorrectly as- Ag ER-MSVM constraints are linear, it is possible to solve it

signed class, but also in the number of outputs larger thanby using quadratic programming. The derivation would be

the true class output. _ _ similar to that for M-SVM [1, 2], being the major difference
To show that this penalty strategy is not optimal for solv- 5 new constraint for the dual problem:

ing multi-class problems, let us look back at the Statisti-
cal Learning Theory (SLT) [1]. In the SLT, we are given a k im ] ) i
risk functional that has to be minimized with respect to the Z al™<C, Vj=1,...,k Vi=1,...,n0 (11)

3. ER-MSVM RESOLUTION

classifierf(x,w) for w € €, knowing the joint probability "=
density functionp(y, x) and a discrepancy measuté:, -) ,
between, and f (x, w): wherea?™ are the Lagrange Multipliers associated to the
constraints in (10). It is easy to interpret the meaning of
R(w) = /L(y, £(%,0))p(y, x)dydx ®) i[hese new gonstraints: &8" > 0(in M-SVM formulation)
if and only if o™ = C, (11) does not allow more than one

For classification problemé(-, ) is defined to be zero if penalizatio_n from each pattern in the objective function.

the class given by the classifier equals the true one, and one For our |mplementat|on of I.ER'MSVM’. howeyer, we have
otherwise [1]. Therefore, the proposed multi-class machine used an algorithm of the Iterative Recursive Weighted Least
in [2] might give a higher penalty than desired over some Squa_res (IRWLS.) type [6]. In fact, the method we propose
samples, if the outputs corresponding to more than one in- consists ofa series of IRWLS problems that converge to the
correct classes are larger than the output for the correct one.E.F;']MSVNI solution. To do so, we replace constraints (10)
And, as the weights of the SVM solution depend on how wi

many times a sample is penalized, the “most” incorrectly (" (x))w/ +b/) — (¢” (x))w™ —b™) > v/ — &I (12)
classified samples (outliers) will be the ones with a higher

influence on the weights of the multi-class SVM solution, 1Thezg;1. in (5) must also be removed
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J _ . . 4 33
1' vi_27_ v.]_]-v"'akv VZ—].,...,TLJ S
2. Do (until convergence) 32l - train M-SVM )
. . — val ER-MSVM ,
- Solve problem defined by functional (5) and 31f - - - val M-SVM J

constraints (7) and (12), using IRWLS algorithm
- " = fu(x]) = fi() + 0] Vi =1,k
Vm=1,...,k(m#j), Vi=1,....n
- Forallj=1,....kandforalli =1,...,n7 do
if €™ > 0 for two values ofin (m # j)
thenv! = 0.5(max,,»; €™ + max 2,,.;¢")

error

Table 1. Proposed algorithm to solve ER-MSMV problem

Vi=1,....k, Ym=1,....k(m#j), Vi=1,...,n

where thefuff values are initially fixed to 2 and then iter- .
atively modified. Basically, we would like that, for each -
pattern, at most one of the corresponding constraints in the >
above equation, is satisfied wig™ # 0, so it introduces
no more than one penalty termin the functional (5). In order
to accomplish with this, we will relax the margin amplitudes
v] until this condition is met. To be more concrete, at each
stage of the algorithm, theg associated with a pattern is
modified if and only if more than one of thgg""” from the

previous iteration are different from 0, and, if so, its new c
value is the semisum of the two larg&gt™ (other varia- B 0 102

tion schemes are also possible, but this is the one that has (b)

resulted in a faster convergence in our experiments). Table

1 summarizes the proposed algorithm. Fig. 1. Results for synthetic probleggausswith linear

Finally, each basic problem can be solved with the IR- kernel for different values of parameter C. (a) Train and 5-
WLS method for the M-SVM in a manner similar to that fold cross validation errors. (b) Number of support vectors.
used for the binary classification problem described in [6].

4. EXPERIMENTAL RESULTS )
different values for the only parametér:= [1, 3, 10, 30, 100].

In this section we compare the performance of the proposed!n Figure 1(a) we show the average train and validation
ER-MSVM against that of M-SVM both in terms of perfor-  €rrors for both methods when using a 5-fold cross valida-
mance and number of support vectors, by means of a syn-tion scheme. We observe the superior performance of ER-
thetic problem and some real datasets. These experiment§/SVM for all the values of C. Results in the independent
will serve to give a better comprehension about the differ- test set offer a similar behavior achieving minimum values
ences between both methods, and the circumstances unde®f 22.51 and 22.95 (for ER-MSVM and M-SVM, respec-
which they obtain identical solutions. tively) at C=3. Figure 1(b) clearly suggests that this im-
The synthetic two-dimensional problemigauss con- ~ Provement is due to ER-MSVM avoids multiple penaliza-
sists of 4 Gaussian distributions centered in (-1,0), (1,0), fions from a single pattern, thus diminishing the number of
(0,-1) and (0,1), all of them with variance 0.36, correspond- SUPPOIt vectors (number of;™ 7 0). By instance, from
ing to 4 different classes. We have generated a train partitionthis figure we could conclude that from the 80 support vec-
of 100 patterns with the same a priori probabilities for the tors of M-SVM with C=1, approximately 40 are associated
4 classes. An independent test dataset with 10000 patternd0 just 20 patterns with double penalization (triple penalty
has also been generated. Previous to applying any methodSan be ignored because of the geometry of the problem).
we have normalized the training dataset to have zero mean! hus, ER-MSVM redgce_s the_numbe_r_ of support vectors to
and unit variance, with the same scaling being applied to the 60. In fact, the reduction is quite significant for all values of
test partition. C, ranging from 20 to 25 %.

We have used a linear kernel for this problem, exploring Finally, we have also tested both methods for multi-class
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| Problem| Method | val. err. NSV (C,o) |
g S| 08I 0.5

thyoid | TR | 270 2% (305)
w | E I8 R wm

Table 2. Summary of results for the real datasets. 5-fold
cross validation error and number of support vectors are dis-
played for ER-MSVM (ER) and M-SVM (M) methods, as
well as theC and sigma parameters that have been used.

SVM solving in four datasets from the UCI Machine Learn-
ing Repository [7]:ecoli, teaching thyroid andzoa ecoli

has 8 classes, input dimension 7 and 336 samf#ashing
andthyroid are both 3 class-problems with 5 input variables
and 151 and 215 patterns, respectivetypois a problem
with 101 samples belonging to 7 classes, and input dimen-
sion 16.

All problems have been preprocessed for having zero
mean and unit variance. We have then carried out simula-
tions on both methods, using Gaussian kernels, for all pos-
sible combinations of C and from C' = [1, 3, 10, 30, 100]
ando = [V/4d, v/2d,/d,/0.5d,+/0.25d], with d being the
dimension of the input data. As no standard train/test parti-
tions are defined, we have used 5-fold cross validation in all
datasets.

In Table 2 we show the best validation results achieved
by both methods together with the number of support vec-
tors used and the corresponding parameterszomand
thyroid, both methods have obtained the same solution, but
for different reasons. If we examinedoresults for all the
combination of parameters, we could see that for ewehe
solution never changes when increasing parantgtanove
a certain value. Thus, the problem is being solved with zero
train error, and so afy""™ = 0, making ER-MSVM and M-
SVM solutions identicalthyroid solutions are also usually
coincident but this is for a different reason. In this case it
is the low overlapping among classes (validation errors are
inferior to 3%), and also the fact that this problem has just
three classes, which make it difficult that double penaliza-
tions occur.

On the other handecoli andteachinghave systemati-
cally given different solutions for ER-MSVM and M-SVM.
ER-MSVM best result inteachingis slightly worse than
that of M-SVM. However, the low number of classes of
the problem, together with the high overlap, suggests that
maybe all the effects from double penalizations are com-
pensated. The reduction in the number of support vectors

is consistent with the theory. Finallgcoliis a problem
with a high number of classes, what certainly makes it more
difficult to compensate the multiple penalizations of differ-
ent patterns in M-SVM. In this case, ER-SVM has outper-
formed M-SVM for more than 1%.

5. CONCLUSIONS

In this paper we have shown that following the Statistical
Learning Theory we have been able to develop a new learn-
ing algorithm for solving multi-class problems using SVMs.
This procedure has the advantage of providing solutions that
are as good as the previously proposed schemes or better,
and, at the same time, reducing the number of support vec-
tors, without an increase in the training time. The classifica-
tion error is not a great advantage in most real systems be-
cause the samples that are incorrectly classified in the train-
ing set are not many times penalized. Anyhow the proposed
scheme is theoretically more sound and in the presence of
many outliers will perform better, while having the advan-
tage of providing solutions with far less support vectors.
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