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ABSTRACT

In this paper, we propose a new approach for solving multi-
class problems with Support Vector Machines. We modify
the existing technique to properly reduce the empirical er-
ror, therefore we will be ideally able to outperform the pre-
viously proposed scheme for multi-class SVMs. The pro-
posed approach also provides solutions with a significant
reduction in the number of support vectors, which is an im-
portant feature for fast systems.

1. INTRODUCTION

Support Vector Machines (SVMs) have become, in a very
short period of time, the standard state-of-the-art tool to
solve linear and non-linear knowledge discovery problems
[1], specifically for binary classification and regression es-
timation. The SVM has also been extended to multi-class
problems [2, 3]. The SVM extension for multi-class is far
from being unique and none of the approaches seems to be
superior to the others [4]. Basically, we can distinguish be-
tween 2 different trends. The first divides the multiple class
problem into a number of binary classification. The general-
ization step is based on a voting among the binary classifiers
to derive the winning class. There are different transfor-
mations into binary problems [3, 4], being the most widely
used: one-vs.-all, in which each class is compared with all
the other classes considered as one [5]; and one-vs.-one, in
which each class is individually compared with all the oth-
ers [3]. The limitation of these approaches is that they do
not consider the full problem directly. Particularly, the one-
vs.-all approach unbalances the training sets (if the classes
are balanced, the negative class in each binary classifier will
have far more samples than the positive class), and the one-
vs.-one will be using only information from two classes,
losing each classifier the information from all the remain-
ing classes.

The second trend considers the multi-class problem di-
rectly as a generalization of the binary classification scheme
[2] and [1] (Chapter 10). This formulation is very promising
because it deals with all the samples and classes at the same
time, without losing any relevant information for arriving to

the best solution for each problem. Besides, the resulting
machines need a lower number of support vectors [4] and
achieve higher performances in the case where the training
set is separable. If not, the incorrectly classified samples
can be multiple times penalized, as we will show in the next
section, leading to solutions that are biased towards these
samples. We will present in this paper a novel approach
to solve the multi-class problem with a unique formulation,
in which we eliminate the bias introduced by the previous
multiple class SVM formulation.

The rest of the paper is outlined as follows. Section 2
presents the new multi-class setting for SVMs. The opti-
mization procedure is detailed in Section 3. Section 4 shows
by means of experiments the behavior of the multi-class
SVM. Section 5 ends the paper with some conclusions.

2. MULTI-CLASS SVM

We briefly introduce the formulation for binary classifica-
tion SVM. Given a training data set (���� ���, for � � �� � � � � �
and�� � �

� and�� � ����) and a non-linear transforma-
tion to a higher dimensional space, the feature space (����,
�
� ������ �

� ), the SVM solves:
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(1)

subject to

����
� ����� � �� � �� �� 	� � �� � � � � � (2)

�� � 	 	� � �� � � � � � (3)

where� and� define the linear classifier in the feature space
(might be non-linear in the input space). The SVM tries to
enforce that the positive samples present an output greater
than +1, and the negative samples present an output less
than��. Those samples not fulfilling this condition need a
nonzero�� in (2) and therefore they will introduce a penalty
in the objective functional (1). The inclusion of the norm of
� in (1) ensures that the solution is maximum margin [1].

The main difference between binary classification and
multiple class problem is that�� � ��� �� � � � � ��, instead.
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Therefore, we can generalize the binary SVM to multi-class
by using a different weight vector and bias for each class
(�� and�� for 	 � ��� �� � � � � ��). So, this classifier com-
putes� outputs to classify any pattern. The classification
function is then:


��� � 
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���������	�

�
�� ����� � ��

�
(4)

Accordingly, we can impose (2) for each train pattern
and each class it does not belong to, as proposed in [1, 2],
leading to:
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		 � �� � � � � �� 	� � �� � � � � � �� 
� 	�� 	� � �� � � � � �� �

where��� is the��
 sample in class	 and�� is the number
of training samples in that class. We will refer to this multi-
class SVM formulation as M-SVM in the rest of the paper.
This optimization problem seeks that the	 �
 output for���
is larger than any other. Otherwise,� ��
� will be nonzero
for certain�s, and the sample will be penalized in the ob-
jective functional as many times as it does not follow this
condition. Consequently, the penalization of any incorrectly
classified sample will not depend just on the incorrectly as-
signed class, but also in the number of outputs larger than
the true class output.

To show that this penalty strategy is not optimal for solv-
ing multi-class problems, let us look back at the Statisti-
cal Learning Theory (SLT) [1]. In the SLT, we are given a
risk functional that has to be minimized with respect to the
classifier
��� �� for � � �, knowing the joint probability
density function
����� and a discrepancy measure���� ��
between� and
��� ��:

���� �

�
���� 
��� ���
��������� (8)

For classification problems���� �� is defined to be zero if
the class given by the classifier equals the true one, and one
otherwise [1]. Therefore, the proposed multi-class machine
in [2] might give a higher penalty than desired over some
samples, if the outputs corresponding to more than one in-
correct classes are larger than the output for the correct one.
And, as the weights of the SVM solution depend on how
many times a sample is penalized, the “most” incorrectly
classified samples (outliers) will be the ones with a higher
influence on the weights of the multi-class SVM solution,

which should not be the case, if we apply the Empirical Risk
Minimization (ERM) inductive principle [1] over (8).

If we employed the ERM principle over (8) to get the
SVM solution as in the binary case, we would be leaded to
replace (6) with the following constraints:

��� ���� ��
� � ���� �




�
 ���
��� ���� ��


 � �
� � �� �
�
� (9)

		 � �� � � � � �� 	� � �� � � � � ��

in which the correct class is only compared to the largest
output for all the rest1.

However, this modification can not be easily introduced
in most learning problems, because it would make the prob-
lem non-linear, preventing us from using quadratic program-
ming approaches as in the standard SVM. But we can again
replace the constraints in (9) with:

��� ���� ��
� � ���� ��� ���� ��
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� � �� �
�
� (10)

		 � �� � � � � �� 	� � �� � � � � � �� 
� 	�� 	� � �� � � � � ��

in which we have only deleted the�

. This can be done
because the��� for each pattern will be the one that enforces
the condition for all�s, so it has to be the maximum of the
�
��

� in the M-SVM formulation. We can check that also in

this case, each pattern is only allowed to penalize once in the
objective function. Functional (5) with constraints (10) and
�
�
� � 	 is our Empirical Risk SVM proposal for multi-class

problems (ER-MSVM).

3. ER-MSVM RESOLUTION

As ER-MSVM constraints are linear, it is possible to solve it
by using quadratic programming. The derivation would be
similar to that for M-SVM [1, 2], being the major difference
a new constraint for the dual problem:

	�

��

���

�
��

� � �� 		 � �� � � � � �� 	� � �� � � � � �� (11)

where���

� are the Lagrange Multipliers associated to the

constraints in (10). It is easy to interpret the meaning of
these new constraints: as���
� � 	 (in M-SVM formulation)
if and only if ���


� � �, (11) does not allow more than one
penalization from each pattern in the objective function.

For our implementation of ER-MSVM, however, we have
used an algorithm of the Iterative Recursive Weighted Least
Squares (IRWLS) type [6]. In fact, the method we propose
consists of a series of IRWLS problems that converge to the
ER-MSVM solution. To do so, we replace constraints (10)
with

��� ���� ��
� � ���� ��� ���� ��
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�
� � �

��

� (12)

1The
��
���
����

in (5) must also be removed
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1. �
�
� � �� 		 � �� � � � � �� 	� � �� � � � � ��

2. Do (until convergence)
- Solve problem defined by functional (5) and

constraints (7) and (12), using IRWLS algorithm
- �

��

� � 

���� �� 
���

�
� � � �

�
� , 		 � �� � � � � �,

	� � �� � � � � � �� 
� 	�� 	� � �� � � � � ��

- For all 	 � �� � � � � � and for all� � �� � � � � �� do
if ���
� � 	 for two values of� �� 
� 	�

then��� � 	����


��� �
��

� ��

�
����

��

� �

Table 1. Proposed algorithm to solve ER-MSMV problem

		 � �� � � � � �� 	� � �� � � � � � �� 
� 	�� 	� � �� � � � � ��

where the��� values are initially fixed to 2 and then iter-
atively modified. Basically, we would like that, for each
pattern, at most one of the corresponding constraints in the
above equation, is satisfied with���
� 
� 	, so it introduces
no more than one penalty term in the functional (5). In order
to accomplish with this, we will relax the margin amplitudes
�
�
� until this condition is met. To be more concrete, at each

stage of the algorithm, the��� associated with a pattern is
modified if and only if more than one of the� ��
� from the
previous iteration are different from 0, and, if so, its new
value is the semisum of the two largest�

��

� (other varia-

tion schemes are also possible, but this is the one that has
resulted in a faster convergence in our experiments). Table
1 summarizes the proposed algorithm.

Finally, each basic problem can be solved with the IR-
WLS method for the M-SVM in a manner similar to that
used for the binary classification problem described in [6].

4. EXPERIMENTAL RESULTS

In this section we compare the performance of the proposed
ER-MSVM against that of M-SVM both in terms of perfor-
mance and number of support vectors, by means of a syn-
thetic problem and some real datasets. These experiments
will serve to give a better comprehension about the differ-
ences between both methods, and the circumstances under
which they obtain identical solutions.

The synthetic two-dimensional problem,4gauss, con-
sists of 4 Gaussian distributions centered in (-1,0), (1,0),
(0,-1) and (0,1), all of them with variance 0.36, correspond-
ing to 4 different classes. We have generated a train partition
of 100 patterns with the same a priori probabilities for the
4 classes. An independent test dataset with 10000 patterns
has also been generated. Previous to applying any method,
we have normalized the training dataset to have zero mean
and unit variance, with the same scaling being applied to the
test partition.

We have used a linear kernel for this problem, exploring
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Fig. 1. Results for synthetic problem4gausswith linear
kernel for different values of parameter C. (a) Train and 5-
fold cross validation errors. (b) Number of support vectors.

different values for the only parameter:� � ��� �� �	� �	� �		�.
In Figure 1(a) we show the average train and validation
errors for both methods when using a 5-fold cross valida-
tion scheme. We observe the superior performance of ER-
MSVM for all the values of C. Results in the independent
test set offer a similar behavior achieving minimum values
of 22.51 and 22.95 (for ER-MSVM and M-SVM, respec-
tively) at C=3. Figure 1(b) clearly suggests that this im-
provement is due to ER-MSVM avoids multiple penaliza-
tions from a single pattern, thus diminishing the number of
support vectors (number of���


� 
� 	). By instance, from
this figure we could conclude that from the 80 support vec-
tors of M-SVM with C=1, approximately 40 are associated
to just 20 patterns with double penalization (triple penalty
can be ignored because of the geometry of the problem).
Thus, ER-MSVM reduces the number of support vectors to
60. In fact, the reduction is quite significant for all values of
C, ranging from 20 to 25 %.

Finally, we have also tested both methods for multi-class
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Problem Method val. err. NSV ��� ��

ecoli
ER
M

12.21
13.4

166.8
182

(3,
�
���)

teaching
ER
M

40.41
39.74

122.4
143.2

(100,
�
�)

thyroid
ER
M

2.79
2.79

26
26

(30,
�
�)

zoo
ER
M

3.95
3.95

96.6
99.4

(10,
�
��)

Table 2. Summary of results for the real datasets. 5-fold
cross validation error and number of support vectors are dis-
played for ER-MSVM (ER) and M-SVM (M) methods, as
well as the� and sigma parameters that have been used.

SVM solving in four datasets from the UCI Machine Learn-
ing Repository [7]:ecoli, teaching, thyroid andzoo. ecoli
has 8 classes, input dimension 7 and 336 samples.teaching
andthyroidare both 3 class-problems with 5 input variables
and 151 and 215 patterns, respectively.zoo is a problem
with 101 samples belonging to 7 classes, and input dimen-
sion 16.

All problems have been preprocessed for having zero
mean and unit variance. We have then carried out simula-
tions on both methods, using Gaussian kernels, for all pos-
sible combinations of C and� from� � ��� �� �	� �	� �		�
and� � �

�
���

�
���

�
��
�
	����

�
	�����, with d being the

dimension of the input data. As no standard train/test parti-
tions are defined, we have used 5-fold cross validation in all
datasets.

In Table 2 we show the best validation results achieved
by both methods together with the number of support vec-
tors used and the corresponding parameters. Inzoo and
thyroid, both methods have obtained the same solution, but
for different reasons. If we examinedzooresults for all the
combination of parameters, we could see that for every� the
solution never changes when increasing parameter� above
a certain value. Thus, the problem is being solved with zero
train error, and so all���
� � 	, making ER-MSVM and M-
SVM solutions identical.thyroid solutions are also usually
coincident but this is for a different reason. In this case it
is the low overlapping among classes (validation errors are
inferior to 3%), and also the fact that this problem has just
three classes, which make it difficult that double penaliza-
tions occur.

On the other hand,ecoli and teachinghave systemati-
cally given different solutions for ER-MSVM and M-SVM.
ER-MSVM best result inteachingis slightly worse than
that of M-SVM. However, the low number of classes of
the problem, together with the high overlap, suggests that
maybe all the effects from double penalizations are com-
pensated. The reduction in the number of support vectors

is consistent with the theory. Finally,ecoli is a problem
with a high number of classes, what certainly makes it more
difficult to compensate the multiple penalizations of differ-
ent patterns in M-SVM. In this case, ER-SVM has outper-
formed M-SVM for more than 1%.

5. CONCLUSIONS

In this paper we have shown that following the Statistical
Learning Theory we have been able to develop a new learn-
ing algorithm for solving multi-class problems using SVMs.
This procedure has the advantage of providing solutions that
are as good as the previously proposed schemes or better,
and, at the same time, reducing the number of support vec-
tors, without an increase in the training time. The classifica-
tion error is not a great advantage in most real systems be-
cause the samples that are incorrectly classified in the train-
ing set are not many times penalized. Anyhow the proposed
scheme is theoretically more sound and in the presence of
many outliers will perform better, while having the advan-
tage of providing solutions with far less support vectors.
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